Is Parallel Programming Hard, And, If So, What Can You Do
About It?

Edited by:

Paul E. McKenney
Linux Technology Center
IBM Beaverton
paulmck @linux.vnet.ibm.com

July 31, 2016

mailto:paulmck@linux.vnet.ibm.com

ii
Legal Statement

This work represents the views of the editor and the authors and does not necessarily represent the view of their
respective employers.

Trademarks:

» IBM, zSeries, and PowerPC are trademarks or registered trademarks of International Business Machines Corpora-
tion in the United States, other countries, or both.

* Linux is a registered trademark of Linus Torvalds.
* 1386 is a trademark of Intel Corporation or its subsidiaries in the United States, other countries, or both.
* Other company, product, and service names may be trademarks or service marks of such companies.

The non-source-code text and images in this document are provided under the terms of the Creative Commons
Attribution-Share Alike 3.0 United States license.! In brief, you may use the contents of this document for any purpose,
personal, commercial, or otherwise, so long as attribution to the authors is maintained. Likewise, the document may
be modified, and derivative works and translations made available, so long as such modifications and derivations are
offered to the public on equal terms as the non-source-code text and images in the original document.

Source code is covered by various versions of the GPL.? Some of this code is GPLv2-only, as it derives from the
Linux kernel, while other code is GPLv2-or-later. See the comment headers of the individual source files within the
CodeSamples directory in the git archive® for the exact licenses. If you are unsure of the license for a given code
fragment, you should assume GPLv2-only.

Combined work © 2005-2016 by Paul E. McKenney.

! http://creativecommons.org/licenses/by-sa/3.0/us/
2 nttp://www.gnu.org/licenses/gpl-2.0.html
3 git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Contents

1 How To Use This Book

1.1 Roadmap e
1.2 Quick Quizzes e
1.3 Alternatives to This Book e
1.4 Sample Source Code e
1.5 Whose Book Is This? e e e e

2 Introduction

2.1 Historic Parallel Programming Difficultieso
2.2 Parallel Programming Goals e e e
22.1 Performance
222 Productivity e e
223 Generality e e
2.3 Alternatives to Parallel Programming
2.3.1 Multiple Instances of a Sequential Application
2.3.2 Use Existing Parallel Software
2.3.3 Performance Optimization e
2.4 What Makes Parallel Programming Hard?
24.1 Work Partitioning L e e
242 Parallel AccessControlo
2.4.3 Resource Partitioning and Replication Lo oL
2.4.4 Interacting With Hardware e
2.4.5 Composite Capabilities e
2.4.6 How Do Languages and Environments Assist With These Tasks?
25 DISCUSSION L

3 Hardware and its Habits

31 OVEIVIEW . . . o e
3.1.1 Pipelined CPUs e
3.1.2 Memory References
3.1.3 Atomic Operations e e e e e e e e e e e e e
3.1.4 Memory Barriers e
315 Cache MISSES o o i it e
3.1.6 O Operations ot e e e e e e e
32 Overheads
3.2.1 Hardware System Architecture
322 Costs Of Operations v v vt e e e e e
3.3 Hardware Free Lunch? e

iii

3D Integration
Novel Materials and Processes
Light, Not Electrons
Special-Purpose Accelerators
Existing Parallel Software
3.4 Software Design Implications

Tools of the Trade

Scripting Languages
POSIX Multiprocessing
POSIX Process Creation and Destruction
4.2.2 POSIX Thread Creation and Destruction
4.2.3 POSIX Locking
4.2.4 POSIX Reader-Writer Locking
Atomic Operations
Linux-Kernel Equivalents to POSIX Operations

CONTENTS

37

Why Isn’t Concurrent Counting Trivial? o 38

Statistical Counters

Array-Based Implementation
Eventually Consistent Implementation
Per-Thread-Variable-Based Implementation

Approximate Limit Counters

Simple Limit Counter Implementation
Simple Limit Counter Discussion
Approximate Limit Counter Implementation
Approximate Limit Counter Discussion
Exact Limit Counters
Atomic Limit Counter Implementation
Atomic Limit Counter Discussion

Signal-Theft Limit Counter Design
Signal-Theft Limit Counter Implementation
Signal-Theft Limit Counter Discussion
Applying Specialized Parallel Counters
Parallel Counting Discussion
Parallel Counting Performance
5.6.2 Parallel Counting Specializations
Parallel Counting Lessons

Partitioning and Synchronization Design
Partitioning Exercises
Dining Philosophers Problem
6.1.2 Double-Ended Queue
6.1.3 Partitioning Example Discussion
6.2 Design Criteria

CONTENTS

6.3 Synchronization Granularity
6.3.1 Sequential Program L
6.3.2 CodeLocking e e e
6.3.3 Datalocking
6.34 DataOwnership e
6.3.5 Locking Granularity and Performance
6.4 Parallel Fastpath e
6.4.1 Reader/Writer Locking
6.4.2 Hierarchical Locking e
6.4.3 Resource Allocator Caches e
6.5 Beyond Partitioning
6.5.1 Work-Queue Parallel Maze Solver,
6.5.2 Alternative Parallel Maze Solver
6.5.3 Performance Comparison I Lo
6.5.4 Alternative Sequential Maze Solver Lo L
6.5.5 Performance ComparisonIT e
6.5.6 Future Directions and Conclusions e
6.6 Partitioning, Parallelism, and Optimization
7 Locking
7.1 Staying ALive e e
7.1.1 Deadlock e
7.1.2 Livelock and Starvation e
7.1.3 Unfairness o oo e e e e e
7.1.4 Inefficiency
7.2 Typesof Locks L e e e
7.2.1 Exclusive Locks L
7.2.2 Reader-Writer Locks L
7.2.3 Beyond Reader-Writer Locks o
724 ScopedLocking e e e
7.3 Locking Implementation Issues L
7.3.1 Sample Exclusive-Locking Implementation Based on Atomic Exchange
7.3.2 Other Exclusive-Locking Implementations
7.4 Lock-Based Existence Guarantees oottt e e e e e
7.5 Locking: Heroor Villain? e
7.5.1 Locking For Applications: Hero!
7.5.2 Locking For Parallel Libraries: Just Another Tool
7.5.3 Locking For Parallelizing Sequential Libraries: Villain!
T.6 Summary e e e e e e
8 Data Ownership
8.1 Multiple Processes e
8.2 Partial Data Ownership and pthreads
8.3 Function Shipping e e e
8.4 Designated Thread L
8.5 Privatization
8.6 Other Uses of Data Ownership e e e

73
73
73
75
76
77
78
79
79
79
83
83
84
85
87
87
88
89

91
91
92
97
98
98
98
99
99
99
100
101
102
102
104

105
105
107
109

vi CONTENTS
9 Deferred Processing 115
9.1 Running Example 115
9.2 Reference Counting e 116
9.3 Hazard Pointers e e e e e e e e e 118
9.4 SequenceLocks e 121
9.5 Read-Copy Update (RCU) e 124
9.5.1 Introductionto RCU e e 124

9.52 RCUFundamentals e e e e 126

9.53 RCUUsAE o oot e e e 132

9.54 RCU Linux-Kernel API e 142

9.5.5 “Toy” RCU Implementationsottt ittt et 147

9.5.6 RCUEXEICISES v v i it et e e e e e e e e e e e e e e e e 159

9.6 Whichto ChooSe? e e e e e e e e e 159
9.7 What About Updates? e 161
10 Data Structures 163
10.1 Motivating Application e e e e e 163
10.2 Partitionable Data Structures e e e e e 163
10.2.1 Hash-Table Design e e e e 164
10.2.2 Hash-Table Implementation 164
10.2.3 Hash-Table Performance e 165

10.3 Read-Mostly Data Structures o it e e e e e e e 167
10.3.1 RCU-Protected Hash Table Implementation 167
10.3.2 RCU-Protected Hash Table Performance 168
10.3.3 RCU-Protected Hash Table Discussion, 170

10.4 Non-Partitionable Data Structures 0 0 it e e e e e e e 171
10.4.1 Resizable Hash Table Design ittt 171
10.4.2 Resizable Hash Table Implementation 171
10.4.3 Resizable Hash Table Discussion i 175
10.4.4 Other Resizable Hash Tables i 177

10.5 Other Data Structures o v i e e e e e e e e e e e e e e e e 179
10.6 Micro-Optimization o v it e e e e e e e e e e e e 179
10.6.1 Specialization e e e e e e e 179
10.6.2 Bitsand Bytes 180
10.6.3 Hardware Considerations v i v v it e e e e e e e e e 180

10.7 Summary e e e e e e e e e e e e e 181
11 Validation 183
11.1 Introduction o o e e e e e e e e 183
11.1.1 Where Do Bugs Come From? 183
11.1.2 Required Mindset e 184
11.1.3 When Should Validation Start? e 186
11.1.4 The Open Source Way 0 i i ittt e s e e e 186

11.2 Tracing o o o e e e e e e 187
T1.3 ASSEItiONS v v ot e e e e e e e e e e 187
11.4 Static AnalysiS e e e e e 188
11.5 Code Review o e e 188
I1.5.1 Inspection o o o o i e e e e e e e 188
11.5.2 Walkthroughs e 189
11.5.3 Self-Inspection e e e e 189

CONTENTS vii

11.6 Probability and Heisenbugs 190
11.6.1 Statistics for Discrete Testing L 191
11.6.2 Abusing Statistics for Discrete Testing 192
11.6.3 Statistics for Continuous Testing 192
11.6.4 Hunting Heisenbugs e 193

11.7 Performance Estimation e 196
11.7.1 Benchmarking e 196
11.7.2 Profiling o e 197
11.7.3 Differential Profiling e 197
11.7.4 Microbenchmarking e 197
11.7.5 Isolation L e 198
11.7.6 Detecting Interference e 198

11.8 Summary e e e e e 201

12 Formal Verification 203

12.1 General-Purpose State-Space Searcho oL 203
12.1.1 Promelaand Spin e e e e e 203
12.1.2 HowtoUsePromela 206
12.1.3 Promela Example: Locking 208
12.1.4 Promela Example: QRCU e 209
12.1.5 Promela Parable: dynticks and Preemptible RCU 213
12.1.6 Validating Preemptible RCU and dynticks 216

12.2 Special-Purpose State-Space Search 229
12.2.1 Anatomy of aLitmusTest e 229
12.2.2 What Does This Litmus Test Mean? 230
1223 RunningaLitmus Test e 230
12.2.4 PPCMEM Discussiono i vt ittt e e e e e 231

12.3 Axiomatic Approaches e 232

12,4 SAT SOIVErs o o e e e e 232

12,5 Summary e e e e e e e e 233

13 Putting It All Together 235

13.1 Counter Conundrums i e e e e e 235
13.1.1 Counting Updates e e 235
13.1.2 Counting Lookups o 0 e e e e e e 235

13.2 Refurbish Reference Counting e 235
13.2.1 Implementation of Reference-Counting Categories 236
13.2.2 Linux Primitives Supporting Reference Counting 239
13.2.3 Counter Optimizations o o v v vt e e e e e e e 240

133 RCUReSCUES o o e e e e e e e e e e 241
13.3.1 RCU and Per-Thread-Variable-Based Statistical Counters 241
13.3.2 RCU and Counters for Removable I/O Devices 242
1333 ArrayandLength L 243
13.3.4 Correlated Fields e 244

13.4 Hashing Hassles 244
13.4.1 Correlated Data Elements e 244

13.4.2 Update-Friendly Hash-Table Traversal 245

viii

14 Advanced Synchronization

14.1 AvoidingLockso
14.2 Memory Barriers
14.2.1 Memory Ordering and Memory Barriers
14.2.2 If B Follows A, and C Follows B, Why Doesn’t C Follow A?
14.2.3 Variables Can Have More Than One Value
1424 WhatCan You Trust?
14.2.5 Review of Locking Implementations
142.6 AFew SimpleRules
14.2.7 Abstract Memory AccessModel
14.2.8 Device Operations oo v v v v it
1429 Guaranteesot e e e

14211 Locking Constraints
14.2.12 Memory-Barrier Examples 0oL
14.2.13 The Effects of the CPUCache

143.1 Simple NBS
14.3.2 NBS Discussion i e

15 Parallel Real-Time Computing

15.1 Whatis Real-Time Computing?
15.1.1 SoftReal Time
15.1.2 HardReal Time i

15.4.1 Implementing Parallel Real-Time Operating Systems
15.4.2 Implementing Parallel Real-Time Applications
1543 TheRoleof RCU oo
15.5 Real Time vs. Real Fast: How to Choose?

16 Ease of Use

17 Conflicting Visions of the Future

17.1 The Future of CPU Technology Ain’t Whatit UsedtoBe
17.1.1 Uniprocessor Uber Alles
17.1.2 Multithreaded Mania Lo
17.1.3 MoreoftheSame
17.1.4 Crash Dummies Slamming into the Memory Wall

17.2 Transactional Memory i e
17.2.1 Outside World
17.2.2 Process Modification
17.2.3 Synchronization o
17.2.4 Discussiont e e e e

CONTENTS

CONTENTS
17.3 Hardware Transactional Memory o oot
17.3.1 HTM Benefits WRT to Locking
17.3.2 HTM Weaknesses WRT Locking
17.3.3 HTM Weaknesses WRT to Locking When Augmented
17.3.4 Where Does HTM BestFitIn? e
17.3.5 Potential Game Changers e
17.3.6 Conclusions 0 e e e e e e e e e
17.4 Functional Programming for Parallelism
A Important Questions
A.1 What Does “After” Mean? e e e e e e
A.2 What is the Difference Between “Concurrent” and “Parallel”?
A3 What Time ISTt? e e e
B Synchronization Primitives
B.1 Organization and Initialization L
B.1.1 smp_init(): oo e e
B.2 Thread Creation, Destruction, and Control
B.2.1 create_thread() e e e
B.2.2 smp_thread_id() e
B.2.3 for_each_thread() e
B.2.4 for_each_running_thread()
B.2.5 wait_thread() e e
B.2.6 wait_all_threads() e e
B.2.7 Example Usage o . e e e
B.3 Locking e e e
B.3.1 spin_lock_init()
B.3.22 spin_lock()
B.3.3 spin_trylock() L
B.3.4 spin_unlock() e
B.3.5 Example Usage o e e e e e
B.4 Per-Thread Variables e e e e
B.4.1 DEFINE_PER_THREAD() ittt e
B.4.2 DECLARE_PER_THREAD() it
B.43 per_thread() L e
B.44 __get_thread_var() e e e e
B.4.5 init_per_thread() L e
B.4.6 UsageExample L
B.5 Performance e
C Why Memory Barriers?
C.1 Cache Structure e e e e e
C.2 Cache-Coherence Protocols e e
C.2.1 MESIStates e e e
C.2.2 MESIProtocol Messages v v v v i it e e e e e e e e e e e e
C2.3 MESIState Diagram e
C24 MESIProtocol Example e
C.3 Stores Resultin Unnecessary Stalls
C.3.1 StoreBuffers e

C.3.2 Store Forwarding

iX

310
311
313
317
320
320
322
322

325
325
327
328

329
329
329
329
329
330
330
330
330
330
330
331
331
331
331
331
331
331
331
332
332
332
332
332
332

X CONTENTS

C.3.3 Store Buffers and Memory Barriers 0 o 339

C.4 Store Sequences Result in Unnecessary Stalls 341
C4.1 Invalidate QUEUES i i i e e e e e e e e e e 341
C.4.2 Invalidate Queues and Invalidate Acknowledge 341
C.4.3 Invalidate Queues and Memory Barriers 341

C.5 Read and Write Memory Barriers o 343
C.6 Example Memory-Barrier Sequences 344
C.6.1 Ordering-Hostile Architecture 344
C.6.2 Examplel e 344
C.6.3 Example2 e e e 345
C.6.4 Example3 e e e 345

C.7 Memory-Barrier Instructions For Specific CPUs 346
C7.1 Alpha e 347
C72 AMDO4 . . . 349
C.7.3 ARMVT-A/R . . o e 349
CT74 TAGA . . . o e e 350
C7.5 MIPS .« . e 350
C.7.6 PA-RISC e 351
C.7.7 POWER/PowerPC. e 351
C.7.8 SPARCRMO,PSO,and TSO e e e 351
C7.9 X80 . . o 352
C.7.10 zSeries o L e e e 353

C.8 Are Memory Barriers Forever? e 353
C.9 Advice to Hardware Designers 0 0 i i e e e e 354
D Answers to Quick Quizzes 355
D.1 HowToUseThisBook e 355
D.2 Introduction e e e e e e e 356
D.3 HardwareanditsHabits. 359
D4 Toolsofthe Trade 362
DS Counting e 367
D.6 Partitioning and Synchronization Design oL 379
D.7 Locking 384
D.8 DataOwnership e 390
D.9 Deferred Processing L e e e e e e 392
D.10 Data Structures e e e e e e e e e 407
D.11 Validation o o e 410
D.12 Formal Verification e 414
D.13 Putting It All Together 419
D.14 Advanced Synchronization L 421
D.15 Parallel Real-Time Computing o . o it et e e e e e e e 424
D6 Easeof Use e e 426
D.17 Conflicting Visions of the Future 426
D.18 Important QUEStionS e e e e e e e 429
D.19 Synchronization Primitives 430
D.20 Why Memory Barriers? L 430

E Glossary and Bibliography 435

CONTENTS xi

F Credits 463
F1 Authors e e e 463
F2 Reviewers e e e e 463
F3 Machine OWNners e e e e e e e e e 463
F4 Original Publications L 463
FES5 Figure Credits o o o e e e 464

F6 Other Support o 465

Xii

CONTENTS

Chapter 1

How To Use This Book

The purpose of this book is to help you program shared-
memory parallel machines without risking your sanity. !
We hope that this book’s design principles will help you
avoid at least some parallel-programming pitfalls. That
said, you should think of this book as a foundation on
which to build, rather than as a completed cathedral. Your
mission, if you choose to accept, is to help make further
progress in the exciting field of parallel programming—
progress that will in time render this book obsolete. Paral-
lel programming is not as hard as some say, and we hope
that this book makes your parallel-programming projects
easier and more fun.

In short, where parallel programming once focused
on science, research, and grand-challenge projects, it is
quickly becoming an engineering discipline. We therefore
examine specific parallel-programming tasks and describe
how to approach them. In some surprisingly common
cases, they can even be automated.

This book is written in the hope that presenting the
engineering discipline underlying successful parallel-
programming projects will free a new generation of par-
allel hackers from the need to slowly and painstakingly
reinvent old wheels, enabling them to instead focus their
energy and creativity on new frontiers. We sincerely hope
that parallel programming brings you at least as much fun,
excitement, and challenge that it has brought to us!

1.1 Roadmap

This book is a handbook of widely applicable and heav-
ily used design techniques, rather than a collection of
optimal algorithms with tiny areas of applicability. You
are currently reading Chapter 1, but you knew that al-

! Or, perhaps more accurately, without much greater risk to your
sanity than that incurred by non-parallel programming. Which, come to
think of it, might not be saying all that much.

ready. Chapter 2 gives a high-level overview of parallel
programming.

Chapter 3 introduces shared-memory parallel hardware.
After all, it is difficult to write good parallel code un-
less you understand the underlying hardware. Because
hardware constantly evolves, this chapter will always be
out of date. We will nevertheless do our best to keep up.
Chapter 4 then provides a very brief overview of common
shared-memory parallel-programming primitives.

Chapter 5 takes an in-depth look at parallelizing one
of the simplest problems imaginable, namely counting.
Because almost everyone has an excellent grasp of count-
ing, this chapter is able to delve into many important
parallel-programming issues without the distractions of
more-typical computer-science problems. My impression
is that this chapter has seen the greatest use in parallel-
programming coursework.

Chapter 6 introduces a number of design-level meth-
ods of addressing the issues identified in Chapter 5. It
turns out that it is important to address parallelism at
the design level when feasible: To paraphrase Dijk-
stra [Dij68], “retrofitted parallelism considered grossly
suboptimal” [McK12b].

The next three chapters examine three important ap-
proaches to synchronization. Chapter 7 covers locking,
which in 2014 is not only the workhorse of production-
quality parallel programming, but is also widely consid-
ered to be parallel programming’s worst villain. Chap-
ter 8 gives a brief overview of data ownership, an of-
ten overlooked but remarkably pervasive and power-
ful approach. Finally, Chapter 9 introduces a number
of deferred-processing mechanisms, including reference
counting, hazard pointers, sequence locking, and RCU.

Chapter 10 applies the lessons of previous chapters to
hash tables, which are heavily used due to their excel-
lent partitionability, which (usually) leads to excellent

performance and scalability.

As many have learned to their sorrow, parallel program-
ming without validation is a sure path to abject failure.
Chapter 11 covers various forms of testing. It is of course
impossible to test reliability into your program after the
fact, so Chapter 12 follows up with a brief overview of a
couple of practical approaches to formal verification.

Chapter 13 contains a series of moderate-sized parallel
programming problems. The difficulty of these problems
vary, but should be appropriate for someone who has
mastered the material in the previous chapters.

