First some large operators both in text: $\iiint_{Q} f(x, y, z) d x d y d z$ and $\prod_{\gamma \in \Gamma_{\widetilde{c}}} \partial\left(\tilde{X}_{\gamma}\right)$; and also on display:

$$
\iiint_{\mathbf{Q}} \int f(w, x, y, z) d w d x d y d z \leq \oint_{\partial Q} f^{\prime}\left(\max \left\{\frac{\|w\|}{\left|w^{2}+x^{2}\right|} ; \frac{\|z\|}{\left|y^{2}+z^{2}\right|} ; \frac{\|w \oplus z\|}{\|x \oplus y\|}\right\}\right)
$$

$$
\begin{equation*}
\precsim \biguplus_{\mathbb{Q} \subseteq \overline{\mathbf{Q}}}\left[f^{*}\left(\frac{\left.\int \mathbb{Q}(t)\right\}}{\sqrt{1-t^{2}}}\right)\right]_{t=\alpha}^{t=\vartheta}-(\Delta+\nu-v)^{3} \tag{1}
\end{equation*}
$$

For x in the open interval]-1, 1 [the infinite sum in Equation (2) is convergent; however, this does not hold throughout the closed interval $[-1,1]$.

$$
(1-x)^{-k}=1+\sum_{j=1}^{\infty}(-1)^{j}\left\{\begin{array}{l}
k \tag{2}\\
j
\end{array}\right\} x^{j} \quad \text { for } k \in \mathbb{N} ; k \neq 0
$$