Chapter 14 looks at advanced synchronization methods,
including memory barriers and non-blocking synchroniza-
tion, while Chapter 15 looks at the nascent field of parallel
real-time computing. Chapter 16 follows up with some
ease-of-use advice. Finally, Chapter 17 looks at a few
possible future directions, including shared-memory par-
allel system design, software and hardware transactional
memory, and functional programming for parallelism.

This chapter is followed by a number of appendices.
The most popular of these appears to be Appendix C,
which covers memory barriers. Appendix D contains
the answers to the infamous Quick Quizzes, which are
discussed in the next section.

1.2 Quick Quizzes

“Quick quizzes” appear throughout this book, and the an-
swers may be found in Appendix D starting on page 355.
Some of them are based on material in which that quick
quiz appears, but others require you to think beyond that
section, and, in some cases, beyond the realm of current
knowledge. As with most endeavors, what you get out of
this book is largely determined by what you are willing to
put into it. Therefore, readers who make a genuine effort
to solve a quiz before looking at the answer find their
effort repaid handsomely with increased understanding of
parallel programming.

Quick Quiz 1.1: Where are the answers to the Quick
Quizzes found? M

Quick Quiz 1.2: Some of the Quick Quiz questions
seem to be from the viewpoint of the reader rather than
the author. Is that really the intent? H

Quick Quiz 1.3: These Quick Quizzes are just not my
cup of tea. What can I do about it? l

In short, if you need a deep understanding of the ma-
terial, then you should invest some time into answering
the Quick Quizzes. Don’t get me wrong, passively read-
ing the material can be quite valuable, but gaining full

CHAPTER 1. HOW TO USE THIS BOOK

problem-solving capability really does require that you
practice solving problems.

I learned this the hard way during coursework for my
late-in-life Ph.D. I was studying a familiar topic, and
was surprised at how few of the chapter’s exercises I
could answer off the top of my head.? Forcing myself to
answer the questions greatly increased my retention of the
material. So with these Quick Quizzes I am not asking
you to do anything that I have not been doing myself!

Finally, the most common learning disability is think-
ing that you already know. The quick quizzes can be an
extremely effective cure.

1.3 Alternatives to This Book

As Knuth learned, if you want your book to be finite, it
must be focused. This book focuses on shared-memory
parallel programming, with an emphasis on software
that lives near the bottom of the software stack, such as
operating-system kernels, parallel data-management sys-
tems, low-level libraries, and the like. The programming
language used by this book is C.

If you are interested in other aspects of parallelism, you
might well be better served by some other book. Fortu-
nately, there are many alternatives available to you:

1. If you prefer a more academic and rigorous treat-
ment of parallel programming, you might like Her-
lihy’s and Shavit’s textbook [HS08]. This book starts
with an interesting combination of low-level primi-
tives at high levels of abstraction from the hardware,
and works its way through locking and simple data
structures including lists, queues, hash tables, and
counters, culminating with transactional memory.
Michael Scott’s textbook [Scol3] approaches sim-
ilar material with more of a software-engineering
focus, and, as far as I know, is the first formally
published academic textbook to include a section
devoted to RCU.

2. If you would like an academic treatment of par-
allel programming from a programming-language-
pragmatics viewpoint, you might be interested in the
concurrency chapter from Scott’s textbook [Sco06]
on programming-language pragmatics.

3. If you are interested in an object-oriented patternist
treatment of parallel programming focussing on C++,

2 So I suppose that it was just as well that my professors refused to
let me waive that class!

14.

10.

SAMPLE SOURCE CODE

you might try Volumes 2 and 4 of Schmidt’s POSA
series [SSRB00, BHS07]. Volume 4 in particular
has some interesting chapters applying this work to a
warehouse application. The realism of this example
is attested to by the section entitled “Partitioning the
Big Ball of Mud”, wherein the problems inherent in
parallelism often take a back seat to the problems
inherent in getting one’s head around a real-world
application.

. If you want to work with Linux-kernel device drivers,

then Corbet’s, Rubini’s, and Kroah-Hartman’s
“Linux Device Drivers” [CRKHO0S5] is indespensi-
ble, as is the Linux Weekly News web site (http:
//lwn.net/). There is a large number of books
and resources on the more general topic of Linux
kernel internals.

. If your primary focus is scientific and technical com-

puting, and you prefer a patternist approach, you
might try Mattson et al.’s textbook [MSMO5]. It cov-
ers Java, C/C++, OpenMP, and MPI. Its patterns are
admirably focused first on design, then on implemen-
tation.

. If your primary focus is scientific and technical com-

puting, and you are interested in GPUs, CUDA, and
MPI, you might check out Norm Matloff’s “Pro-
gramming on Parallel Machines” [Mat13].

. If you are interested in POSIX Threads, you might

take a look at David R. Butenhof’s book [But97].
In addition, W. Richard Stevens’s book [Ste92] cov-
ers UNIX and POSIX, and Stewart Weiss’s lecture
notes [Weil3] provide an thorough and accessible
introduction with a good set of examples.

. If you are interested in C++11, you might like An-

thony Williams’s “C++ Concurrency in Action: Prac-
tical Multithreading” [Wil12].

. If you are interested in C++, but in a Windows en-

vironment, you might try Herb Sutter’s “Effective
Concurrency” series in Dr. Dobbs Journal [SutO8].
This series does a reasonable job of presenting a
commonsense approach to parallelism.

If you want to try out Intel Threading Building
Blocks, then perhaps James Reinders’s book [Rei07]
is what you are looking for.

. Those interested in learning how various types of

multi-processor hardware cache organizations affect

the implementation of kernel internals should take
a look at Curt Schimmel’s classic treatment of this
subject [Sch94].

12. Finally, those using Java might be well-served by
Doug Lea’s textbooks [Lea97, GPB107].

However, if you are interested in principles of parallel
design for low-level software, especially software written
in C, read on!

1.4 Sample Source Code

This book discusses its fair share of source code, and
in many cases this source code may be found in the
CodeSamples directory of this book’s git tree. For
example, on UNIX systems, you should be able to type
the following:

find CodeSamples -name rcu_rcpls.c -print

This command will locate the file rcu_rcpls.c,
which is called out in Section 9.5.5. Other types of sys-
tems have well-known ways of locating files by filename.

1.5 Whose Book Is This?

As the cover says, the editor is one Paul E. McKen-
ney. However, the editor does accept contributions via
the perfbook@vger.kernel.org email list. These
contributions can be in pretty much any form, with popu-
lar approaches including text emails, patches against the
book’s ISTEX source, and even git pull requests. Use
whatever form works best for you.

To create patches or git pull requests, you
will need the IATEX source to the book, which is at
git://git.kernel.org/pub/scm/linux/
kernel/git/paulmck/perfbook.git. You will
of course also need git and I&TEX, which are available
as part of most mainstream Linux distributions. Other
packages may be required, depending on the distribution
you use. The required list of packages for a few popular
distributions is listed in the file FAQ-BUILD. t xt in the
IATEX source to the book.

To create and display a current I&IEX source tree of
this book, use the list of Linux commands shown in Fig-
ure 1.1. In some environments, the evince command
that displays per fbook . pdf may need to be replaced,
for example, with acroread. The git clone com-
mand need only be used the first time you create a PDF,

http://lwn.net/
http://lwn.net/
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

CHAPTER 1. HOW TO USE THIS BOOK

4
1 git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
2 cd perfbook
3 # You may need to install a font here. See item 1 in FAQ.txt.
4 make
5 evince perfbook.pdf & # Two-column version
6 make perfbook-lc.pdf
7 evince perfbook-lc.pdf & # One-column version for e-readers
Figure 1.1: Creating an Up-To-Date PDF
1 git remote update
2 git checkout origin/master
3 make
4 evince perfbook.pdf & # Two-column version
5 make perfbook-lc.pdf
6 evince perfbook-lc.pdf & # One-column version for e-readers

Figure 1.2: Generating an Updated PDF

subsequently, you can run the commands shown in Fig-
ure 1.2 to pull in any updates and generate an updated
PDF. The commands in Figure 1.2 must be run within the
perfbook directory created by the commands shown in
Figure 1.1.

PDFs of this book are sporadically posted at
http://kernel.org/pub/linux/kernel/
people/paulmck/perfbook/perfbook.html
and at http://www.rdrop.com/users/
paulmck/perfbook/.

The actual process of contributing patches and send-
ing git pull requests is similar to that of the Linux
kernel, which is documented in the Documentation/
SubmittingPatches file in the Linux source tree.
One important requirement is that each patch (or com-
mit, in the case of a git pull request) must contain a
valid Signed-off-by: line, which has the following
format:

Signed-off-by: My Name <myname@example.org>

Please see http://lkml.org/lkml/2007/
1/15/219 for an example patch containing a
Signed-off-by: line.

Itis important to note that the Signed-off-by: line
has a very specific meaning, namely that you are certify-
ing that:

1. The contribution was created in whole or in part by
me and I have the right to submit it under the open
source license indicated in the file; or

2. The contribution is based upon previous work that, to
the best of my knowledge, is covered under an appro-
priate open source License and I have the right under

that license to submit that work with modifications,
whether created in whole or in part by me, under the
same open source license (unless I am permitted to
submit under a different license), as indicated in the
file; or

3. The contribution was provided directly to me by
some other person who certified (a), (b) or (c) and I
have not modified it.

4. The contribution is made free of any other party’s
intellectual property claims or rights.

5. Tunderstand and agree that this project and the contri-
bution are public and that a record of the contribution
(including all personal information I submit with it,
including my sign-off) is maintained indefinitely and
may be redistributed consistent with this project or
the open source license(s) involved.

This is similar to the Developer’s Certificate of Origin
(DCO) 1.1 used by the Linux kernel. The only addition is
item #4. This added item says that you wrote the contri-
bution yourself, as opposed to having (say) copied it from
somewhere. If multiple people authored a contribution,
each should have a Signed—-off-by: line.

You must use your real name: I unfortunately cannot
accept pseudonymous or anonymous contributions.

The language of this book is American English, how-
ever, the open-source nature of this book permits transla-
tions, and I personally encourage them. The open-source
licenses covering this book additionally allow you to sell
your translation, if you wish. I do request that you send
me a copy of the translation (hardcopy if available), but

http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
http://www.rdrop.com/users/paulmck/perfbook/
http://lkml.org/lkml/2007/1/15/219
http://lkml.org/lkml/2007/1/15/219

1.5. WHOSE BOOK IS THIS?

this is a request made as a professional courtesy, and is
not in any way a prerequisite to the permission that you
already have under the Creative Commons and GPL li-
censes. Please see the FAQ. txt file in the source tree
for a list of translations currently in progress. I consider
a translation effort to be “in progress” once at least one
chapter has been fully translated.

As noted at the beginning of this section, I am this
book’s editor. However, if you choose to contribute, it
will be your book as well. With that, I offer you Chapter 2,
our introduction.

CHAPTER 1. HOW TO USE THIS BOOK

Chapter 2

Introduction

If parallel programming is so hard, why are
there any parallel programs?

Unknown

Parallel programming has earned a reputation as one
of the most difficult areas a hacker can tackle. Papers and
textbooks warn of the perils of deadlock, livelock, race
conditions, non-determinism, Amdahl’s-Law limits to
scaling, and excessive realtime latencies. And these perils
are quite real; we authors have accumulated uncounted
years of experience dealing with them, and all of the
emotional scars, grey hairs, and hair loss that go with
such experiences.

However, new technologies that are difficult to use
at introduction invariably become easier over time. For
example, the once-rare ability to drive a car is now com-
monplace in many countries. This dramatic change came
about for two basic reasons: (1) cars became cheaper and
more readily available, so that more people had the op-
portunity to learn to drive, and (2) cars became easier to
operate due to automatic transmissions, automatic chokes,
automatic starters, greatly improved reliability, and a host
of other technological improvements.

The same is true of a host of other technologies, in-
cluding computers. It is no longer necessary to operate a
keypunch in order to program. Spreadsheets allow most
non-programmers to get results from their computers that
would have required a team of specialists a few decades
ago. Perhaps the most compelling example is web-surfing
and content creation, which since the early 2000s has
been easily done by untrained, uneducated people using
various now-commonplace social-networking tools. As
recently as 1968, such content creation was a far-out re-
search project [Eng68], described at the time as “like a
UFO landing on the White House lawn”’[Gri00].

Therefore, if you wish to argue that parallel program-
ming will remain as difficult as it is currently perceived

by many to be, it is you who bears the burden of proof,
keeping in mind the many centuries of counter-examples
in a variety of fields of endeavor.

2.1 Historic Parallel Programming
Difficulties

As indicated by its title, this book takes a different ap-
proach. Rather than complain about the difficulty of par-
allel programming, it instead examines the reasons why
parallel programming is difficult, and then works to help
the reader to overcome these difficulties. As will be seen,
these difficulties have fallen into several categories, in-
cluding:

1. The historic high cost and relative rarity of parallel
systems.

2. The typical researcher’s and practitioner’s lack of
experience with parallel systems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering disci-
pline of parallel programming.

5. The high overhead of communication relative to
that of processing, even in tightly coupled shared-
memory computers.

Many of these historic difficulties are well on the way
to being overcome. First, over the past few decades, the
cost of parallel systems has decreased from many mul-
tiples of that of a house to a fraction of that of a bicy-
cle, courtesy of Moore’s Law. Papers calling out the
advantages of multicore CPUs were published as early
as 1996 [ONH196]. IBM introduced simultaneous multi-
threading into its high-end POWER family in 2000, and

multicore in 2001. Intel introduced hyperthreading into
its commodity Pentium line in November 2000, and both
AMD and Intel introduced dual-core CPUs in 2005. Sun
followed with the multicore/multi-threaded Niagara in
late 2005. In fact, by 2008, it was becoming difficult to
find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices. By
2012, even smartphones were starting to sport multiple
CPUs.

Second, the advent of low-cost and readily available
multicore systems means that the once-rare experience
of parallel programming is now available to almost all
researchers and practitioners. In fact, parallel systems
are now well within the budget of students and hobbyists.
We can therefore expect greatly increased levels of inven-
tion and innovation surrounding parallel systems, and that
increased familiarity will over time make the once pro-
hibitively expensive field of parallel programming much
more friendly and commonplace.

Third, in the 20™ century, large systems of highly par-
allel software were almost always closely guarded propri-
etary secrets. In happy contrast, the 21% century has seen
numerous open-source (and thus publicly available) paral-
lel software projects, including the Linux kernel [Tor03],
database systems [Pos08, MS08], and message-passing
systems [The08, UoCO08]. This book will draw primarily
from the Linux kernel, but will provide much material
suitable for user-level applications.

Fourth, even though the large-scale parallel-
programming projects of the 1980s and 1990s were
almost all proprietary projects, these projects have
seeded the community with a cadre of developers who
understand the engineering discipline required to develop
production-quality parallel code. A major purpose of this
book is to present this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of com-
munication relative to that of processing, remains largely
in force. Although this difficulty has been receiving in-
creasing attention during the new millennium, according
to Stephen Hawking, the finite speed of light and the
atomic nature of matter is likely to limit progress in this
area [Gar07, Moo03]. Fortunately, this difficulty has been
in force since the late 1980s, so that the aforementioned
engineering discipline has evolved practical and effective
strategies for handling it. In addition, hardware designers
are increasingly aware of these issues, so perhaps future
hardware will be more friendly to parallel software as

CHAPTER 2. INTRODUCTION

discussed in Section 3.3.

Quick Quiz 2.1: Come on now!!! Parallel program-
ming has been known to be exceedingly hard for many
decades. You seem to be hinting that it is not so hard.
What sort of game are you playing? l

However, even though parallel programming might not
be as hard as is commonly advertised, it is often more
work than is sequential programming.

Quick Quiz 2.2: How could parallel programming
ever be as easy as sequential programming? ll

It therefore makes sense to consider alternatives to
parallel programming. However, it is not possible to
reasonably consider parallel-programming alternatives
without understanding parallel-programming goals. This
topic is addressed in the next section.

2.2 Parallel Programming Goals

The three major goals of parallel programming (over and
above those of sequential programming) are as follows:

1. Performance.
2. Productivity.

3. Generality.

Unfortunately, given the current state of the art, it is
possible to achieve at best two of these three goals for
any given parallel program. These three goals therefore
form the iron triangle of parallel programming, a triangle
upon which overly optimistic hopes all too often come to
grief.!

Quick Quiz 2.3: Oh, really??? What about correct-
ness, maintainability, robustness, and so on? ll

Quick Quiz 2.4: And if correctness, maintainability,
and robustness don’t make the list, why do productivity
and generality? H

Quick Quiz 2.5: Given that parallel programs are
much harder to prove correct than are sequential pro-
grams, again, shouldn’t correctness really be on the list?
|

Quick Quiz 2.6: What about just having fun? B

Each of these goals is elaborated upon in the following
sections.

! Kudos to Michael Wong for naming the iron triangle.

2.2. PARALLEL PROGRAMMING GOALS

10000 =TT T T T T 7
»
2 A i
S 1000 =
< i]
8 - -]
o 100 | s‘g =
g i e]
T 1
~ 10 - =
8 4+ i
) i #+ +]
) 1 + —
o | _
G +
oq L— 1 1 1141]
Yo} o Yo o Te} o Te} o Yo}
N~ o] [e0] (o2} (e)] o o ~— ~—
(o)} (o)} (o] (o] ()] o o o o
— — ~— -~ — A Al A A
Year

Figure 2.1: MIPS/Clock-Frequency Trend for Intel CPUs

2.2.1 Performance

Performance is the primary goal behind most parallel-
programming effort. After all, if performance is not a
concern, why not do yourself a favor: Just write sequential
code, and be happy? It will very likely be easier and you
will probably get done much more quickly.

Quick Quiz 2.7: Are there no cases where parallel
programming is about something other than performance?
|

Note that “performance” is interpreted quite broadly
here, including scalability (performance per CPU) and
efficiency (for example, performance per watt).

That said, the focus of performance has shifted from
hardware to parallel software. This change in focus is due
to the fact that, although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the
traditional single-threaded performance increases. This
can be seen in Figure 2.1%, which shows that writing
single-threaded code and simply waiting a year or two for
the CPUs to catch up may no longer be an option. Given

2 This plot shows clock frequencies for newer CPUs theoretically ca-
pable of retiring one or more instructions per clock, and MIPS (millions
of instructions per second, usually from the old Dhrystone benchmark)
for older CPUs requiring multiple clocks to execute even the simplest in-
struction. The reason for shifting between these two measures is that the
newer CPUs’ ability to retire multiple instructions per clock is typically
limited by memory-system performance. Furthermore, the benchmarks
commonly used on the older CPUs are obsolete, and it is difficult to
run the newer benchmarks on systems containing the old CPUs, in part
because it is hard to find working instances of the old CPUs.

the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is
the way to go for those wanting the avail themselves of
the full performance of their systems.

Even so, the first goal is performance rather than scal-
ability, especially given that the easiest way to attain
linear scalability is to reduce the performance of each
CPU [Tor01]. Given a four-CPU system, which would
you prefer? A program that provides 100 transactions per
second on a single CPU, but does not scale at all? Or a
program that provides 10 transactions per second on a
single CPU, but scales perfectly? The first program seems
like a better bet, though the answer might change if you
happened to have a 32-CPU system.

That said, just because you have multiple CPUs is not
necessarily in and of itself a reason to use them all, espe-
cially given the recent decreases in price of multi-CPU
systems. The key point to understand is that parallel pro-
gramming is primarily a performance optimization, and,
as such, it is one potential optimization of many. If your
program is fast enough as currently written, there is no rea-
son to optimize, either by parallelizing it or by applying
any of a number of potential sequential optimizations.?
By the same token, if you are looking to apply parallelism
as an optimization to a sequential program, then you will
need to compare parallel algorithms to the best sequential
algorithms. This may require some care, as far too many
publications ignore the sequential case when analyzing
the performance of parallel algorithms.

2.2.2 Productivity

Quick Quiz 2.8: Why all this prattling on about non-
technical issues??? And not just any non-technical issue,
but productivity of all things? Who cares? ll
Productivity has been becoming increasingly important
in recent decades. To see this, consider that the price of
early computers was tens of millions of dollars at a time
when engineering salaries were but a few thousand dollars
a year. If dedicating a team of ten engineers to such a
machine would improve its performance, even by only
10%, then their salaries would be repaid many times over.
One such machine was the CSIRAC, the oldest still-
intact stored-program computer, which was put into op-
eration in 1949 [Mus04, Mel06]. Because this machine
was built before the transistor era, it was constructed of

3 Of course, if you are a hobbyist whose primary interest is writing
parallel software, that is more than enough reason to parallelize whatever
software you are interested in.

10
100000 F——T— T T T T T 3
[&]
10000 E +_$_ =
o 1000 F g .
@ i ;
8 100 | e .
o s iy]
o L :t+-i-'-+ _
= 10 Ly 3
[+ 4T]
1F -
[+]

01 R R R S N B
Yo} o To) o Te} o Yo} o Te]
N~ [0} [0} (2] (e} o o — —
» » o o » o o o o
— — — -~ — Al Al A Al
Year

Figure 2.2: MIPS per Die for Intel CPUs

2,000 vacuum tubes, ran with a clock frequency of 1kHz,
consumed 30kW of power, and weighed more than three
metric tons. Given that this machine had but 768 words
of RAM, it is safe to say that it did not suffer from the
productivity issues that often plague today’s large-scale
software projects.

Today, it would be quite difficult to purchase a machine
with so little computing power. Perhaps the closest equiv-
alents are 8-bit embedded microprocessors exemplified
by the venerable Z80 [WikO08], but even the old Z80 had
a CPU clock frequency more than 1,000 times faster than
the CSIRAC. The Z80 CPU had 8,500 transistors, and
could be purchased in 2008 for less than $2 US per unit
in 1,000-unit quantities. In stark contrast to the CSIRAC,
software-development costs are anything but insignificant
for the Z80.

The CSIRAC and the Z80 are two points in a long-term
trend, as can be seen in Figure 2.2. This figure plots an
approximation to computational power per die over the
past three decades, showing a consistent four-order-of-
magnitude increase. Note that the advent of multicore
CPUs has permitted this increase to continue unabated
despite the clock-frequency wall encountered in 2003.

One of the inescapable consequences of the rapid de-
crease in the cost of hardware is that software productivity
becomes increasingly important. It is no longer sufficient
merely to make efficient use of the hardware: It is now
necessary to make extremely efficient use of software
developers as well. This has long been the case for se-
quential hardware, but parallel hardware has become a

CHAPTER 2. INTRODUCTION

low-cost commodity only recently. Therefore, only re-
cently has high productivity become critically important
when creating parallel software.

Quick Quiz 2.9: Given how cheap parallel systems
have become, how can anyone afford to pay people to
program them? Ml

Perhaps at one time, the sole purpose of parallel soft-
ware was performance. Now, however, productivity is
gaining the spotlight.

2.2.3 Generality

One way to justify the high cost of developing parallel
software is to strive for maximal generality. All else being
equal, the cost of a more-general software artifact can be
spread over more users than that of a less-general one. In
fact, this economic force explains much of the maniacal
focus on portability, which can be seen as an important
special case of generality.*

Unfortunately, generality often comes at the cost of per-
formance, productivity, or both. For example, portability
is often achieved via adaptation layers, which inevitably
exact a performance penalty. To see this more gener-
ally, consider the following popular parallel programming
environments:

C/C++ “Locking Plus Threads” : This category,
which includes POSIX Threads (pthreads) [Ope97],
Windows Threads, and numerous operating-system
kernel environments, offers excellent performance
(at least within the confines of a single SMP system)
and also offers good generality. Pity about the
relatively low productivity.

Java : This general purpose and inherently multithreaded
programming environment is widely believed to of-
fer much higher productivity than C or C++, courtesy
of the automatic garbage collector and the rich set
of class libraries. However, its performance, though
greatly improved in the early 2000s, lags that of C
and C++.

MPI : This Message Passing Interface [MPIO8] powers
the largest scientific and technical computing clus-
ters in the world and offers unparalleled performance
and scalability. In theory, it is general purpose, but
it is mainly used for scientific and technical com-
puting. Its productivity is believed by many to be
even lower than that of C/C++ “locking plus threads”
environments.

4 Kudos to Michael Wong for pointing this out.

2.2. PARALLEL PROGRAMMING GOALS

Productivity

Performance
Alelsusn

Figure 2.3: Software Layers and Performance, Productiv-
ity, and Generality

OpenMP : This set of compiler directives can be used to
parallelize loops. It is thus quite specific to this task,
and this specificity often limits its performance. It
is, however, much easier to use than MPI or C/C++
“locking plus threads.”

SQL : Structured Query Language [Int92] is specific
to relational database queries. However, its perfor-
mance is quite good as measured by the Transaction
Processing Performance Council (TPC) benchmark
results [TraO1]. Productivity is excellent; in fact, this
parallel programming environment enables people to
make good use of a large parallel system despite hav-
ing little or no knowledge of parallel programming
concepts.

The nirvana of parallel programming environments,
one that offers world-class performance, productivity, and
generality, simply does not yet exist. Until such a nirvana
appears, it will be necessary to make engineering tradeofts
among performance, productivity, and generality. One
such tradeoff is shown in Figure 2.3, which shows how
productivity becomes increasingly important at the upper
layers of the system stack, while performance and gener-
ality become increasingly important at the lower layers of
the system stack. The huge development costs incurred at
the lower layers must be spread over equally huge num-
bers of users (hence the importance of generality), and
performance lost in lower layers cannot easily be recov-
ered further up the stack. In the upper layers of the stack,
there might be very few users for a given specific applica-
tion, in which case productivity concerns are paramount.
This explains the tendency towards “bloatware” further

11

Special-Purpose
~<—Env Productive
for User 1

\

User 2

m

Special-Purpose Environment
Productive for User 3

Spemal Purpose
Environment
Productlve for User 2

m

Special-Purpose
Environment
Productive for User 4

General- Purpose
Environment

Figure 2.4: Tradeoff Between Productivity and Generality

up the stack: extra hardware is often cheaper than the
extra developers. This book is intended for developers
working near the bottom of the stack, where performance
and generality are of great concern.

It is important to note that a tradeoff between produc-
tivity and generality has existed for centuries in many
fields. For but one example, a nailgun is more productive
than a hammer for driving nails, but in contrast to the
nailgun, a hammer can be used for many things besides
driving nails. It should therefore be no surprise to see
similar tradeoffs appear in the field of parallel comput-
ing. This tradeoff is shown schematically in Figure 2.4.
Here, users 1, 2, 3, and 4 have specific jobs that they need
the computer to help them with. The most productive
possible language or environment for a given user is one
that simply does that user’s job, without requiring any
programming, configuration, or other setup.

Quick Quiz 2.10: This is a ridiculously unachievable
ideal! Why not focus on something that is achievable in
practice? ll

Unfortunately, a system that does the job required by
user 1 is unlikely to do user 2’s job. In other words, the
most productive languages and environments are domain-
specific, and thus by definition lacking generality.

Another option is to tailor a given programming lan-
guage or environment to the hardware system (for ex-
ample, low-level languages such as assembly, C, C++, or
Java) or to some abstraction (for example, Haskell, Prolog,
or Snobol), as is shown by the circular region near the cen-
ter of Figure 2.4. These languages can be considered to be
general in the sense that they are equally ill-suited to the
jobs required by users 1, 2, 3, and 4. In other words, their

12

generality is purchased at the expense of decreased pro-
ductivity when compared to domain-specific languages
and environments. Worse yet, a language that is tailored
to a given abstraction is also likely to suffer from perfor-
mance and scalability problems unless and until someone
figures out how to efficiently map that abstraction to real
hardware.

Is there no escape from iron triangle’s three conflicting
goals of performance, productivity, and generality?

It turns out that there often is an escape, for example,
using the alternatives to parallel programming discussed
in the next section. After all, parallel programming can
be a great deal of fun, but it is not always the best tool for
the job.

2.3 Alternatives to Parallel Pro-
gramming

In order to properly consider alternatives to parallel pro-
gramming, you must first decide on what exactly you
expect the parallelism to do for you. As seen in Sec-
tion 2.2, the primary goals of parallel programming are
performance, productivity, and generality. Because this
book is intended for developers working on performance-
critical code near the bottom of the software stack, the re-
mainder of this section focuses primarily on performance
improvement.

It is important to keep in mind that parallelism is but
one way to improve performance. Other well-known
approaches include the following, in roughly increasing
order of difficulty:

1. Run multiple instances of a sequential application.
2. Make the application use existing parallel software.

3. Apply performance optimization to the serial appli-
cation.

These approaches are covered in the following sections.

2.3.1 Multiple Instances of a Sequential
Application

Running multiple instances of a sequential application can
allow you to do parallel programming without actually
doing parallel programming. There are a large number of
ways to approach this, depending on the structure of the
application.

CHAPTER 2. INTRODUCTION

If your program is analyzing a large number of different
scenarios, or is analyzing a large number of independent
data sets, one easy and effective approach is to create a
single sequential program that carries out a single analysis,
then use any of a number of scripting environments (for
example the bash shell) to run a number of instances of
that sequential program in parallel. In some cases, this
approach can be easily extended to a cluster of machines.

This approach may seem like cheating, and in fact
some denigrate such programs as “embarrassingly paral-
lel”. And in fact, this approach does have some potential
disadvantages, including increased memory consumption,
waste of CPU cycles recomputing common intermediate
results, and increased copying of data. However, it is of-
ten extremely productive, garnering extreme performance
gains with little or no added effort.

2.3.2 Use Existing Parallel Software

There is no longer any shortage of parallel software en-
vironments that can present a single-threaded program-
ming environment, including relational databases [Dat82],
web-application servers, and map-reduce environments.
For example, a common design provides a separate pro-
gram for each user, each of which generates SQL pro-
grams. These per-user SQL programs are run concurrently
against a common relational database, which automati-
cally runs the users’ queries concurrently. The per-user
programs are responsible only for the user interface, with
the relational database taking full responsibility for the
difficult issues surrounding parallelism and persistence.

In addition, there are a growing number of paral-
lel library functions, particularly for numeric compu-
tation. Even better, some libraries take advantage of
special-purpose hardware such as vector units and general-
purpose graphical processing units (GPGPUs).

Taking this approach often sacrifices some perfor-
mance, at least when compared to carefully hand-coding a
fully parallel application. However, such sacrifice is often
well repaid by a huge reduction in development effort.

Quick Quiz 2.11: Wait a minute! Doesn’t this ap-
proach simply shift the development effort from you to
whoever wrote the existing parallel software you are us-
ing? A

2.3.3 Performance Optimization

Up through the early 2000s, CPU performance was dou-
bling every 18 months. In such an environment, it is often
much more important to create new functionality than to

2.4. WHAT MAKES PARALLEL PROGRAMMING HARD? 13

do careful performance optimization. Now that Moore’s
Law is “only” increasing transistor density instead of in-
creasing both transistor density and per-transistor perfor-
mance, it might be a good time to rethink the importance
of performance optimization. After all, new hardware
generations no longer bring significant single-threaded
performance improvements. Furthermore, many perfor-
mance optimizations can also conserve energy.

From this viewpoint, parallel programming is but an-
other performance optimization, albeit one that is be-
coming much more attractive as parallel systems become
cheaper and more readily available. However, it is wise to
keep in mind that the speedup available from parallelism
is limited to roughly the number of CPUs. In contrast,
the speedup available from traditional single-threaded
software optimizations can be much larger. For exam-
ple, replacing a long linked list with either a hash table
or a search tree can improve performance by many or-
ders of magnitude. This highly optimized single-threaded
program might run much faster than its unoptimized par-
allel counterpart, making parallelization unnecessary. Of
course, a highly optimized parallel program would be
even better, give or take the added development effort
required.

Furthermore, different programs might have different
performance bottlenecks. For example, if your program
spends most of its time waiting on data from your disk
drive, using multiple CPUs will probably just increase the
time wasted waiting for the disks. In fact, if the program
was reading from a single large file laid out sequentially
on a rotating disk, parallelizing your program might well
make it a lot slower due to the added seek overhead. You
should instead optimize the data layout so that the file can
be smaller (thus faster to read), split the file into chunks
which can be accessed in parallel from different drives,
cache frequently accessed data in main memory, or, if
possible, reduce the amount of data that must be read.

Quick Quiz 2.12: What other bottlenecks might pre-
vent additional CPUs from providing additional perfor-
mance? l

Parallelism can be a powerful optimization technique,
but it is not the only such technique, nor is it appropriate
for all situations. Of course, the easier it is to parallelize
your program, the more attractive parallelization becomes
as an optimization. Parallelization has a reputation of
being quite difficult, which leads to the question “exactly
what makes parallel programming so difficult?”

4 N\
Performance Productivity

Work
Partitioning

Y Y

A Resource
Parallel Partitioning and
Access Control Y Replication
A : A
Interacting
With Hardware

Generality

AN J

Figure 2.5: Categories of Tasks Required of Parallel Pro-
grammers

2.4 What Makes Parallel Program-
ming Hard?

It is important to note that the difficulty of parallel pro-
gramming is as much a human-factors issue as it is a set of
technical properties of the parallel programming problem.
We do need human beings to be able to tell parallel sys-
tems what to do, otherwise known as programming. But
parallel programming involves two-way communication,
with a program’s performance and scalability being the
communication from the machine to the human. In short,
the human writes a program telling the computer what
to do, and the computer critiques this program via the
resulting performance and scalability. Therefore, appeals
to abstractions or to mathematical analyses will often be
of severely limited utility.

In the Industrial Revolution, the interface between hu-
man and machine was evaluated by human-factor studies,
then called time-and-motion studies. Although there have
been a few human-factor studies examining parallel pro-
gramming [ENS05, ES05, HCS™ 05, SS94], these studies
have been extremely narrowly focused, and hence unable
to demonstrate any general results. Furthermore, given
that the normal range of programmer productivity spans
more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10%
difference in productivity. Although the multiple-order-
of-magnitude differences that such studies can reliably
detect are extremely valuable, the most impressive im-
provements tend to be based on a long series of 10%
improvements.

We must therefore take a different approach.

One such approach is to carefully consider the tasks

14

that parallel programmers must undertake that are not
required of sequential programmers. We can then evaluate
how well a given programming language or environment
assists the developer with these tasks. These tasks fall into
the four categories shown in Figure 2.5, each of which is
covered in the following sections.

2.4.1 Work Partitioning

Work partitioning is absolutely required for parallel exe-
cution: if there is but one “glob” of work, then it can be
executed by at most one CPU at a time, which is by defini-
tion sequential execution. However, partitioning the code
requires great care. For example, uneven partitioning can
result in sequential execution once the small partitions
have completed [Amd67]. In less extreme cases, load
balancing can be used to fully utilize available hardware
and restore performance and scalabilty.

Although partitioning can greatly improve performance
and scalability, it can also increase complexity. For ex-
ample, partitioning can complicate handling of global
errors and events: A parallel program may need to carry
out non-trivial synchronization in order to safely process
such global events. More generally, each partition re-
quires some sort of communication: After all, if a given
thread did not communicate at all, it would have no effect
and would thus not need to be executed. However, be-
cause communication incurs overhead, careless partition-
ing choices can result in severe performance degradation.

Furthermore, the number of concurrent threads must
often be controlled, as each such thread occupies common
resources, for example, space in CPU caches. If too
many threads are permitted to execute concurrently, the
CPU caches will overflow, resulting in high cache miss
rate, which in turn degrades performance. Conversely,
large numbers of threads are often required to overlap
computation and I/O so as to fully utilize I/O devices.

Quick Quiz 2.13: Other than CPU cache capacity,
what might require limiting the number of concurrent
threads?

Finally, permitting threads to execute concurrently
greatly increases the program’s state space, which can
make the program difficult to understand and debug, de-
grading productivity. All else being equal, smaller state
spaces having more regular structure are more easily un-
derstood, but this is a human-factors statement as much
as it is a technical or mathematical statement. Good par-
allel designs might have extremely large state spaces, but
nevertheless be easy to understand due to their regular

CHAPTER 2. INTRODUCTION

structure, while poor designs can be impenetrable despite
having a comparatively small state space. The best de-
signs exploit embarrassing parallelism, or transform the
problem to one having an embarrassingly parallel solu-
tion. In either case, “embarrassingly parallel” is in fact
an embarrassment of riches. The current state of the art
enumerates good designs; more work is required to make
more general judgments on state-space size and structure.

2.4.2 Parallel Access Control

Given a single-threaded sequential program, that single
thread has full access to all of the program’s resources.
These resources are most often in-memory data structures,
but can be CPUs, memory (including caches), I/O devices,
computational accelerators, files, and much else besides.

The first parallel-access-control issue is whether the
form of the access to a given resource depends on that re-
source’s location. For example, in many message-passing
environments, local-variable access is via expressions and
assignments, while remote-variable access uses an en-
tirely different syntax, usually involving messaging. The
POSIX Threads environment [Ope97], Structured Query
Language (SQL) [Int92], and partitioned global address-
space (PGAS) environments such as Universal Parallel C
(UPC) [EGCDO03] offer implicit access, while Message
Passing Interface (MPI) [MPIO8] offers explicit access
because access to remote data requires explicit messaging.

The other parallel-access-control issue is how threads
coordinate access to the resources. This coordination is
carried out by the very large number of synchronization
mechanisms provided by various parallel languages and
environments, including message passing, locking, trans-
actions, reference counting, explicit timing, shared atomic
variables, and data ownership. Many traditional parallel-
programming concerns such as deadlock, livelock, and
transaction rollback stem from this coordination. This
framework can be elaborated to include comparisons of
these synchronization mechanisms, for example locking
vs. transactional memory [MMWO7], but such elabora-
tion is beyond the scope of this section. (See Sections 17.2
and 17.3 for more information on transactional memory.)

2.4.3 Resource Partitioning and Replica-
tion
The most effective parallel algorithms and systems exploit

resource parallelism, so much so that it is usually wise to
begin parallelization by partitioning your write-intensive

2.5. DISCUSSION

resources and replicating frequently accessed read-mostly
resources. The resource in question is most frequently
data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies
or hardware threads), pages, cache lines, instances of syn-
chronization primitives, or critical sections of code. For
example, partitioning over locking primitives is termed
“data locking” [BK85].

Resource partitioning is frequently application depen-
dent. For example, numerical applications frequently par-
tition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive
data structures and replicate read-mostly data structures.
Thus, a commercial application might assign the data for
a given customer to a given few computers out of a large
cluster. An application might statically partition data, or
dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it can
be quite challenging for complex multilinked data struc-
tures.

2.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the op-
erating system, the compiler, libraries, or other software-
environment infrastructure. However, developers working
with novel hardware features and components will often
need to work directly with such hardware. In addition,
direct access to the hardware can be required when squeez-
ing the last drop of performance out of a given system. In
this case, the developer may need to tailor or configure
the application to the cache geometry, system topology,
or interconnect protocol of the target hardware.

In some cases, hardware may be considered to be a
resource which is subject to partitioning or access control,
as described in the previous sections.

2.4.5 Composite Capabilities

Although these four capabilities are fundamental, good
engineering practice uses composites of these capabilities.
For example, the data-parallel approach first partitions
the data so as to minimize the need for inter-partition
communication, partitions the code accordingly, and fi-
nally maps data partitions and threads so as to maximize
throughput while minimizing inter-thread communica-
tion, as shown in Figure 2.6. The developer can then
consider each partition separately, greatly reducing the
size of the relevant state space, in turn increasing produc-
tivity. Even though some problems are non-partitionable,

15

P
Performance

Y L
A

Parallel F

[Access Control ,

/
A !

Interacting
With Hardware

N
Productivity

J«

Resource
Partitioning and
(_ Replication

A

Work
Partitioning

Generality

AN J

Figure 2.6: Ordering of Parallel-Programming Tasks

clever transformations into forms permitting partitioning
can sometimes greatly enhance both performance and
scalability [Met99].

24.6 How Do Languages and Environ-
ments Assist With These Tasks?

Although many environments require the developer to
deal manually with these tasks, there are long-standing
environments that bring significant automation to bear.
The poster child for these environments is SQL, many
implementations of which automatically parallelize single
large queries and also automate concurrent execution of
independent queries and updates.

These four categories of tasks must be carried out in all
parallel programs, but that of course does not necessarily
mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of
these four tasks as parallel systems continue to become
cheaper and more readily available.

Quick Quiz 2.14: Are there any other obstacles to
parallel programming? H

2.5 Discussion

This section has given an overview of the difficulties
with, goals of, and alternatives to parallel program-
ming. This overview was followed by a discussion
of what can make parallel programming hard, along
with a high-level approach for dealing with parallel
programming’s difficulties. Those who still insist that
parallel programming is impossibly difficult should re-
view some of the older guides to parallel programm-
ming [Seq88, Dig89, BK85, Inm85]. The following quote

16 CHAPTER 2. INTRODUCTION

from Andrew Birrell’s monograph [Dig89] is especially
telling:

Writing concurrent programs has a reputation
for being exotic and difficult. I believe it is
neither. You need a system that provides you
with good primitives and suitable libraries, you
need a basic caution and carefulness, you need
an armory of useful techniques, and you need
to know of the common pitfalls. I hope that
this paper has helped you towards sharing my
belief.

The authors of these older guides were well up to the
parallel programming challenge back in the 1980s. As
such, there are simply no excuses for refusing to step up
to the parallel-programming challenge here in the 21%
century!

We are now ready to proceed to the next chapter, which
dives into the relevant properties of the parallel hardware
underlying our parallel software.

Chapter 3

Hardware and its Habits

Premature abstraction is the root of all evil.

A cast of thousands

Most people have an intuitive understanding that pass-
ing messages between systems is considerably more ex-
pensive than performing simple calculations within the
confines of a single system. However, it is not always
so clear that communicating among threads within the
confines of a single shared-memory system can also be
quite expensive. This chapter therefore looks at the cost
of synchronization and communication within a shared-
memory system. These few pages can do no more than
scratch the surface of shared-memory parallel hardware
design; readers desiring more detail would do well to start
with a recent edition of Hennessy and Patterson’s classic
text [HP11, HP95].

Quick Quiz 3.1: Why should parallel programmers
bother learning low-level properties of the hardware?
Wouldn’t it be easier, better, and more general to remain
at a higher level of abstraction? ll

3.1 Overview

Careless reading of computer-system specification sheets
might lead one to believe that CPU performance is a
footrace on a clear track, as illustrated in Figure 3.1, where
the race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that
approach the ideal shown in Figure 3.1, the typical pro-
gram more closely resembles an obstacle course than
arace track. This is because the internal architecture of
CPUs has changed dramatically over the past few decades,
courtesy of Moore’s Law. These changes are described in
the following sections.

17

Figure 3.1: CPU Performance at its Best

3.1.1 Pipelined CPUs

In the early 1980s, the typical microprocessor fetched an
instruction, decoded it, and executed it, typically taking at
least three clock cycles to complete one instruction before
proceeding to the next. In contrast, the CPU of the late
1990s and early 2000s will be executing many instructions
simultaneously, using a deep “pipeline” to control the
flow of instructions internally to the CPU. These modern
hardware features can greatly improve performance, as
illustrated by Figure 3.2.

Achieving full performance with a CPU having a long
pipeline requires highly predictable control flow through
the program. Suitable control flow can be provided by
a program that executes primarily in tight loops, for ex-
ample, arithmetic on large matrices or vectors. The CPU
can then correctly predict that the branch at the end of
the loop will be taken in almost all cases, allowing the

18

cache, 20 stage pipeline..

4.0 GHz clock, 20MB L3>j

The only pipeline | need
is to cool of f that hot-
headed brat.

Figure 3.3: CPU Meets a Pipeline Flush

pipeline to be kept full and the CPU to execute at full
speed.

However, branch prediction is not always so easy. For
example, consider a program with many loops, each of
which iterates a small but random number of times. For
another example, consider an object-oriented program
with many virtual objects that can reference many differ-
ent real objects, all with different implementations for
frequently invoked member functions. In these cases, it is
difficult or even impossible for the CPU to predict where
the next branch might lead. Then either the CPU must
stall waiting for execution to proceed far enough to be
certain where that branch leads, or it must guess. Al-
though guessing works extremely well for programs with
predictable control flow, for unpredictable branches (such

CHAPTER 3. HARDWARE AND ITS HABITS

as those in binary search) the guesses will frequently be
wrong. A wrong guess can be expensive because the CPU
must discard any speculatively executed instructions fol-
lowing the corresponding branch, resulting in a pipeline
flush. If pipeline flushes appear too frequently, they dras-
tically reduce overall performance, as fancifully depicted
in Figure 3.3.

Unfortunately, pipeline flushes are not the only hazards
in the obstacle course that modern CPUs must run. The
next section covers the hazards of referencing memory.

3.1.2 Memory References

In the 1980s, it often took less time for a microprocessor
to load a value from memory than it did to execute an
instruction. In 2006, a microprocessor might be capable
of executing hundreds or even thousands of instructions
in the time required to access memory. This disparity
is due to the fact that Moore’s Law has increased CPU
performance at a much greater rate than it has decreased
memory latency, in part due to the rate at which memory
sizes have grown. For example, a typical 1970s mini-
computer might have 4KB (yes, kilobytes, not megabytes,
let alone gigabytes) of main memory, with single-cycle
access.! In 2008, CPU designers still can construct a
4KB memory with single-cycle access, even on systems
with multi-GHz clock frequencies. And in fact they fre-
quently do construct such memories, but they now call
them “level-0 caches”, and they can be quite a bit bigger
than 4KB.

Although the large caches found on modern micro-
processors can do quite a bit to help combat memory-
access latencies, these caches require highly predictable
data-access patterns to successfully hide those latencies.
Unfortunately, common operations such as traversing a
linked list have extremely unpredictable memory-access
patterns—after all, if the pattern was predictable, us soft-
ware types would not bother with the pointers, right?
Therefore, as shown in Figure 3.4, memory references
often pose severe obstacles to modern CPUs.

Thus far, we have only been considering obstacles
that can arise during a given CPU’s execution of single-
threaded code. Multi-threading presents additional obsta-
cles to the CPU, as described in the following sections.

! It is only fair to add that each of these single cycles lasted no less
than 1.6 microseconds.

3.1. OVERVIEW

Figure 3.4: CPU Meets a Memory Reference

3.1.3 Atomic Operations

One such obstacle is atomic operations. The problem
here is that the whole idea of an atomic operation con-
flicts with the piece-at-a-time assembly-line operation of
a CPU pipeline. To hardware designers’ credit, modern
CPUs use a number of extremely clever tricks to make
such operations look atomic even though they are in fact
being executed piece-at-a-time, with one common trick
being to identify all the cachelines containing the data to
be atomically operated on, ensure that these cachelines
are owned by the CPU executing the atomic operation,
and only then proceed with the atomic operation while en-
suring that these cachelines remained owned by this CPU.
Because all the data is private to this CPU, other CPUs
are unable to interfere with the atomic operation despite
the piece-at-a-time nature of the CPU’s pipeline. Need-
less to say, this sort of trick can require that the pipeline
must be delayed or even flushed in order to perform the
setup operations that permit a given atomic operation to
complete correctly.

In contrast, when executing a non-atomic operation, the
CPU can load values from cachelines as they appear and
place the results in the store buffer, without the need to
wait for cacheline ownership. Fortunately, CPU designers
have focused heavily on atomic operations, so that as of
early 2014 they have greatly reduced their overhead. Even
so, the resulting effect on performance is all too often as

19

Figure 3.5: CPU Meets an Atomic Operation

depicted in Figure 3.5.

Unfortunately, atomic operations usually apply only to
single elements of data. Because many parallel algorithms
require that ordering constraints be maintained between
updates of multiple data elements, most CPUs provide
memory barriers. These memory barriers also serve as
performance-sapping obstacles, as described in the next
section.

Quick Quiz 3.2: What types of machines would allow
atomic operations on multiple data elements? Hl

3.1.4 Memory Barriers

Memory barriers will be considered in more detail in
Section 14.2 and Appendix C. In the meantime, consider
the following simple lock-based critical section:

1 spin_lock (&mylock) ;
2 a=a+ 1;
3 spin_unlock (&mylock) ;

If the CPU were not constrained to execute these state-
ments in the order shown, the effect would be that the
variable “a” would be incremented without the protection
of “mylock”, which would certainly defeat the purpose
of acquiring it. To prevent such destructive reordering,
locking primitives contain either explicit or implicit mem-
ory barriers. Because the whole purpose of these memory
barriers is to prevent reorderings that the CPU would
otherwise undertake in order to increase performance,
memory barriers almost always reduce performance, as
depicted in Figure 3.6.

As with atomic operations, CPU designers have been
working hard to reduce memory-barrier overhead, and

20

Figure 3.6: CPU Meets a Memory Barrier

have made substantial progress.

3.1.5 Cache Misses

An additional multi-threading obstacle to CPU perfor-
mance is the “cache miss”. As noted earlier, modern
CPUs sport large caches in order to reduce the perfor-
mance penalty that would otherwise be incurred due to
high memory latencies. However, these caches are actu-
ally counter-productive for variables that are frequently
shared among CPUs. This is because when a given CPU
wishes to modify the variable, it is most likely the case
that some other CPU has modified it recently. In this case,
the variable will be in that other CPU’s cache, but not in
this CPU’s cache, which will therefore incur an expensive
cache miss (see Section C.1 for more detail). Such cache
misses form a major obstacle to CPU performance, as
shown in Figure 3.7.

Quick Quiz 3.3: So have CPU designers also greatly
reduced the overhead of cache misses? ll

3.1.6 1/O Operations

A cache miss can be thought of as a CPU-to-CPU I/O
operation, and as such is one of the cheapest I/O oper-
ations available. I/O operations involving networking,
mass storage, or (worse yet) human beings pose much
greater obstacles than the internal obstacles called out in

CHAPTER 3. HARDWARE AND ITS HABITS

CACHE-
MISS

TOLL
BOOTH

Please stay on the
line. Your call is very
important to us...

Figure 3.8: CPU Waits for I/O Completion

the prior sections, as illustrated by Figure 3.8.

This is one of the differences between shared-memory
and distributed-system parallelism: shared-memory paral-
lel programs must normally deal with no obstacle worse
than a cache miss, while a distributed parallel program
will typically incur the larger network communication
latencies. In both cases, the relevant latencies can be
thought of as a cost of communication—a cost that would
be absent in a sequential program. Therefore, the ratio
between the overhead of the communication to that of the
actual work being performed is a key design parameter.
A major goal of parallel hardware design is to reduce this
ratio as needed to achieve the relevant performance and

3.2. OVERHEADS

CPUDO CPU 1 CPU 2 CPUS3
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory |<—=| System Interconnect |<—= Memory

pa N
Interconnect Interconnect
Cache Cache Cache Cache
CPU4 CPU5 CPU 6 CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8GHz Clock Period (8cm)

Figure 3.9: System Hardware Architecture

scalability goals. In turn, as will be seen in Chapter 6,
a major goal of parallel software design is to reduce the
frequency of expensive operations like communications
cache misses.

Of course, it is one thing to say that a given operation is
an obstacle, and quite another to show that the operation
is a significant obstacle. This distinction is discussed in
the following sections.

3.2 Overheads

This section presents actual overheads of the obstacles to
performance listed out in the previous section. However,
it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

3.2.1 Hardware System Architecture

Figure 3.9 shows a rough schematic of an eight-core com-
puter system. Each die has a pair of CPU cores, each
with its cache, as well as an interconnect allowing the pair
of CPUs to communicate with each other. The system
interconnect in the middle of the diagram allows the four
dies to communicate, and also connects them to main
memory.

Data moves through this system in units of “cache
lines”, which are power-of-two fixed-size aligned blocks
of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of its
registers, it must first load the cacheline containing that

21

variable into its cache. Similarly, when a CPU stores a
value from one of its registers into memory, it must also
load the cacheline containing that variable into its cache,
but must also ensure that no other CPU has a copy of that
cacheline.

For example, if CPU 0 were to perform a compare-
and-swap (CAS) operation on a variable whose cacheline
resided in CPU 7’s cache, the following over-simplified
sequence of events might ensue:

1. CPU 0 checks its local cache, and does not find the
cacheline.

2. The request is forwarded to CPU 0’s and 1’s intercon-
nect, which checks CPU 1°s local cache, and does
not find the cacheline.

3. The request is forwarded to the system interconnect,
which checks with the other three dies, learning that
the cacheline is held by the die containing CPU 6
and 7.

4. The request is forwarded to CPU 6’s and 7’s inter-
connect, which checks both CPUs’ caches, finding
the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect,
and also flushes the cacheline from its cache.

6. CPU 6’s and 7’s interconnect forwards the cacheline
to the system interconnect.

7. The system interconnect forwards the cacheline to
CPU 0’s and 1’s interconnect.

8. CPU 0’s and 1’s interconnect forwards the cacheline
to CPU 0’s cache.

9. CPU 0 can now perform the CAS operation on the
value in its cache.

Quick Quiz 3.4: This is a simplified sequence of
events? How could it possibly be any more complex?
]

Quick Quiz 3.5: Why is it necessary to flush the cache-
line from CPU 7’s cache?

This simplified sequence is just the beginning of a dis-
cipline called cache-coherency protocols [HP95, CSG99,
MHS12, SHW11].

22

Ratio
Operation Cost (ns) (cost/clock)
Clock period 0.6 1.0
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 2325
CAS cache miss 306.0 510.0
Comms Fabric 5,000 8,330
Global Comms 195,000,000 325,000,000

Table 3.1: Performance of Synchronization Mechanisms
on 4-CPU 1.8GHz AMD Opteron 844 System

3.2.2 Costs of Operations

The overheads of some common operations important
to parallel programs are displayed in Table 3.1. This
system’s clock period rounds to 0.6ns. Although it is not
unusual for modern microprocessors to be able to retire
multiple instructions per clock period, the operations’s
costs are nevertheless normalized to a clock period in
the third column, labeled “Ratio”. The first thing to note
about this table is the large values of many of the ratios.

The best-case compare-and-swap (CAS) operation con-
sumes almost forty nanoseconds, a duration more than
sixty times that of the clock period. Here, “best case”
means that the same CPU now performing the CAS op-
eration on a given variable was the last CPU to operate
on this variable, so that the corresponding cache line is
already held in that CPU’s cache. Similarly, the best-case
lock operation (a “round trip” pair consisting of a lock
acquisition followed by a lock release) consumes more
than sixty nanoseconds, or more than one hundred clock
cycles. Again, “best case” means that the data structure
representing the lock is already in the cache belonging
to the CPU acquiring and releasing the lock. The lock
operation is more expensive than CAS because it requires
two atomic operations on the lock data structure.

An operation that misses the cache consumes almost
one hundred and forty nanoseconds, or more than two
hundred clock cycles. The code used for this cache-miss
measurement passes the cache line back and forth between
a pair of CPUs, so this cache miss is satisfied not from
memory, but rather from the other CPU’s cache. A CAS
operation, which must look at the old value of the variable
as well as store a new value, consumes over three hundred
nanoseconds, or more than five hundred clock cycles.
Think about this a bit. In the time required to do one CAS
operation, the CPU could have executed more than five

CHAPTER 3. HARDWARE AND ITS HABITS

Figure 3.10: Hardware and Software: On Same Side

hundred normal instructions. This should demonstrate
the limitations not only of fine-grained locking, but of any
other synchronization mechanism relying on fine-grained
global agreement.

Quick Quiz 3.6: Surely the hardware designers could
be persuaded to improve this situation! Why have they
been content with such abysmal performance for these
single-instruction operations? ll

I/O operations are even more expensive. As shown
in the “Comms Fabric” row, high performance (and ex-
pensive!) communications fabric, such as InfiniBand or
any number of proprietary interconnects, has a latency
of roughly five microseconds for an end-to-end round
trip, during which time more than eight thousand in-
structions might have been executed. Standards-based
communications networks often require some sort of pro-
tocol processing, which further increases the latency. Of
course, geographic distance also increases latency, with
the speed-of-light through optical fiber latency around
the world coming to roughly 195 milliseconds, or more
than 300 million clock cycles, as shown in the “Global
Comms” row.

Quick Quiz 3.7: These numbers are insanely large!
How can I possibly get my head around them?

In short, hardware and software engineers are really
fighting on the same side, trying to make computers go
fast despite the best efforts of the laws of physics, as
fancifully depicted in Figure 3.10 where our data stream
is trying its best to exceed the speed of light. The next
section discusses some of the things that the hardware
engineers might (or might not) be able to do. Software’s
contribution to this fight is outlined in the remaining chap-
ters of this book.

3.3. HARDWARE FREE LUNCH?

3.3 Hardware Free Lunch?

The major reason that concurrency has been receiving so
much focus over the past few years is the end of Moore’s-
Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 2.1 on page 9.
This section briefly surveys a few ways that hardware
designers might be able to bring back some form of the
“free lunch”.

However, the preceding section presented some sub-
stantial hardware obstacles to exploiting concurrency.
One severe physical limitation that hardware designers
face is the finite speed of light. As noted in Figure 3.9
on page 21, light can travel only about an 8-centimeters
round trip in a vacuum during the duration of a 1.8 GHz
clock period. This distance drops to about 3 centimeters
for a 5 GHz clock. Both of these distances are relatively
small compared to the size of a modern computer system.

To make matters even worse, electric waves in silicon
move from three to thirty times more slowly than does
light in a vacuum, and common clocked logic constructs
run still more slowly, for example, a memory reference
may need to wait for a local cache lookup to complete be-
fore the request may be passed on to the rest of the system.
Furthermore, relatively low speed and high power drivers
are required to move electrical signals from one silicon
die to another, for example, to communicate between a
CPU and main memory.

Quick Quiz 3.8: But individual electrons don’t move
anywhere near that fast, even in conductors!!! The elec-
tron drift velocity in a conductor under the low voltages
found in semiconductors is on the order of only one mil-
limeter per second. What gives???

There are nevertheless some technologies (both hard-
ware and software) that might help improve matters:

1. 3D integration,

2. Novel materials and processes,

3. Substituting light for electricity,
4. Special-purpose accelerators, and
5. Existing parallel software.

Each of these is described in one of the following sec-
tions.

23

70 uinZ\

[<—=

3cm 1.5cm

Figure 3.11: Latency Benefit of 3D Integration

3.3.1 3D Integration

3-dimensional integration (3DI) is the practice of bonding
very thin silicon dies to each other in a vertical stack.
This practice provides potential benefits, but also poses
significant fabrication challenges [KniOS8].

Perhaps the most important benefit of 3DI is decreased
path length through the system, as shown in Figure 3.11.
A 3-centimeter silicon die is replaced with a stack of four
1.5-centimeter dies, in theory decreasing the maximum
path through the system by a factor of two, keeping in
mind that each layer is quite thin. In addition, given
proper attention to design and placement, long horizontal
electrical connections (which are both slow and power
hungry) can be replaced by short vertical electrical con-
nections, which are both faster and more power efficient.

However, delays due to levels of clocked logic will
not be decreased by 3D integration, and significant man-
ufacturing, testing, power-supply, and heat-dissipation
problems must be solved for 3D integration to reach pro-
duction while still delivering on its promise. The heat-
dissipation problems might be solved using semiconduc-
tors based on diamond, which is a good conductor for
heat, but an electrical insulator. That said, it remains
difficult to grow large single diamond crystals, to say
nothing of slicing them into wafers. In addition, it seems
unlikely that any of these technologies will be able to de-
liver the exponential increases to which some people have
become accustomed. That said, they may be necessary
steps on the path to the late Jim Gray’s “smoking hairy
golf balls” [Gra02].

3.3.2 Novel Materials and Processes

Stephen Hawking is said to have claimed that semiconduc-
tor manufacturers have but two fundamental problems: (1)
the finite speed of light and (2) the atomic nature of mat-
ter [Gar(O7]. It is possible that semiconductor manufactur-

24

ers are approaching these limits, but there are nevertheless
a few avenues of research and development focused on
working around these fundamental limits.

One workaround for the atomic nature of matter are so-
called “high-K dielectric”” materials, which allow larger
devices to mimic the electrical properties of infeasibly
small devices. These materials pose some severe fabrica-
tion challenges, but nevertheless may help push the fron-
tiers out a bit farther. Another more-exotic workaround
stores multiple bits in a single electron, relying on the
fact that a given electron can exist at a number of energy
levels. It remains to be seen if this particular approach can
be made to work reliably in production semiconductor
devices.

Another proposed workaround is the “quantum dot”
approach that allows much smaller device sizes, but which
is still in the research stage.

3.3.3 Light, Not Electrons

Although the speed of light would be a hard limit, the fact
is that semiconductor devices are limited by the speed
of electricity rather than that of light, given that electric
waves in semiconductor materials move at between 3%
and 30% of the speed of light in a vacuum. The use of cop-
per connections on silicon devices is one way to increase
the speed of electricity, and it is quite possible that addi-
tional advances will push closer still to the actual speed of
light. In addition, there have been some experiments with
tiny optical fibers as interconnects within and between
chips, based on the fact that the speed of light in glass is
more than 60% of the speed of light in a vacuum. One ob-
stacle to such optical fibers is the inefficiency conversion
between electricity and light and vice versa, resulting in
both power-consumption and heat-dissipation problems.

That said, absent some fundamental advances in the
field of physics, any exponential increases in the speed of
data flow will be sharply limited by the actual speed of
light in a vacuum.

3.3.4 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem
is often spending significant time and energy doing work
that is only tangentially related to the problem at hand.
For example, when taking the dot product of a pair of
vectors, a general-purpose CPU will normally use a loop
(possibly unrolled) with a loop counter. Decoding the
instructions, incrementing the loop counter, testing this
counter, and branching back to the top of the loop are in

CHAPTER 3. HARDWARE AND ITS HABITS

some sense wasted effort: the real goal is instead to multi-
ply corresponding elements of the two vectors. Therefore,
a specialized piece of hardware designed specifically to
multiply vectors could get the job done more quickly and
with less energy consumed.

This is in fact the motivation for the vector instructions
present in many commodity microprocessors. Because
these instructions operate on multiple data items simulta-
neously, they would permit a dot product to be computed
with less instruction-decode and loop overhead.

Similarly, specialized hardware can more efficiently
encrypt and decrypt, compress and decompress, encode
and decode, and many other tasks besides. Unfortunately,
this efficiency does not come for free. A computer system
incorporating this specialized hardware will contain more
transistors, which will consume some power even when
not in use. Software must be modified to take advantage
of this specialized hardware, and this specialized hard-
ware must be sufficiently generally useful that the high
up-front hardware-design costs can be spread over enough
users to make the specialized hardware affordable. In part
due to these sorts of economic considerations, specialized
hardware has thus far appeared only for a few application
areas, including graphics processing (GPUs), vector pro-
cessors (MMX, SSE, and VMX instructions), and, to a
lesser extent, encryption.

Unlike the server and PC arena, smartphones have long
used a wide variety of hardware accelerators. These hard-
ware accelerators are often used for media decoding, so
much so that a high-end MP3 player might be able to play
audio for several minutes—with its CPU fully powered
off the entire time. The purpose of these accelerators
is to improve energy efficiency and thus extend battery
life: special purpose hardware can often compute more
efficiently than can a general-purpose CPU. This is an-
other example of the principle called out in Section 2.2.3:
Generality is almost never free.

Nevertheless, given the end of Moore’s-Law-induced
single-threaded performance increases, it seems safe to
predict that there will be an increasing variety of special-
purpose hardware going forward.

3.3.5 Existing Parallel Software

Although multicore CPUs seem to have taken the com-
puting industry by surprise, the fact remains that shared-
memory parallel computer systems have been commer-
cially available for more than a quarter century. This is
more than enough time for significant parallel software to

3.4. SOFTWARE DESIGN IMPLICATIONS

make its appearance, and it indeed has. Parallel operating
systems are quite commonplace, as are parallel threading
libraries, parallel relational database management sys-
tems, and parallel numerical software. Use of existing
parallel software can go a long ways towards solving any
parallel-software crisis we might encounter.

Perhaps the most common example is the parallel re-
lational database management system. It is not unusual
for single-threaded programs, often written in high-level
scripting languages, to access a central relational database
concurrently. In the resulting highly parallel system, only
the database need actually deal directly with parallelism.
A very nice trick when it works!

3.4 Software Design Implications

The values of the ratios in Table 3.1 are critically im-
portant, as they limit the efficiency of a given parallel
application. To see this, suppose that the parallel applica-
tion uses CAS operations to communicate among threads.
These CAS operations will typically involve a cache miss,
that is, assuming that the threads are communicating pri-
marily with each other rather than with themselves. Sup-
pose further that the unit of work corresponding to each
CAS communication operation takes 300ns, which is suf-
ficient time to compute several floating-point transcen-
dental functions. Then about half of the execution time
will be consumed by the CAS communication operations!
This in turn means that a two-CPU system running such
a parallel program would run no faster than a sequential
implementation running on a single CPU.

The situation is even worse in the distributed-system
case, where the latency of a single communications oper-
ation might take as long as thousands or even millions of
floating-point operations. This illustrates how important
it is for communications operations to be extremely infre-
quent and to enable very large quantities of processing.

Quick Quiz 3.9: Given that distributed-systems com-
munication is so horribly expensive, why does anyone
bother with such systems? ll

The lesson should be quite clear: parallel algorithms
must be explicitly designed with these hardware prop-
erties firmly in mind. One approach is to run nearly
independent threads. The less frequently the threads com-
municate, whether by atomic operations, locks, or explicit
messages, the better the application’s performance and
scalability will be. This approach will be touched on in
Chapter 5, explored in Chapter 6, and taken to its logical
extreme in Chapter 8.

25

Another approach is to make sure that any sharing be
read-mostly, which allows the CPUs’ caches to replicate
the read-mostly data, in turn allowing all CPUs fast access.
This approach is touched on in Section 5.2.3, and explored
more deeply in Chapter 9.

In short, achieving excellent parallel performance and
scalability means striving for embarrassingly parallel al-
gorithms and implementations, whether by careful choice
of data structures and algorithms, use of existing paral-
lel applications and environments, or transforming the
problem into one for which an embarrassingly parallel
solution exists.

Quick Quiz 3.10: OK, if we are going to have to apply
distributed-programming techniques to shared-memory
parallel programs, why not just always use these dis-
tributed techniques and dispense with shared memory?
]

So, to sum up:

1. The good news is that multicore systems are inex-
pensive and readily available.

2. More good news: The overhead of many synchro-
nization operations is much lower than it was on
parallel systems from the early 2000s.

3. The bad news is that the overhead of cache misses is
still high, especially on large systems.

The remainder of this book describes ways of handling
this bad news.

In particular, Chapter 4 will cover some of the low-
level tools used for parallel programming, Chapter 5 will
investigate problems and solutions to parallel counting,
and Chapter 6 will discuss design disciplines that promote
performance and scalability.

26

CHAPTER 3. HARDWARE AND ITS HABITS

Chapter 4

Tools of the Trade

You are only as good as your tools, and your
tools are only as good as you are.

Unknown

This chapter provides a brief introduction to some basic
tools of the parallel-programming trade, focusing mainly
on those available to user applications running on op-
erating systems similar to Linux. Section 4.1 begins
with scripting languages, Section 4.2 describes the multi-
process parallelism supported by the POSIX API and
touches on POSIX threads, Section 4.3 describes atomic
operations, Section 4.4 presents the analogous operations
within the Linux kernel, and finally, Section 4.5 helps to
choose the tool that will get the job done.

Please note that this chapter provides but a brief intro-
duction. More detail is available from the references cited,
and more information on how best to use these tools will
be provided in later chapters.

4.1 Scripting Languages

The Linux shell scripting languages provide simple but
effective ways of managing parallelism. For example,
suppose that you had a program compute_it that you
needed to run twice with two different sets of arguments.
This can be accomplished using UNIX shell scripting as
follows:

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.l.out

cat compute_it.2.out

g W N

Lines 1 and 2 launch two instances of this program,
redirecting their output to two separate files, with the &
character directing the shell to run the two instances of
the program in the background. Line 3 waits for both

27

compute_it 1 > compute_it 2 >
compute_it.l.out & compute_it.2.out &

’cat compute_it.1l.out ‘

’cat compute_it.2.out ‘

Figure 4.1: Execution Diagram for Parallel Shell Execu-
tion

instances to complete, and lines 4 and 5 display their
output. The resulting execution is as shown in Figure 4.1:
the two instances of compute_it execute in parallel,
wait completes after both of them do, and then the two
instances of cat execute sequentially.

Quick Quiz 4.1: But this silly shell script isn’t a real
parallel program! Why bother with such trivia???

Quick Quiz 4.2: Is there a simpler way to create a
parallel shell script? If so, how? If not, why not? l

For another example, the make software-build script-
ing language provides a —3j option that specifies how
much parallelism should be introduced into the build pro-
cess. For example, typing make —3j4 when building a
Linux kernel specifies that up to four parallel compiles be
carried out concurrently.

It is hoped that these simple examples convince you
that parallel programming need not always be complex or
difficult.

Quick Quiz 4.3: But if script-based parallel program-

28

1 pid = fork();
2 if (pid == 0) {

3 /* child =/

4 } else if (pid < 0) {

5 /% parent, upon error */

6 perror ("fork");

7 exit (-1);

8 } else {

9 /* parent, pid == child ID =/
0

=

}

Figure 4.2: Using the fork() Primitive

ming is so easy, why bother with anything else? ll

4.2 POSIX Multiprocessing

This section scratches the surface of the POSIX environ-
ment, including pthreads [Ope97], as this environment is
readily available and widely implemented. Section 4.2.1
provides a glimpse of the POSIX fork () and related
primitives, Section 4.2.2 touches on thread creation and
destruction, Section 4.2.3 gives a brief overview of POSIX
locking, and, finally, Section 4.2.4 describes a specific
lock which can be used for data that is read by many
threads and only occasionally updated.

4.2.1 POSIX Process Creation and De-
struction

Processes are created using the fork () primitive, they
may be destroyed using the k111 () primitive, they may
destroy themselves using the exit () primitive. A pro-
cess executing a fork () primitive is said to be the “par-
ent” of the newly created process. A parent may wait on
its children using the wait () primitive.

Please note that the examples in this section are quite
simple. Real-world applications using these primitives
might need to manipulate signals, file descriptors, shared
memory segments, and any number of other resources. In
addition, some applications need to take specific actions
if a given child terminates, and might also need to be
concerned with the reason that the child terminated. These
concerns can of course add substantial complexity to the
code. For more information, see any of a number of
textbooks on the subject [Ste92, Weil3].

If fork () succeeds, it returns twice, once for the
parent and again for the child. The value returned from
fork () allows the caller to tell the difference, as shown
in Figure 4.2 (forkjoin.c). Line 1 executes the
fork () primitive, and saves its return value in local
variable pid. Line 2 checks to see if pid is zero, in

CHAPTER 4. TOOLS OF THE TRADE

1 void waitall (void)

2 {

3 int pid;

4 int status;

5

6 for (;;) {

7 pid = wait (&status);
8 if (pid == -1) {

9 if (errno == ECHILD)
10 break;
11 perror ("wait");
12 exit (-1);
13 }

Figure 4.3: Using the wait() Primitive

which case, this is the child, which continues on to ex-
ecute line 3. As noted earlier, the child may terminate
via the exit () primitive. Otherwise, this is the parent,
which checks for an error return from the fork () prim-
itive on line 4, and prints an error and exits on lines 5-7
if so. Otherwise, the fork () has executed successfully,
and the parent therefore executes line 9 with the variable
pid containing the process ID of the child.

The parent process may use the wait () primitive
to wait for its children to complete. However, use of
this primitive is a bit more complicated than its shell-
script counterpart, as each invocation of wait () waits
for but one child process. It is therefore customary to wrap
wait () into a function similar to the waitall () func-
tion shown in Figure 4.3 (api-pthread.h), with this
waitall () function having semantics similar to the
shell-script wait command. Each pass through the loop
spanning lines 6-15 waits on one child process. Line 7
invokes the wait () primitive, which blocks until a child
process exits, and returns that child’s process ID. If the
process ID is instead -1, this indicates that the wait ()
primitive was unable to wait on a child. If so, line 9
checks for the ECHILD errno, which indicates that there
are no more child processes, so that line 10 exits the loop.
Otherwise, lines 11 and 12 print an error and exit.

Quick Quiz 4.4: Why does this wait () primitive
need to be so complicated? Why not just make it work
like the shell-script wait does?

It is critically important to note that the parent and
child do not share memory. This is illustrated by the
program shown in Figure 4.4 (forkjoinvar.c), in
which the child sets a global variable x to 1 on line 6,
prints a message on line 7, and exits on line 8. The parent
continues at line 14, where it waits on the child, and on
line 15 finds that its copy of the variable x is still zero.
The output is thus as follows:

4.2. POSIX MULTIPROCESSING

1 int x = 0;

2 int pid;

3

4 pid = fork();

5 if (pid == 0) { /» child */

6 x = 1;

7 printf ("Child process set x=1\n");

8 exit (0);

9}
10 if (pid < 0) { /* parent, upon error x/

11 perror ("fork");

12 exit (-1);

13 }

14 waitall();

15 printf ("Parent process sees x=%d\n", x);

Figure 4.4: Processes Created Via fork() Do Not Share
Memory

Child process set x=1
Parent process sees x=0

Quick Quiz 4.5: Isn’t there a lot more to fork () and
wait () than discussed here?

The finest-grained parallelism requires shared memory,
and this is covered in Section 4.2.2. That said, shared-
memory parallelism can be significantly more complex
than fork-join parallelism.

4.2.2 POSIX Thread Creation and De-
struction

To create a thread within an existing process, invoke the
pthread_create () primitive, for example, as shown
on lines 15 and 16 of Figure 4.5 (pcreate.c). The
first argument is a pointer to a pthread_t in which
to store the ID of the thread to be created, the second
NULL argument is a pointer to an optional pthread_
attr_t, the third argument is the function (in this case,
mythread ()) that is to be invoked by the new thread,
and the last NULL argument is the argument that will be
passed to mythread.

In this example, mythread () simply returns, but it
could instead call pthread_exit ().

Quick Quiz 4.6: If the mythread () function in Fig-
ure 4.5 can simply return, why bother with pthread_
exit ()71

The pthread_join () primitive, shown on line 20,
is analogous to the fork-join wait () primitive. It blocks
until the thread specified by the t id variable completes
execution, either by invoking pthread_exit () or
by returning from the thread’s top-level function. The
thread’s exit value will be stored through the pointer
passed as the second argument to pthread_join ().
The thread’s exit value is either the value passed to

29

int x = 0;
void smythread(void xarg)
{

x = 1;

printf ("Child process set x=1\n");
return NULL;

0 J oUW N

10 int main(int argc, char xargvl[])
11 |

12 pthread_t tid;

13 void xvp;

15 if (pthread_create(&tid, NULL,

16 mythread, NULL) != 0) {
17 perror ("pthread_create");

18 exit (-1);

19 }

20 if (pthread_join(tid, &vp) != 0) {

21 perror ("pthread_join");

22 exit (-1);

23 }

24 printf ("Parent process sees x=%d\n", x);
25 return 0;

26 }

Figure 4.5: Threads Created Via pthread_create ()
Share Memory

pthread_exit () orthe value returned by the thread’s
top-level function, depending on how the thread in ques-
tion exits.

The program shown in Figure 4.5 produces output as
follows, demonstrating that memory is in fact shared be-
tween the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only
one of the threads stores a value to variable x at a time.
Any situation in which one thread might be storing a value
to a given variable while some other thread either loads
from or stores to that same variable is termed a “data
race”. Because the C language makes no guarantee that
the results of a data race will be in any way reasonable,
we need some way of safely accessing and modifying data
concurrently, such as the locking primitives discussed in
the following section.

Quick Quiz 4.7: If the C language makes no guaran-
tees in presence of a data race, then why does the Linux
kernel have so many data races? Are you trying to tell me
that the Linux kernel is completely broken??? ll

4.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid data
races via “POSIX locking”. POSIX locking features a

30

number of primitives, the most fundamental of which are
pthread_mutex_lock () and pthread_mutex_
unlock (). These primitives operate on locks, which are
of type pthread_mutex_t. These locks may be de-
clared statically and initialized with PTHREAD_MUTEX__
INITIALIZER, or they may be allocated dynamically
and initialized using the pthread_mutex_init ()
primitive. The demonstration code in this section will
take the former course.

The pthread_mutex_lock () primitive “acquires’
the specified lock, and the pthread_mutex_
unlock () “releases” the specified lock. Because these
are “‘exclusive” locking primitives, only one thread at a
time may “hold” a given lock at a given time. For exam-
ple, if a pair of threads attempt to acquire the same lock
concurrently, one of the pair will be “granted” the lock
first, and the other will wait until the first thread releases
the lock.

Quick Quiz 4.8: What if I want several threads to hold
the same lock at the same time? H

1

This exclusive-locking property is demonstrated using
the code shown in Figure 4.6 (Lock . c). Line 1 defines
and initializes a POSIX lock named 1ock_ a, while line 2
similarly defines and initializes a lock named lock_b.
Line 3 defines and initializes a shared variable x.

Lines 5-28 defines a function lock_reader ()
which repeatedly reads the shared variable x while hold-
ing the lock specified by arg. Line 10 casts arg to
a pointer to a pthread_mutex_t, as required by the
pthread_mutex_lock () and pthread_mutex_
unlock () primitives.

Quick Quiz 4.9: Why not simply make the argument
to lock_reader () on line 5 of Figure 4.6 be a pointer
toapthread_mutex_t? Ml

Lines 12-15 acquire the specified pthread_mutex_
t, checking for errors and exiting the program if any
occur. Lines 16-23 repeatedly check the value of x, print-
ing the new value each time that it changes. Line 22
sleeps for one millisecond, which allows this demonstra-
tion to run nicely on a uniprocessor machine. Line 24-27
release the pthread_mutex_t, again checking for er-
rors and exiting the program if any occur. Finally, line 28
returns NULL, again to match the function type required
by pthread_create ().

Quick Quiz 4.10: Writing four lines of code for each
acquisition and release of a pthread_mutex_t sure
seems painful! Isn’t there a better way? Wl

Lines 31-49 of Figure 4.6 shows lock_writer (),
which periodically update the shared variable x while

CHAPTER 4. TOOLS OF THE TRADE

1 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3 int x = 0;

4

5 void *lock_reader (void xarg)

6 {

7 int 1i;

8 int newx = -1;

9 int oldx = -1;

10 pthread_mutex_t *pmlp = (pthread_mutex_t =x)arg;
11
12 if (pthread_mutex_lock (pmlp) != 0) {
13 perror ("lock_reader:pthread_mutex_lock");
14 exit (-1);

15 }
16 for (1 = 0; 1 < 100; i++) {
17 newx = ACCESS_ONCE (x);
18 if (newx != oldx) {

19 printf ("lock_reader(): x = %d\n", newx);
20 }
21 oldx = newx;
22 poll (NULL, 0, 1);
23 }
24 if (pthread_mutex_unlock (pmlp) != 0) {
25 perror ("lock_reader:pthread_mutex_unlock");
26 exit (-1);
27 }
28 return NULL;
29 }

30

31 void xlock_writer (void =xarg)

32 {

33 int 1i;

34 pthread_mutex_t *pmlp = (pthread_mutex_t =x)arg;
35

36 if (pthread_mutex_lock (pmlp) != 0) {

37 perror ("lock_writer:pthread mutex_lock");
38 exit (-1);

39 }

40 for (1 = 0; 1 < 3; i++) |

41 ACCESS_ONCE (x) ++;

42 poll (NULL, 0, 5);

43 }

44 if (pthread_mutex_unlock (pmlp) != 0) {

45 perror ("lock_writer:pthread_mutex_unlock");
46 exit (-1);

47 }

48 return NULL;

49 }

Figure 4.6: Demonstration of Exclusive Locks

hay
N

POSIX MULTIPROCESSING

1 printf ("Creating two threads using same lock:\n");
2 if (pthread_create(&tidl, NULL,
3 lock_reader, &lock_a) != 0) {
4 perror ("pthread_create");
5 exit (-1);
6 }
7 if (pthread_create(&tid2, NULL,
8 lock_writer, &lock_a) != 0) {
9 perror ("pthread_create");
10 exit (-1);
11 }
12 if (pthread_join(tidl, &vp) != 0) {
13 perror ("pthread_join");
14 exit (-1);
15 }
16 if (pthread_join(tid2, &vp) != 0) {
17 perror ("pthread_join");
18 exit (-1);
19 }

Figure 4.7: Demonstration of Same Exclusive Lock

holding the specified pthread_mutex_t. As with
lock_reader (), line 34 casts arg to a pointer to
pthread_mutex_t, lines 36-39 acquires the specified
lock, and lines 44-47 releases it. While holding the lock,
lines 40-43 increment the shared variable x, sleeping
for five milliseconds between each increment. Finally,
lines 44-47 release the lock.

Figure 4.7 shows a code fragment that runs lock__
reader () and lock_writer () as thread using the
same lock, namely, lock_a. Lines 2-6 create a thread
running lock_reader (), and then Lines 7-11 create
a thread running lock_writer (). Lines 12-19 wait
for both threads to complete. The output of this code
fragment is as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Because both threads are using the same lock, the
lock_reader () thread cannot see any of the interme-
diate values of x produced by lock_writer () while
holding the lock.

Quick Quiz 4.11: Is “x = 0” the only possible output
from the code fragment shown in Figure 4.7? If so, why?
If not, what other output could appear, and why? H

Figure 4.8 shows a similar code fragment, but this time
using different locks: lock_a for lock_reader ()
and lock_b for lock_writer (). The output of this
code fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x 0
lock_reader () :

lock_reader () :
)t

lock_reader (

X
X
X

1
2
3

Because the two threads are using different locks, they

31
1 printf ("Creating two threads w/different locks:\n");
2 x = 0;
3 if (pthread_create(&tidl, NULL,
4 lock_reader, &lock_a) != 0) {
5 perror ("pthread_create");
6 exit (-1);
7 }
8 if (pthread_create(&tid2, NULL,
9 lock_writer, &lock_b) != 0) {
10 perror ("pthread_create");
11 exit (-1);
12 }
13 if (pthread_join(tidl, &vp) != 0) {
14 perror ("pthread_join");
15 exit (-1);
16 }
17 if (pthread_join(tid2, &vp) != 0) {
18 perror ("pthread_join");
19 exit (-1);
20 }

Figure 4.8: Demonstration of Different Exclusive Locks

do not exclude each other, and can run concurrently. The
lock_reader () function can therefore see the inter-
mediate values of x stored by lock_writer ().

Quick Quiz 4.12: Using different locks could cause
quite a bit of confusion, what with threads seeing each
others’ intermediate states. So should well-written paral-
lel programs restrict themselves to using a single lock in
order to avoid this kind of confusion?

Quick Quiz 4.13: In the code shown in Figure 4.8,
is lock_reader () guaranteed to see all the values
produced by lock_writer () ? Why or why not? i

Quick Quiz 4.14: Wait a minute here!!! Figure 4.7
didn’t initialize shared variable x, so why does it need to
be initialized in Figure 4.8?

Although there is quite a bit more to POSIX exclusive
locking, these primitives provide a good start and are in
fact sufficient in a great many situations. The next section
takes a brief look at POSIX reader-writer locking.

4.2.4 POSIX Reader-Writer Locking

The POSIX API provides a reader-writer lock, which
is represented by a pthread_rwlock_t. As with
pthread _mutex_t, pthread rwlock_t may
be statically initialized via PTHREAD_RWLOCK_
INITIALIZER or dynamically initialized via
the pthread_rwlock_init () primitive. The
pthread_rwlock_rdlock () primitive read-
acquires the specified pthread_rwlock_t, the
pthread_rwlock_wrlock () primitive write-
acquires it, and the pthread_rwlock_unlock ()
primitive releases it. Only a single thread may write-hold
a given pthread_rwlock_t at any given time, but

[9]
N}

pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
int holdtime = 0;

int thinktime = 0;

long long xreadcounts;

int nreadersrunning = 0;

#define GOFLAG_INIT 0
#define GOFLAG_RUN 1
9 #define GOFLAG_STOP 2
10 char goflag = GOFLAG_INIT;

W J oUW N

12 void *reader (void xarg)

13 {

14 int 1i;

15 long long loopcnt = 0;

16 long me = (long)arg;

17

18 __sync_fetch_and_add(&nreadersrunning, 1);
19 while (ACCESS_ONCE (goflag) == GOFLAG_INIT) {
20 continue;

21 }

22 while (ACCESS_ONCE (goflag) == GOFLAG_RUN) {
23 if (pthread_rwlock_rdlock (&rwl) != 0) {
24 perror ("pthread_rwlock_rdlock");

25 exit (-1);

26 }

27 for (1 = 1; i < holdtime; i++) {

28 barrier();

29 }

30 if (pthread_rwlock_unlock (&rwl) != 0) {
31 perror ("pthread_rwlock_unlock");

32 exit (-1);

33 }

34 for (1 = 1; 1 < thinktime; i++) {

35 barrier();

36 }

37 loopcnt++;

38 }

39 readcounts[me] = loopcnt;

40 return NULL;
41 '}

Figure 4.9: Measuring Reader-Writer Lock Scalability

multiple threads may read-hold a given pthread_
rwlock_t, at least while there is no thread currently
write-holding it.

As you might expect, reader-writer locks are designed
for read-mostly situations. In these situations, a reader-
writer lock can provide greater scalability than can an
exclusive lock because the exclusive lock is by defini-
tion limited to a single thread holding the lock at any
given time, while the reader-writer lock permits an arbi-
trarily large number of readers to concurrently hold the
lock. However, in practice, we need to know how much
additional scalability is provided by reader-writer locks.

Figure 4.9 (rwlockscale.c) shows one way of
measuring reader-writer lock scalability. Line 1 shows
the definition and initialization of the reader-writer lock,
line 2 shows the holdt ime argument controlling the
time each thread holds the reader-writer lock, line 3 shows
the thinktime argument controlling the time between
the release of the reader-writer lock and the next acqui-

CHAPTER 4. TOOLS OF THE TRADE

sition, line 4 defines the readcount s array into which
each reader thread places the number of times it acquired
the lock, and line 5 defines the nreadersrunning
variable, which determines when all reader threads have
started running.

Lines 7-10 define goflag, which synchronizes the
start and the end of the test. This variable is initially set to
GOFLAG_INIT, then set to GOFLAG_RUN after all the
reader threads have started, and finally set to GOFLAG__
STOP to terminate the test run.

Lines 12-41 define reader (), which is the
reader thread. Line 18 atomically increments the
nreadersrunning variable to indicate that this thread
is now running, and lines 19-21 wait for the test to start.
The ACCESS_ONCE () primitive forces the compiler to
fetch gof lag on each pass through the loop—the com-
piler would otherwise be within its rights to assume that
the value of gof1lag would never change.

Quick Quiz 4.15: Instead of using ACCESS_ONCE ()
everywhere, why not just declare goflagasvolatile
on line 10 of Figure 4.97 A

Quick Quiz 4.16: ACCESS_ONCE () only affects the
compiler, not the CPU. Don’t we also need memory bar-
riers to make sure that the change in goflag’s value
propagates to the CPU in a timely fashion in Figure 4.9?
]

Quick Quiz 4.17: Would it ever be necessary to use
ACCESS_ONCE () when accessing a per-thread vari-
able, for example, a variable declared using the gcc
__thread storage class? ll

The loop spanning lines 22-38 carries out the per-
formance test. Lines 23-26 acquire the lock, lines 27-
29 hold the lock for the specified duration (and the
barrier () directive prevents the compiler from op-
timizing the loop out of existence), lines 30-33 release
the lock, and lines 34-36 wait for the specified duration
before re-acquiring the lock. Line 37 counts this lock
acquisition.

Line 39 moves the lock-acquisition count to this
thread’s element of the readcounts[] array, and
line 40 returns, terminating this thread.

Figure 4.10 shows the results of running this test on
a 64-core Power-5 system with two hardware threads
per core for a total of 128 software-visible CPUs. The
thinktime parameter was zero for all these tests, and
the holdt ime parameter set to values ranging from one
thousand (“1K” on the graph) to 100 million (“100M” on

4.3. ATOMIC OPERATIONS

14 ; ;

1 febelebateteabet A - - e - —
e *H!E'E.* % ideal
Ny e

o9 [F z Mﬁﬁ i

i %
0 EE,; B Sy
0.8 [} s .
8 PE K **";;E%
] o7 bt Lo *-%‘%%ﬁ%s N
UL m S Joou
S osfl* % %%EF "
5 } | 1 5 10M
5 05 | ﬁ;‘% .
] [T ﬁ;,sﬁ_
1
© 1
g 0.4 —l{ 1:‘ % MM i
(3 | I £ +H‘F+H_+
03 ||
,\, \ ™
02T Lk .

\
5 %% o
“r +MK |
+
0 1K} e LT .

Number of CPUs (Threads)

Figure 4.10: Reader-Writer Lock Scalability

the graph). The actual value plotted is:

Ly

NL; 4.1)

where N is the number of threads, Ly is the number of
lock acquisitions by N threads, and L; is the number of
lock acquisitions by a single thread. Given ideal hardware
and software scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking
scalability is decidedly non-ideal, especially for smaller
sizes of critical sections. To see why read-acquisition
can be so slow, consider that all the acquiring threads
must update the pthread_rwlock_t data structure.
Therefore, if all 128 executing threads attempt to read-
acquire the reader-writer lock concurrently, they must
update this underlying pthread_rwlock_t one at a
time. One lucky thread might do so almost immediately,
but the least-lucky thread must wait for all the other 127
threads to do their updates. This situation will only get
worse as you add CPUs.

Quick Quiz 4.18: Isn’t comparing against single-CPU
throughput a bit harsh?

Quick Quiz 4.19: But 1,000 instructions is not a par-
ticularly small size for a critical section. What do I do if
I need a much smaller critical section, for example, one
containing only a few tens of instructions? H

Quick Quiz 4.20: In Figure 4.10, all of the traces other
than the 100M trace deviate gently from the ideal line. In
contrast, the 100M trace breaks sharply from the ideal

33

line at 64 CPUs. In addition, the spacing between the
100M trace and the 10M trace is much smaller than that
between the 10M trace and the 1M trace. Why does the
100M trace behave so much differently than the other
traces? H

Quick Quiz 4.21: Power-5 is several years old, and
new hardware should be faster. So why should anyone
worry about reader-writer locks being slow? ll

Despite these limitations, reader-writer locking is quite
useful in many cases, for example when the readers must
do high-latency file or network I/O. There are alternatives,
some of which will be presented in Chapters 5 and 9.

4.3 Atomic Operations

Given that Figure 4.10 shows that the overhead of reader-
writer locking is most severe for the smallest critical sec-
tions, it would be nice to have some other way to protect
the tiniest of critical sections. One such way are atomic
operations. We have seen one atomic operations already,
in the form of the __sync_fetch_and_add () prim-
itive on line 18 of Figure 4.9. This primitive atomically
adds the value of its second argument to the value refer-
enced by its first argument, returning the old value (which
was ignored in this case). If a pair of threads concur-
rently execute ___sync_fetch_and_add () on the
same variable, the resulting value of the variable will
include the result of both additions.

The gcc compiler offers a number of additional atomic
operations, including ___sync_fetch_and_sub (),
__sync_fetch_and_or (), __sync_fetch_
and_and (), _ _sync_fetch_and_xor (), and
_ _sync_fetch_and_nand (), all of which return
the old value. If you instead need the new value, you
can instead use the _ sync_add_and_fetch(),
__sync_sub_and_fetch(), __sync_or_
and_fetch (), __sync_and_and_fetch(),
__sync_xor_and_fetch(),and __sync_nand_
and_fetch () primitives.

Quick Quiz 4.22: Is it really necessary to have both
sets of primitives? H

The classic compare-and-swap operation is provided
by a pair of primitives, __sync_bool_compare_
and_swap () and __sync_val_compare_and_
swap (). Both of these primitive atomically update a
location to a new value, but only if its prior value was
equal to the specified old value. The first variant returns 1
if the operation succeeded and O if it failed, for example,
if the prior value was not equal to the specified old value.

34

The second variant returns the prior value of the location,
which, if equal to the specified old value, indicates that
the operation succeeded. Either of the compare-and-swap
operation is “universal” in the sense that any atomic op-
eration on a single location can be implemented in terms
of compare-and-swap, though the earlier operations are
often more efficient where they apply. The compare-and-
swap operation is also capable of serving as the basis for
a wider set of atomic operations, though the more elabo-
rate of these often suffer from complexity, scalability, and
performance problems [Her90].

The __sync_synchronize () primitive issues a
“memory barrier”, which constrains both the compiler’s
and the CPU’s ability to reorder operations, as discussed
in Section 14.2. In some cases, it is sufficient to constrain
the compiler’s ability to reorder operations, while allow-
ing the CPU free rein, in which case the barrier ()
primitive may be used, as it in fact was on line 28 of
Figure 4.9. In some cases, it is only necessary to ensure
that the compiler avoids optimizing away a given memory
access, in which case the ACCESS_ONCE () primitive
may be used, as it was on line 17 of Figure 4.6. These last
two primitives are not provided directly by gcc, but may
be implemented straightforwardly as follows:

#define ACCESS_ONCE (x) (*(volatile typeof (x) *)&(x))
#define barrier() __asm__ _ volatile_ ("": : :"memory")

Quick Quiz 4.23: Given that these atomic operations
will often be able to generate single atomic instructions
that are directly supported by the underlying instruction
set, shouldn’t they be the fastest possible way to get things
done? A

4.4 Linux-Kernel Equivalents to
POSIX Operations

Unfortunately, threading operations, locking primitives,
and atomic operations were in reasonably wide use long
before the various standards committees got around to
them. As a result, there is considerable variation in how
these operations are supported. It is still quite common to
find these operations implemented in assembly language,
either for historical reasons or to obtain better perfor-
mance in specialized circumstances. For example, the
gce ___sync__ family of primitives all provide memory-
ordering semantics, motivating many developers to create
their own implementations for situations where the mem-
ory ordering semantics are not required.

CHAPTER 4. TOOLS OF THE TRADE

Therefore, Table 4.1 on page 35 provides a rough map-
ping between the POSIX and gcc primitives to those used
in the Linux kernel. Exact mappings are not always avail-
able, for example, the Linux kernel has a wide variety of
locking primitives, while gcc has a number of atomic op-
erations that are not directly available in the Linux kernel.
Of course, on the one hand, user-level code does not need
the Linux kernel’s wide array of locking primitives, while
on the other hand, gcc’s atomic operations can be emu-
lated reasonably straightforwardly using cmpxchg () .

Quick Quiz 4.24: What happened to the Linux-kernel
equivalents to fork () and wait ()? l

4.5 The Right Tool for the Job:
How to Choose?

As a rough rule of thumb, use the simplest tool that will
get the job done. If you can, simply program sequentially.
If that is insufficient, try using a shell script to mediate par-
allelism. If the resulting shell-script fork ()/exec ()
overhead (about 480 microseconds for a minimal C pro-
gram on an Intel Core Duo laptop) is too large, try using
the C-language fork () and wait () primitives. If the
overhead of these primitives (about 80 microseconds for
a minimal child process) is still too large, then you might
need to use the POSIX threading primitives, choosing the
appropriate locking and/or atomic-operation primitives. If
the overhead of the POSIX threading primitives (typically
sub-microsecond) is too great, then the primitives intro-
duced in Chapter 9 may be required. Always remember
that inter-process communication and message-passing
can be good alternatives to shared-memory multithreaded
execution.

Quick Quiz 4.25: Wouldn’t the shell normally use
vfork () rather than fork ()? H

Of course, the actual overheads will depend not only
on your hardware, but most critically on the manner in
which you use the primitives. In particular, randomly
hacking multi-threaded code is a spectacularly bad idea,
especially given that shared-memory parallel systems use
your own intelligence against you: The smarter you are,
the deeper a hole you will dig for yourself before you
realize that you are in trouble [Pok16]. Therefore, it is
necessary to make the right design choices as well as the
correct choice of individual primitives, as is discussed at
length in subsequent chapters.

4.5. THE RIGHT TOOL FOR THE JOB: HOW TO CHOOSE?

Category

POSIX

Linux Kernel

Thread Management

pthread_t

struct task_struct

pthread_create ()

kthread_create

pthread_exit ()

kthread_should_stop () (rough)

pthread_join ()

kthread_stop () (rough)

poll (NULL, 0, 5)

schedule_timeout_interruptible ()

POSIX Locking

pthread_mutex_t

spinlock_t (rough)
struct mutex

PTHREAD_MUTEX_INITIALIZER

DEFINE_SPINLOCK ()
DEFINE_MUTEX ()

pthread_mutex_lock ()

spin_lock () (and friends)
mutex_lock () (and friends)

pthread_mutex_unlock ()

spin_unlock () (and friends)
mutex_unlock ()

POSIX Reader-Writer
Locking

pthread_rwlock_t

rwlock_t (rough)
struct rw_semaphore

PTHREAD_RWLOCK_INITIALIZER

DEF INE_RWLOCK ()
DECLARE_RWSEM ()

pthread_rwlock_rdlock ()

read_lock () (and friends)
down_read () (and friends)

pthread_rwlock_unlock ()

read_unlock () (and friends)
up_read ()

pthread_rwlock_wrlock ()

write_lock () (and friends)
down_write () (and friends)

pthread_rwlock_unlock ()

write_unlock () (and friends)
up_write ()

Atomic Operations

C Scalar Types

atomic_t
atomicé4_t

_ _sync_fetch_and_add ()

atomic_add_return ()
atomic64_add_return ()

__sync_fetch_and_sub ()

atomic_sub_return ()
atomic64_sub_return()

__sync_val_compare_and_swap ()| cmpxchg()
__sync_lock_test_and_set () xchg () (rough)
__sync_synchronize () smp_mb ()

Table 4.1: Mapping from POSIX to Linux-Kernel Primitives

35

36

CHAPTER 4. TOOLS OF THE TRADE

Chapter 5

Counting

Aseasy as 1, 2, 3!

Unknown

Counting is perhaps the simplest and most natural thing
a computer can do. However, counting efficiently and
scalably on a large shared-memory multiprocessor can
be quite challenging. Furthermore, the simplicity of the
underlying concept of counting allows us to explore the
fundamental issues of concurrency without the distrac-
tions of elaborate data structures or complex synchroniza-
tion primitives. Counting therefore provides an excellent
introduction to parallel programming.

This chapter covers a number of special cases for which
there are simple, fast, and scalable counting algorithms.
But first, let us find out how much you already know about
concurrent counting.

Quick Quiz 5.1: Why on earth should efficient and
scalable counting be hard? After all, computers have
special hardware for the sole purpose of doing counting,
addition, subtraction, and lots more besides, don’t they???
]

Quick Quiz 5.2: Network-packet counting prob-
lem. Suppose that you need to collect statistics on the
number of networking packets (or total number of bytes)
transmitted and/or received. Packets might be transmitted
or received by any CPU on the system. Suppose further
that this large machine is capable of handling a million
packets per second, and that there is a systems-monitoring
package that reads out the count every five seconds. How
would you implement this statistical counter? Hl

Quick Quiz 5.3: Approximate structure-allocation
limit problem. Suppose that you need to maintain a
count of the number of structures allocated in order to
fail any allocations once the number of structures in use
exceeds a limit (say, 10,000). Suppose further that these
structures are short-lived, that the limit is rarely exceeded,

37

and that a “sloppy” approximate limit is acceptable. ll

Quick Quiz 5.4: Exact structure-allocation limit
problem. Suppose that you need to maintain a count
of the number of structures allocated in order to fail any
allocations once the number of structures in use exceeds
an exact limit (again, say 10,000). Suppose further that
these structures are short-lived, and that the limit is rarely
exceeded, that there is almost always at least one structure
in use, and suppose further still that it is necessary to know
exactly when this counter reaches zero, for example, in
order to free up some memory that is not required unless
there is at least one structure in use. ll

Quick Quiz 5.5: Removable I/O device access-
count problem. Suppose that you need to maintain a
reference count on a heavily used removable mass-storage
device, so that you can tell the user when it is safe to re-
move the device. This device follows the usual removal
procedure where the user indicates a desire to remove the
device, and the system tells the user when it is safe to do
so.

The remainder of this chapter will develop answers
to these questions. Section 5.1 asks why counting on
multicore systems isn’t trivial, and Section 5.2 looks
into ways of solving the network-packet counting prob-
lem. Section 5.3 investigates the approximate structure-
allocation limit problem, while Section 5.4 takes on the
exact structure-allocation limit problem. Section 5.5 dis-
cusses how to use the various specialized parallel counters
introduced in the preceding sections. Finally, Section 5.6
concludes the chapter with performance measurements.

Sections 5.1 and 5.2 contain introductory material,
while the remaining sections are more appropriate for
advanced students.

38

5.1 Why Isn’t Concurrent Count-
ing Trivial?

Let’s start with something simple, for example, the
straightforward use of arithmetic shown in Figure 5.1
(count_nonatomic.c). Here, we have a counter on
line 1, we increment it on line 5, and we read out its value
on line 10. What could be simpler?

This approach has the additional advantage of being
blazingly fast if you are doing lots of reading and almost
no incrementing, and on small systems, the performance
is excellent.

There is just one large fly in the ointment: this ap-
proach can lose counts. On my dual-core laptop, a short
run invoked inc_count () 100,014,000 times, but the
final value of the counter was only 52,909,118. Although
approximate values do have their place in computing, ac-
curacies far greater than 50% are almost always necessary.

Quick Quiz 5.6: But doesn’t the ++ operator produce
an x86 add-to-memory instruction? And won’t the CPU
cache cause this to be atomic? l

Quick Quiz 5.7: The 8-figure accuracy on the number
of failures indicates that you really did test this. Why
would it be necessary to test such a trivial program, espe-
cially when the bug is easily seen by inspection? ll

The straightforward way to count accurately is to use
atomic operations, as shown in Figure 5.2 (count_
atomic.c). Line 1 defines an atomic variable, line 5
atomically increments it, and line 10 reads it out. Be-
cause this is atomic, it keeps perfect count. However, it is
slower: on a Intel Core Duo laptop, it is about six times
slower than non-atomic increment when a single thread
is incrementing, and more than fen times slower if two
threads are incrementing.'

long counter = 0;

void inc_count (void)
{
counter++;

}

long read_count (void)
{
return counter;

}

O WwWJo U s WN -

Figure 5.1: Just Count!

! Interestingly enough, a pair of threads non-atomically increment-
ing a counter will cause the counter to increase more quickly than
a pair of threads atomically incrementing the counter. Of course, if
your only goal is to make the counter increase quickly, an easier ap-
proach is to simply assign a large value to the counter. Nevertheless,

CHAPTER 5. COUNTING

atomic_t counter = ATOMIC_INIT (0);

void inc_count (void)
{
atomic_inc (&counter) ;

}

long read_count (void)
{
return atomic_read (&counter);

}

= O WO U WN

o

Figure 5.2: Just Count Atomically!

900 T T T T T T
2 800 | =+
5 AT
§ 700 { .
2 600 | % -
© /
5 e
= 500 / -
o T
o] 400 E// -
2 300 | -
@ 200 A .
g ;
= 100 —‘—////# —

0 RN NN DR | | I | R SR

Number of CPUs (Threads)

Figure 5.3: Atomic Increment Scalability on Nehalem

This poor performance should not be a surprise, given
the discussion in Chapter 3, nor should it be a surprise
that the performance of atomic increment gets slower as
the number of CPUs and threads increase, as shown in
Figure 5.3. In this figure, the horizontal dashed line rest-
ing on the x axis is the ideal performance that would be
achieved by a perfectly scalable algorithm: with such an
algorithm, a given increment would incur the same over-
head that it would in a single-threaded program. Atomic
increment of a single global variable is clearly decidedly
non-ideal, and gets worse as you add CPUs.

Quick Quiz 5.8: Why doesn’t the dashed line on the
x axis meet the diagonal line at x =17 W

Quick Quiz 5.9: But atomic increment is still pretty
fast. And incrementing a single variable in a tight loop
sounds pretty unrealistic to me, after all, most of the
program’s execution should be devoted to actually doing
work, not accounting for the work it has done! Why
should I care about making this go faster? l

there is likely to be a role for algorithms that use carefully relaxed
notions of correctness in order to gain greater performance and scalabil-
ity [And91, ACMSO03, Ungl1].

5.2. STATISTICAL COUNTERS

s
‘e
“igh

One one thousand.
{ | Two one thousand.
Three one thousand...

Figure 5.5: Waiting to Count

For another perspective on global atomic increment,
consider Figure 5.4. In order for each CPU to get a chance
to increment a given global variable, the cache line con-
taining that variable must circulate among all the CPUs,
as shown by the red arrows. Such circulation will take
significant time, resulting in the poor performance seen
in Figure 5.3, which might be thought of as shown in
Figure 5.5.

The following sections discuss high-performance
counting, which avoids the delays inherent in such circu-
lation.

Quick Quiz 5.10: But why can’t CPU designers sim-
ply ship the addition operation to the data, avoiding the
need to circulate the cache line containing the global vari-
able being incremented? Hl

39

DEFINE_PER_THREAD (long, counter);

1
2
3 void inc_count (void)

4 {

5 __get_thread_var (counter) ++;
6}

7

8

long read_count (void)
9 {
10 int t;
11 long sum = 0;

13 for_each_thread(t)

14 sum += per_thread(counter, t);
15 return sum;

16 }

Figure 5.6: Array-Based Per-Thread Statistical Counters

5.2 Statistical Counters

This section covers the common special case of statistical
counters, where the count is updated extremely frequently
and the value is read out rarely, if ever. These will be used
to solve the network-packet counting problem posed in
Quick Quiz 5.2.

5.2.1 Design

Statistical counting is typically handled by providing a
counter per thread (or CPU, when running in the kernel),
so that each thread updates its own counter. The aggregate
value of the counters is read out by simply summing up
all of the threads’ counters, relying on the commutative
and associative properties of addition. This is an example
of the Data Ownership pattern that will be introduced in
Section 6.3.4.

Quick Quiz 5.11: But doesn’t the fact that C’s “inte-
gers” are limited in size complicate things? H

5.2.2 Array-Based Implementation

One way to provide per-thread variables is to allocate
an array with one element per thread (presumably cache
aligned and padded to avoid false sharing).

Quick Quiz 5.12: An array??? But doesn’t that limit
the number of threads? H

Such an array can be wrapped into per-thread primi-
tives, as shown in Figure 5.6 (count_stat.c). Line 1
defines an array containing a set of per-thread counters of
type 1ong named, creatively enough, counter.

Lines 3-6 show a function that increments the counters,
using the __get_thread_var () primitive to locate
the currently running thread’s element of the counter

40
cPUo CPU-t CPY-2 CPU-3
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory |<—=| System Interconnect |<—=| Memory

_ ™~

Z N
Interconnect Interconnect

dCll dClT dClT dCll

a2 CELA Cal4 a2

Figure 5.7: Data Flow For Per-Thread Increment

array. Because this element is modified only by the corre-
sponding thread, non-atomic increment suffices.

Lines 8-16 show a function that reads out the aggregate
value of the counter, using the for_each_thread ()
primitive to iterate over the list of currently running
threads, and using the per_thread () primitive to
fetch the specified thread’s counter. Because the hard-
ware can fetch and store a properly aligned 1ong atomi-
cally, and because gcc is kind enough to make use of this
capability, normal loads suffice, and no special atomic
instructions are required.

Quick Quiz 5.13: What other choice does gcc have,
anyway??? ll

Quick Quiz 5.14: How does the per-thread counter
variable in Figure 5.6 get initialized? H

Quick Quiz 5.15: How is the code in Figure 5.6 sup-
posed to permit more than one counter? Hl

This approach scales linearly with increasing number
of updater threads invoking inc_count (). Asis shown
by the green arrows on each CPU in Figure 5.7, the rea-
son for this is that each CPU can make rapid progress
incrementing its thread’s variable, without any expensive
cross-system communication. As such, this section solves
the network-packet counting problem presented at the
beginning of this chapter.

Quick Quiz 5.16: The read operation takes time to
sum up the per-thread values, and during that time, the
counter could well be changing. This means that the
value returned by read_count () in Figure 5.6 will
not necessarily be exact. Assume that the counter is being
incremented at rate r counts per unit time, and that read__
count () ’s execution consumes A units of time. What is
the expected error in the return value? ll

However, this excellent update-side scalability comes at

CHAPTER 5. COUNTING

great read-side expense for large numbers of threads. The
next section shows one way to reduce read-side expense
while still retaining the update-side scalability.

5.2.3 Eventually Consistent Implementa-
tion

One way to retain update-side scalability while greatly im-
proving read-side performance is to weaken consistency
requirements. The counting algorithm in the previous
section is guaranteed to return a value between the value
that an ideal counter would have taken on near the begin-
ning of read_count () ’s execution and that near the
end of read_count () ’s execution. Eventual consis-
tency [Vog09] provides a weaker guarantee: in absence of
calls to inc_count (), calls to read_count () will
eventually return an accurate count.

We exploit eventual consistency by maintaining a
global counter. However, updaters only manipulate their
per-thread counters. A separate thread is provided to
transfer counts from the per-thread counters to the global
counter. Readers simply access the value of the global
counter. If updaters are active, the value used by the read-
ers will be out of date, however, once updates cease, the
global counter will eventually converge on the true value—
hence this approach qualifies as eventually consistent.

The implementation is shown in Figure 5.8 (count__
stat_eventual.c). Lines 1-2 show the per-thread
variable and the global variable that track the counter’s
value, and line three shows st opflag which is used to
coordinate termination (for the case where we want to
terminate the program with an accurate counter value).
The inc_count () function shown on lines 5-8 is simi-
lar to its counterpart in Figure 5.6. The read_count ()
function shown on lines 10-13 simply returns the value of
the global_count variable.

However, the count_init () function on lines 34-
42 creates the eventual () thread shown on lines 15-
32, which cycles through all the threads, summing the
per-thread local counter and storing the sum to the
global_count variable. The eventual () thread
waits an arbitrarily chosen one millisecond between
passes. The count_cleanup () function on lines 44-
50 coordinates termination.

This approach gives extremely fast counter read-out
while still supporting linear counter-update performance.
However, this excellent read-side performance and update-
side scalability comes at the cost of the additional thread

5.2. STATISTICAL COUNTERS

DEFINE_PER_THREAD (unsigned long, counter);
unsigned long global_count;
int stopflag;

void inc_count (void)
{

ACCESS_ONCE (__get_thread_var (counter)) ++;
}

W J oUW N

10 unsigned long read_count (void)

11 |

12 return ACCESS_ONCE (global_count) ;
13 }

15 void *eventual (void xarg)

16 {

17 int t;

18 int sum;

19

20 while (stopflag < 3) {

21 sum = 0;

22 for_each_thread(t)

23 sum += ACCESS_ONCE (per_thread(counter, t));
24 ACCESS_ONCE (global_count) = sum;

25 poll (NULL, 0, 1);

26 if (stopflag) {

27 smp_mb () ;

28 stopflag++;

29 }

30 }

31 return NULL;

32}

33

34 void count_init (void)

35 {

36 thread_id_t tid;

37

38 if (pthread_create(&tid, NULL, eventual, NULL)) {
39 perror ("count_init:pthread_create");
40 exit (-1);

41 }

42}

43

44 void count_cleanup (void)

45 {

46 stopflag = 1;
47 while (stopflag < 3)

48 poll (NULL, 0, 1);
49 smp_mb () ;
50 }

Figure 5.8: Array-Based Per-Thread Eventually Consis-
tent Counters

41

running eventual ().

Quick Quiz 5.17: Why doesn’t inc_count () in
Figure 5.8 need to use atomic instructions? After all,
we now have multiple threads accessing the per-thread
counters! H

Quick Quiz 5.18: Won’t the single global thread in the
function eventual () of Figure 5.8 be just as severe a
bottleneck as a global lock would be? B

Quick Quiz 5.19: Won’t the estimate returned by
read_count () in Figure 5.8 become increasingly in-
accurate as the number of threads rises? Hl

Quick Quiz 5.20: Given that in the eventually-
consistent algorithm shown in Figure 5.8 both reads and
updates have extremely low overhead and are extremely
scalable, why would anyone bother with the implementa-
tion described in Section 5.2.2, given its costly read-side
code? H

5.2.4 Per-Thread-Variable-Based
mentation

Imple-

Fortunately, gcc provides an ___thread storage class
that provides per-thread storage. This can be used as
shown in Figure 5.9 (count_end.c) to implement a
statistical counter that not only scales, but that also incurs
little or no performance penalty to incrementers compared
to simple non-atomic increment.

Lines 1-4 define needed variables: counter is the per-
thread counter variable, the counterp [] array allows
threads to access each others’ counters, finalcount
accumulates the total as individual threads exit, and
final_mutex coordinates between threads accumulat-
ing the total value of the counter and exiting threads.

Quick Quiz 5.21: Why do we need an explicit array
to find the other threads’ counters? Why doesn’t gcc pro-
vide a per_thread () interface, similar to the Linux
kernel’s per_cpu () primitive, to allow threads to more
easily access each others’ per-thread variables? Hl

The inc_count () function used by updaters is quite
simple, as can be seen on lines 6-9.

The read_count () function used by readers is a
bit more complex. Line 16 acquires a lock to exclude
exiting threads, and line 21 releases it. Line 17 initializes
the sum to the count accumulated by those threads that
have already exited, and lines 18-20 sum the counts being
accumulated by threads currently running. Finally, line 22
returns the sum.

Quick Quiz 5.22: Doesn’t the check for NULL on
line 19 of Figure 5.9 add extra branch mispredictions?

N
[\

long __thread counter = 0;
long *counterp[NR_THREADS] = { NULL };
long finalcount = 0;

DEFINE_SPINLOCK (final_mutex) ;

void inc_count (void)
{

counter++;

}

W J oUW N

©

11 long read_count (void)
12 {

13 int t;

14 long sum;

15

16 spin_lock (&final_mutex);
17 sum = finalcount;

18 for_each_thread(t)

19 if (counterp[t] != NULL)
20 sum += xcounterp[t];
21 spin_unlock (&final_mutex);
22 return sum;

23}

24

25 void count_register_thread(void)
26 {

27 int idx = smp_thread_id();
28

29 spin_lock (&final_mutex) ;
30 counterp[idx] = &counter;
31 spin_unlock (&final_mutex);
32}

33

34 void count_unregister_thread(int nthreadsexpected)
35 {
36 int idx = smp_thread_id();

37

38 spin_lock (&final_mutex) ;
39 finalcount += counter;

40 counterp[idx] = NULL;

41 spin_unlock (&final_mutex) ;

Figure 5.9: Per-Thread Statistical Counters

Why not have a variable set permanently to zero, and
point unused counter-pointers to that variable rather than
setting them to NULL? ll

Quick Quiz 5.23: Why on earth do we need something
as heavyweight as a lock guarding the summation in the
function read_count () in Figure 5.9? i

Lines 25-32 show the
thread () function, which must be called by
each thread before its first use of this counter. This
function simply sets up this thread’s element of the
counterp[] array to point to its per-thread counter
variable.

Quick Quiz 5.24: Why on earth do we need to ac-
quire the lock in count_register_thread() in
Figure 5.9? It is a single properly aligned machine-word
store to a location that no other thread is modifying, so it
should be atomic anyway, right? ll

Lines 34-42

count_register_

show the count_unregister_

CHAPTER 5. COUNTING

thread () function, which must be called prior to
exit by each thread that previously called count_
register_thread (). Line 38 acquires the lock,
and line 41 releases it, thus excluding any calls to
read_count () as well as other calls to count__
unregister_thread (). Line 39 adds this thread’s
counter to the global finalcount, and then line 40
NULLs out its counterp [] array entry. A subsequent
call to read_count () will see the exiting thread’s
count in the global finalcount, and will skip the exit-
ing thread when sequencing through the counterp[]
array, thus obtaining the correct total.

This approach gives updaters almost exactly the same
performance as a non-atomic add, and also scales linearly.
On the other hand, concurrent reads contend for a sin-
gle global lock, and therefore perform poorly and scale
abysmally. However, this is not a problem for statistical
counters, where incrementing happens often and readout
happens almost never. Of course, this approach is consid-
erably more complex than the array-based scheme, due to
the fact that a given thread’s per-thread variables vanish
when that thread exits.

Quick Quiz 5.25: Fine, but the Linux kernel doesn’t
have to acquire a lock when reading out the aggregate
value of per-CPU counters. So why should user-space
code need to do this??? Il

5.2.5 Discussion

These three implementations show that it is possible to
obtain uniprocessor performance for statistical counters,
despite running on a parallel machine.

Quick Quiz 5.26: What fundamental difference is
there between counting packets and counting the total
number of bytes in the packets, given that the packets
vary in size? W

Quick Quiz 5.27: Given that the reader must sum all
the threads’ counters, this could take a long time given
large numbers of threads. Is there any way that the in-
crement operation can remain fast and scalable while
allowing readers to also enjoy reasonable performance
and scalability? l

Given what has been presented in this section, you
should now be able to answer the Quick Quiz about sta-
tistical counters for networking near the beginning of this
chapter.

5.3. APPROXIMATE LIMIT COUNTERS

5.3 Approximate Limit Counters

Another special case of counting involves limit-checking.
For example, as noted in the approximate structure-
allocation limit problem in Quick Quiz 5.3, suppose that
you need to maintain a count of the number of structures
allocated in order to fail any allocations once the number
of structures in use exceeds a limit, in this case, 10,000.
Suppose further that these structures are short-lived, that
this limit is rarely exceeded, and that this limit is approx-
imate in that it is OK to exceed it sometimes by some
bounded amount (see Section 5.4 if you instead need the
limit to be exact).

5.3.1 Design

One possible design for limit counters is to divide the
limit of 10,000 by the number of threads, and give each
thread a fixed pool of structures. For example, given 100
threads, each thread would manage its own pool of 100
structures. This approach is simple, and in some cases
works well, but it does not handle the common case where
a given structure is allocated by one thread and freed by
another [MS93]. On the one hand, if a given thread takes
credit for any structures it frees, then the thread doing
most of the allocating runs out of structures, while the
threads doing most of the freeing have lots of credits that
they cannot use. On the other hand, if freed structures
are credited to the CPU that allocated them, it will be
necessary for CPUs to manipulate each others’ counters,
which will require expensive atomic instructions or other
means of communicating between threads.?

In short, for many important workloads, we cannot
fully partition the counter. Given that partitioning the
counters was what brought the excellent update-side per-
formance for the three schemes discussed in Section 5.2,
this might be grounds for some pessimism. However, the
eventually consistent algorithm presented in Section 5.2.3
provides an interesting hint. Recall that this algorithm
kept two sets of books, a per-thread counter variable
for updaters and a global_count variable for read-
ers, with an eventual () thread that periodically up-
dated global_count to be eventually consistent with
the values of the per-thread counter. The per-thread
counter perfectly partitioned the counter value, while
global_count kept the full value.

2 That said, if each structure will always be freed by the same CPU
(or thread) that allocated it, then this simple partitioning approach works
extremely well.

43

For limit counters, we can use a variation on this theme,
in that we partially partition the counter. For example,
each of four threads could have a per-thread counter,
but each could also have a per-thread maximum value
(call it countermax).

But then what happens if a given thread needs to
increment its counter, but counter is equal to its
countermax? The trick here is to move half of that
thread’s counter value to a globalcount, then in-
crement counter. For example, if a given thread’s
counter and countermax variables were both equal
to 10, we do the following:

1. Acquire a global lock.
2. Add five to globalcount.

3. To balance out the addition, subtract five from this
thread’s counter.

4. Release the global lock.

5. Increment this thread’s counter, resulting in a
value of six.

Although this procedure still requires a global lock,
that lock need only be acquired once for every five in-
crement operations, greatly reducing that lock’s level
of contention. We can reduce this contention as low
as we wish by increasing the value of countermax.
However, the corresponding penalty for increasing
the value of countermax is reduced accuracy of
globalcount. To see this, note that on a four-CPU
system, if countermax is equal to ten, globalcount
will be in error by at most 40 counts. In contrast,
if countermax is increased to 100, globalcount
might be in error by as much as 400 counts.

This raises the question of just how much we care
about globalcount’s deviation from the aggregate
value of the counter, where this aggregate value is the
sum of globalcount and each thread’s counter vari-
able. The answer to this question depends on how far
the aggregate value is from the counter’s limit (call it
globalcountmax). The larger the difference between
these two values, the larger countermax can be with-
out risk of exceeding the globalcountmax limit. This
means that the value of a given thread’s countermax
variable can be set based on this difference. When far
from the limit, the countermax per-thread variables
are set to large values to optimize for performance and

44

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;
unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long xcounterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;

g oUW N

Figure 5.10: Simple Limit Counter Variables

Figure 5.11: Simple Limit Counter Variable Relationships

scalability, while when close to the limit, these same vari-
ables are set to small values to minimize the error in the
checks against the globalcountmax limit.

This design is an example of parallel fastpath, which is
an important design pattern in which the common case ex-
ecutes with no expensive instructions and no interactions
between threads, but where occasional use is also made
of a more conservatively designed (and higher overhead)
global algorithm. This design pattern is covered in more
detail in Section 6.4.

5.3.2 Simple Limit Counter Implementa-
tion

Figure 5.10 shows both the per-thread and global

variables used by this implementation. The per-thread

counter and countermax variables are the corre-
sponding thread’s local counter and the upper bound on

CHAPTER 5. COUNTING

that counter, respectively. The globalcountmax vari-
able on line 3 contains the upper bound for the aggregate
counter, and the gl obalcount variable on line 4 is the
global counter. The sum of globalcount and each
thread’s counter gives the aggregate value of the over-
all counter. The globalreserve variable on line 5
is the sum of all of the per-thread countermax vari-
ables. The relationship among these variables is shown
by Figure 5.11:

1. The sum of globalcount and
globalreserve must be less than or equal
to globalcountmax.

2. The sum of all threads’ countermax values must
be less than or equal to globalreserve.

3. Each thread’s counter must be less than or equal
to that thread’s countermax.

Each element of the counterp[] array references
the corresponding thread’s counter variable, and, fi-
nally, the gblcnt_mutex spinlock guards all of the
global variables, in other words, no thread is permitted to
access or modify any of the global variables unless it has
acquired gblcnt_mutex.

Figure 5.12 shows the add_count (), sub_
count (), and read_count () functions (count_
lim.c).

Quick Quiz 5.28: Why does Figure 5.12 provide
add_count () and sub_count () instead of the
inc_count () and dec_count () interfaces show in
Section 5.27 W

Lines 1-18 show add_count (), which adds the spec-
ified value delta to the counter. Line 3 checks to see if
there is room for delta on this thread’s counter, and,
if so, line 4 adds it and line 6 returns success. This is the
add_counter () fastpath, and it does no atomic oper-
ations, references only per-thread variables, and should
not incur any cache misses.

Quick Quiz 5.29: What is with the strange form of the
condition on line 3 of Figure 5.12? Why not the following
more intuitive form of the fastpath?

3 1if (counter + delta <= countermax) {
4 counter += delta;
5 return 1;
6

If the test on line 3 fails, we must access global vari-
ables, and thus must acquire gblcnt_mutex on line 7,
which we release on line 11 in the failure case or on

5.3. APPROXIMATE LIMIT COUNTERS

1 int add_count (unsigned long delta)

2

3 if (countermax - counter >= delta) {
4 counter += delta;

5 return 1;

6 }

7 spin_lock (&gblcnt_mutex) ;

8 globalize_count () ;

9 if (globalcountmax -
10 globalcount - globalreserve < delta) {
11 spin_unlock (&gblcnt_mutex) ;
12 return 0;
13 }

14 globalcount += delta;
15 balance_count () ;
16 spin_unlock (&gblcnt_mutex) ;

17 return 1;

18 }

19

20 int sub_count (unsigned long delta)
21 {

22 if (counter >= delta) {

23 counter -= delta;

24 return 1;

25 }

26 spin_lock (&gblcnt_mutex) ;
27 globalize_count () ;
28 if (globalcount < delta) {

29 spin_unlock (&gblcnt_mutex) ;
30 return 0;
31 }

32 globalcount -= delta;

33 balance_count () ;

34 spin_unlock (&gblcnt_mutex) ;
35 return 1;

36 }

37

38 unsigned long read_count (void)
39 {

40 int t;

41 unsigned long sum;

42

43 spin_lock (&gblcnt_mutex) ;
44 sum = globalcount;

45 for_each_thread(t)

46 if (counterp[t] != NULL)
47 sum += xcounterp[t];

48 spin_unlock (&gblcnt_mutex) ;
49 return sum;

50 }

Figure 5.12: Simple Limit Counter Add, Subtract, and
Read

45

line 16 in the success case. Line 8 invokes globalize_
count (), shown in Figure 5.13, which clears the thread-
local variables, adjusting the global variables as needed,
thus simplifying global processing. (But don’t take my
word for it, try coding it yourself!) Lines 9 and 10 check
to see if addition of delta can be accommodated, with
the meaning of the expression preceding the less-than sign
shown in Figure 5.11 as the difference in height of the
two red (leftmost) bars. If the addition of delta cannot
be accommodated, then line 11 (as noted earlier) releases
gblcnt_mutex and line 12 returns indicating failure.

Otherwise, we take the slowpath. Line 14 adds delta
to globalcount, and then line 15 invokes balance_
count () (shown in Figure 5.13) in order to update
both the global and the per-thread variables. This call
to balance_count () will usually set this thread’s
countermax to re-enable the fastpath. Line 16 then
releases gblcnt_mutex (again, as noted earlier), and,
finally, line 17 returns indicating success.

Quick Quiz 5.30: Why does globalize_count ()
zero the per-thread variables, only to later call balance_
count () to refill them in Figure 5.12?7 Why not just
leave the per-thread variables non-zero? B

Lines 20-36 show sub_count (), which subtracts
the specified delta from the counter. Line 22 checks to
see if the per-thread counter can accommodate this sub-
traction, and, if so, line 23 does the subtraction and line 24
returns success. These lines form sub_count () ’s fast-
path, and, as with add_count (), this fastpath executes
no costly operations.

If the fastpath cannot accommodate subtraction of
delta, execution proceeds to the slowpath on lines 26-
35. Because the slowpath must access global state, line 26
acquires gblcnt_mutex, which is released either by
line 29 (in case of failure) or by line 34 (in case of suc-
cess). Line 27 invokes globalize_count (), shown
in Figure 5.13, which again clears the thread-local vari-
ables, adjusting the global variables as needed. Line 28
checks to see if the counter can accommodate subtracting
delta, and, if not, line 29 releases gblcnt_mutex
(as noted earlier) and line 30 returns failure.

Quick Quiz 5.31: Given that globalreserve
counted against us in add_count (), why doesn’t it
count for us in sub_count () in Figure 5.127 W

Quick Quiz 5.32: Suppose that one thread invokes
add_count () shown in Figure 5.12, and then another
thread invokes sub_count (). Won’t sub_count ()
return failure even though the value of the counter is non-
zero? l

N
(@)

1 static void globalize_count (void)
2 {

3 globalcount += counter;

4 counter = 0;

5 globalreserve —-= countermax;

6 countermax = 0;

7

8

9 static void balance_count (void)
10 {

11 countermax = globalcountmax -

12 globalcount - globalreserve;
13 countermax /= num_online_threads();
14 globalreserve += countermax;

15 counter = countermax / 2;

16 if (counter > globalcount)

17 counter = globalcount;

18 globalcount —-= counter;

19 }

20

21 void count_register_thread(void)

22 {

23 int idx = smp_thread_id();

24

25 spin_lock (&gblcnt_mutex) ;

26 counterp[idx] = &counter;

27 spin_unlock (&gblcnt_mutex) ;

28 }

29

30 void count_unregister_thread(int nthreadsexpected)
31 {
32 int idx = smp_thread_id();

34 spin_lock (&gblcnt_mutex) ;
35 globalize_count () ;

36 counterp[idx] = NULL;
37 spin_unlock (&gblcnt_mutex) ;
38 }

Figure 5.13: Simple Limit Counter Utility Functions

If, on the other hand, line 28 finds that the counter
can accommodate subtracting delta, we complete the
slowpath. Line 32 does the subtraction and then line 33
invokes balance_count () (shown in Figure 5.13)
in order to update both global and per-thread variables
(hopefully re-enabling the fastpath). Then line 34 releases
gblcnt_mutex, and line 35 returns success.

Quick Quiz 5.33: Why have both add_count ()
and sub_count () in Figure 5.12?7 Why not simply
pass a negative number to add_count () ? l

Lines 38-50 show read_count (), which returns the
aggregate value of the counter. It acquires gblcnt_
mutex on line 43 and releases it on line 48, exclud-
ing global operations from add_count () and sub_
count (), and, as we will see, also excluding thread
creation and exit. Line 44 initializes local variable sum
to the value of globalcount, and then the loop span-
ning lines 45-47 sums the per-thread counter variables.
Line 49 then returns the sum.

Figure 5.13 shows a number of utility functions used
by the add_count (), sub_count (), and read_

CHAPTER 5. COUNTING

count () primitives shown in Figure 5.12.

Lines 1-7 show globalize_count (), which ze-
ros the current thread’s per-thread counters, adjusting
the global variables appropriately. It is important to
note that this function does not change the aggregate
value of the counter, but instead changes how the
counter’s current value is represented. Line 3 adds
the thread’s counter variable to globalcount, and
line 4 zeroes counter. Similarly, line 5 subtracts the
per-thread countermax from globalreserve, and
line 6 zeroes countermax. It is helpful to refer to Fig-
ure 5.11 when reading both this function and balance_
count (), which is next.

Lines 9-19 show balance_count (), which is
roughly speaking the inverse of globalize_count ().
This function’s job is to set the current thread’s
countermax variable to the largest value that avoids
the risk of the counter exceeding the globalcountmax
limit. Changing the current thread’s countermax vari-
able of course requires corresponding adjustments to
counter, globalcount and globalreserve, as
can be seen by referring back to Figure 5.11. By do-
ing this, balance_count () maximizes use of add_
count ()’s and sub_count ()’s low-overhead fast-
paths. As with globalize_count (), balance_
count () is not permitted to change the aggregate value
of the counter.

Lines 11-13 compute this thread’s share of that por-
tion of globalcountmax that is not already cov-
ered by either globalcount or globalreserve,
and assign the computed quantity to this thread’s
countermax. Line 14 makes the corresponding ad-
justment to globalreserve. Line 15 sets this
thread’s counter to the middle of the range from
zero to countermax. Line 16 checks to see whether
globalcount can in fact accommodate this value of
counter, and, if not, line 17 decreases counter ac-
cordingly. Finally, in either case, line 18 makes the corre-
sponding adjustment to globalcount.

Quick Quiz 5.34: Why set counter to
countermax / 2 in line 15 of Figure 5.13?
Wouldn’t it be simpler to just take countermax counts?

It is helpful to look at a schematic depicting how the
relationship of the counters changes with the execution
of first globalize_count () and then balance_
count, as shown in Figure 5.14. Time advances from
left to right, with the leftmost configuration roughly that
of Figure 5.11. The center configuration shows the re-

5.3. APPROXIMATE LIMIT COUNTERS

globalize_count()

47

balance_count()

Figure 5.14: Schematic of Globalization and Balancing

lationship of these same counters after globalize_
count () is executed by thread 0. As can be seen
from the figure, thread 0’s counter (“c 0” in the fig-
ure) is added to globalcount, while the value of
globalreserve is reduced by this same amount. Both
thread 0’s counter and its countermax (“cm 0” in
the figure) are reduced to zero. The other three threads’
counters are unchanged. Note that this change did
not affect the overall value of the counter, as indicated
by the bottommost dotted line connecting the leftmost
and center configurations. In other words, the sum of
globalcount and the four threads’ counter vari-
ables is the same in both configurations. Similarly, this
change did not affect the sum of globalcount and
globalreserve, as indicated by the upper dotted line.

The rightmost configuration shows the relationship of
these counters after balance_count () is executed,
again by thread 0. One-quarter of the remaining count, de-
noted by the vertical line extending up from all three
configurations, is added to thread 0’s countermax
and half of that to thread 0’s counter. The amount
added to thread 0’s counter is also subtracted from
globalcount in order to avoid changing the over-
all value of the counter (which is again the sum of
globalcount and the three threads’ counter vari-

ables), again as indicated by the lowermost of the two
dotted lines connecting the center and rightmost configu-
rations. The globalreserve variable is also adjusted
so that this variable remains equal to the sum of the four
threads’ countermax variables. Because thread 0’s
counter is less than its countermax, thread O can
once again increment the counter locally.

Quick Quiz 5.35: In Figure 5.14, even though a quar-
ter of the remaining count up to the limit is assigned to
thread 0, only an eighth of the remaining count is con-
sumed, as indicated by the uppermost dotted line connect-
ing the center and the rightmost configurations. Why is
that?

Lines 21-28 show count_register_thread(),
which sets up state for newly created threads. This func-
tion simply installs a pointer to the newly created thread’s
counter variable into the corresponding entry of the
counterp[] array under the protection of gblcnt_
mutex.

Finally, lines 30-38 show count_unregister_
thread (), which tears down state for a soon-to-be-
exiting thread. Line 34 acquires gblcnt_mutex and
line 37 releases it. Line 35 invokes globalize_
count () to clear out this thread’s counter state, and
line 36 clears this thread’s entry in the counterp[]

48

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;

unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long xcounterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;

#define MAX_COUNTERMAX 100

@ J oUW N

Figure 5.15: Approximate Limit Counter Variables

1 static void balance_count (void)

2 A

3 countermax = globalcountmax -

4 globalcount - globalreserve;
5 countermax /= num_online_threads();
6 if (countermax > MAX_COUNTERMAX)

7 countermax = MAX_COUNTERMAX;

8 globalreserve += countermax;

9 counter = countermax / 2;
10 if (counter > globalcount)
11 counter = globalcount;
12 globalcount —-= counter;
13 }

Figure 5.16: Approximate Limit Counter Balancing

array.

5.3.3 Simple Limit Counter Discussion

This type of counter is quite fast when aggregate val-
ues are near zero, with some overhead due to the com-
parison and branch in both add_count () ’s and sub__
count () ’s fastpaths. However, the use of a per-thread
countermax reserve means that add_count () can
fail even when the aggregate value of the counter is
nowhere near globalcountmax. Similarly, sub_
count () can fail even when the aggregate value of the
counter is nowhere near zero.

In many cases, this is unacceptable. Even if the
globalcountmax is intended to be an approximate
limit, there is usually a limit to exactly how much approx-
imation can be tolerated. One way to limit the degree of
approximation is to impose an upper limit on the value
of the per-thread countermax instances. This task is
undertaken in the next section.

5.3.4 Approximate Limit Counter Imple-
mentation

Because this implementation (count_lim_app.c)
is quite similar to that in the previous section (Fig-
ures 5.10, 5.12, and 5.13), only the changes are shown
here. Figure 5.15 is identical to Figure 5.10, with the
addition of MAX_COUNTERMAX, which sets the maxi-

CHAPTER 5. COUNTING

mum permissible value of the per-thread countermax
variable.

Similarly, Figure 5.16 is identical to the balance_
count () function in Figure 5.13, with the addition of
lines 6 and 7, which enforce the MAX_ COUNTERMAX
limit on the per-thread countermax variable.

5.3.5 Approximate Limit Counter Discus-
sion

These changes greatly reduce the limit inaccuracy seen
in the previous version, but present another problem:
any given value of MAX_COUNTERMAX will cause a
workload-dependent fraction of accesses to fall off the
fastpath. As the number of threads increase, non-fastpath
execution will become both a performance and a scala-
bility problem. However, we will defer this problem and
turn instead to counters with exact limits.

5.4 Exact Limit Counters

To solve the exact structure-allocation limit problem noted
in Quick Quiz 5.4, we need a limit counter that can tell
exactly when its limits are exceeded. One way of imple-
menting such a limit counter is to cause threads that have
reserved counts to give them up. One way to do this is to
use atomic instructions. Of course, atomic instructions
will slow down the fastpath, but on the other hand, it
would be silly not to at least give them a try.

5.4.1 Atomic Limit Counter Implementa-
tion

Unfortunately, if one thread is to safely remove counts
from another thread, both threads will need to atomically
manipulate that thread’s counter and countermax
variables. The usual way to do this is to combine these
two variables into a single variable, for example, given
a 32-bit variable, using the high-order 16 bits to repre-
sent counter and the low-order 16 bits to represent
countermax.

Quick Quiz 5.36: Why is it necessary to atomically
manipulate the thread’s counter and countermax
variables as a unit? Wouldn’t it be good enough to atomi-
cally manipulate them individually?

The variables and access functions for a simple atomic
limit counter are shown in Figure 5.17 (count_1lim_
atomic.c). The counter and countermax vari-
ables in earlier algorithms are combined into the single

5.4. EXACT LIMIT COUNTERS

1 atomic_t __thread ctrandmax = ATOMIC_INIT (0);
2 unsigned long globalcountmax = 10000;

3 unsigned long globalcount = 0;

4 unsigned long globalreserve = 0;

5 atomic_t +*counterp[NR_THREADS] = { NULL };

6 DEFINE_SPINLOCK (gblcnt_mutex);

7 #define CM_BITS (sizeof (atomic_t) * 4)

8 #define MAX_COUNTERMAX ((1 << CM_BITS) - 1)

©

10 static void

11 split_ctrandmax_int (int cami, int xc, int =cm)
12 {

13 xc = (cami >> CM_BITS) & MAX_COUNTERMAX;

14 *cm = cami & MAX_COUNTERMAX;

15 }

17 static void

18 split_ctrandmax(atomic_t =xcam, int =*old,
19 int *c, int =xcm)

20 {

21 unsigned int cami = atomic_read(cam);

23 xold = cami;
24 split_ctrandmax_int (cami, c, cm);
25}

27 static int merge_ctrandmax (int c, int cm)
28 {

29 unsigned int cami;

30

31 cami = (c << CM_BITS) | cm;
32 return ((int)cami);

33 }

Figure 5.17: Atomic Limit Counter Variables and Access
Functions

variable ct randmax shown on line 1, with counter in
the upper half and countermax in the lower half. This
variable is of type at omic_t, which has an underlying
representation of int.

Lines 2-6 show the definitions for
globalcountmax, globalcount,
globalreserve, counterp, and gblcnt_mutex,
all of which take on roles similar to their counterparts in
Figure 5.15. Line 7 defines CM_BITS, which gives the
number of bits in each half of ct randmax, and line 8
defines MAX_COUNTERMAX, which gives the maximum
value that may be held in either half of ct randmax.

Quick Quiz 5.37: In what way does line 7 of Fig-
ure 5.17 violate the C standard? B

Lines 10-15 show the split_ctrandmax_int ()
function, which, when given the underlying int from
the atomic_t ctrandmax variable, splits it into
its counter (c) and countermax (cm) components.
Line 13 isolates the most-significant half of this int,
placing the result as specified by argument c, and line 14
isolates the least-significant half of this int, placing the
result as specified by argument cm.

Lines 17-25 show the split_ctrandmax () func-

49

tion, which picks up the underlying int from the spec-
ified variable on line 21, stores it as specified by the
old argument on line 23, and then invokes split_
ctrandmax_int () to splitit on line 24.

Quick Quiz 5.38: Given that there is only one
ctrandmax variable, why bother passing in a pointer to
it on line 18 of Figure 5.177 M

Lines 27-33 show the merge_ctrandmax () func-
tion, which can be thought of as the inverse of split_
ctrandmax (). Line 31 merges the counter and
countermax values passed in ¢ and cm, respectively,
and returns the result.

Quick Quiz 5.39: Why does merge_ctrandmax ()
in Figure 5.17 return an int rather than storing directly
into an atomic_t? Ml

Figure 5.18 shows the add_count () and sub_
count () functions.

Lines 1-32 show add_count (), whose fastpath
spans lines 8-15, with the remainder of the function being
the slowpath. Lines 8-14 of the fastpath form a compare-
and-swap (CAS) loop, with the at omic_cmpxchg ()
primitives on lines 13-14 performing the actual CAS.
Line 9 splits the current thread’s ct randmax variable
into its counter (in ¢) and countermax (in cm) com-
ponents, while placing the underlying int into old.
Line 10 checks whether the amount de 1t a can be accom-
modated locally (taking care to avoid integer overflow),
and if not, line 11 transfers to the slowpath. Otherwise,
line 12 combines an updated counter value with the
original countermax value into new. The atomic_
cmpxchg () primitive on lines 13-14 then atomically
compares this thread’s ct randmax variable to o1d, up-
dating its value to new if the comparison succeeds. If the
comparison succeeds, line 15 returns success, otherwise,
execution continues in the loop at line 9.

Quick Quiz 5.40: Yecch! Why the ugly goto on
line 11 of Figure 5.18? Haven’t you heard of the break
statement??? Il

Quick Quiz 5.41: Why would the atomic_
cmpxchg () primitive at lines 13-14 of Figure 5.18 ever
fail? After all, we picked up its old value on line 9 and
have not changed it! l

Lines 16-31 of Figure 5.18 show add_count ()’s
slowpath, which is protected by gb1lcnt_mutex, which
is acquired on line 17 and released on lines 24 and 30.
Line 18 invokes globalize_count (), which moves
this thread’s state to the global counters. Lines 19-20
check whether the delta value can be accommodated
by the current global state, and, if not, line 21 invokes

50

1 int add_count (unsigned long delta)

2 {

3 int c;

4 int cm;

5 int old;

6 int new;

7

8 do {

9 split_ctrandmax (&ctrandmax, &old, &c, &cm);
10 if (delta > MAX_COUNTERMAX || c¢ + delta > cm)
11 goto slowpath;

12 new = merge_ctrandmax(c + delta, cm);

13 } while (atomic_cmpxchg (&ctrandmax,

14 old, new) != old);
15 return 1;

16 slowpath:

17 spin_lock (&gblcnt_mutex) ;

18 globalize_count ();

19 if (globalcountmax - globalcount -

20 globalreserve < delta) {

21 flush_local_count () ;

22 if (globalcountmax - globalcount -
23 globalreserve < delta) {

24 spin_unlock (&gblcnt_mutex) ;

25 return 0;

26 }

27 }

28 globalcount += delta;
29 balance_count () ;
30 spin_unlock (&gblcnt_mutex) ;

31 return 1;

32}

33

34 int sub_count (unsigned long delta)

35 {

36 int c;

37 int cm;

38 int old;

39 int new;

40

41 do {

42 split_ctrandmax (&ctrandmax, &old, &c, &cm);
43 if (delta > c)

44 goto slowpath;

45 new = merge_ctrandmax(c - delta, cm);

46 } while (atomic_cmpxchg (&ctrandmax,

47 old, new) != old);
48 return 1;

49 slowpath:

50 spin_lock (&gblcnt_mutex) ;
51 globalize_count ();

52 if (globalcount < delta) {

53 flush_local_count () ;

54 if (globalcount < delta) {

55 spin_unlock (&gblcnt_mutex) ;
56 return 0;

57 }

58 }

59 globalcount -= delta;

60 balance_count () ;
61 spin_unlock (&gblcnt_mutex) ;
62 return 1;

Figure 5.18: Atomic Limit Counter Add and Subtract

CHAPTER 5. COUNTING

1 unsigned long read_count (void)
2

3 int c;

4 int cm;

5 int old;

6 int t;

7 unsigned long sum;

8

9 spin_lock (&gblcnt_mutex) ;

10 sum = globalcount;
11 for_each_thread(t)
12 if (counterp[t] != NULL) {
13 split_ctrandmax (counterp[t], &old, &c, &cm);
14 sum += c;

15 }
16 spin_unlock (&gblcnt_mutex) ;
17 return sum;
18 }

Figure 5.19: Atomic Limit Counter Read

flush_local_count () to flush all threads’ local
state to the global counters, and then lines 22-23 recheck
whether delta can be accommodated. If, after all that,
the addition of delta still cannot be accommodated,
then line 24 releases gblcnt_mutex (as noted earlier),
and then line 25 returns failure.

Otherwise, line 28 adds delta to the global counter,
line 29 spreads counts to the local state if appropriate,
line 30 releases gblcnt_mutex (again, as noted ear-
lier), and finally, line 31 returns success.

Lines 34-63 of Figure 5.18 show sub_count (),
which is structured similarly to add_count (), having
a fastpath on lines 41-48 and a slowpath on lines 49-62. A
line-by-line analysis of this function is left as an exercise
to the reader.

Figure 5.19 shows read_count (). Line 9 acquires
gblcnt_mutex and line 16 releases it. Line 10 initial-
izes local variable sum to the value of globalcount,
and the loop spanning lines 11-15 adds the per-thread
counters to this sum, isolating each per-thread counter
using split_ctrandmax on line 13. Finally, line 17
returns the sum.

Figures 5.20 and 5.21 shows the utility functions
globalize_count (), flush_local_count (),
balance_count (), count_register_
thread (), and count_unregister_thread().
The code for globalize_count () is shown on
lines 1-12, of Figure 5.20 and is similar to that of previous
algorithms, with the addition of line 7, which is now
required to split out counter and countermax from
ctrandmax.

The code for flush_local_count (), which
moves all threads’ local counter state to the global counter,
is shown on lines 14-32. Line 22 checks to see if the value

5.4. EXACT LIMIT COUNTERS

1 static void globalize_count (void)

2 {

3 int cj;

4 int cm;

5 int old;

6

7 split_ctrandmax (&ctrandmax, &old, &c, &cm);
8 globalcount += c;

9 globalreserve -= cm;

10 old = merge_ctrandmax (0, 0);
11 atomic_set (&ctrandmax, old);
12}
13
14 static void flush_local_count (void)
15 {
16 int c;
17 int cm;

18 int old;
19 int t;

20 int zero;

21

22 if (globalreserve == 0)

23 return;

24 zero = merge_ctrandmax (0, 0);

25 for_each_thread(t)

26 if (counterp[t] != NULL) {

27 old = atomic_xchg(counterp[t], =zero);
28 split_ctrandmax_int (old, &c, &cm);
29 globalcount += c;

30 globalreserve -= cm;

31 }

32}

Figure 5.20: Atomic Limit Counter Utility Functions 1

of globalreserve permits any per-thread counts, and,
if not, line 23 returns. Otherwise, line 24 initializes lo-
cal variable zero to a combined zeroed counter and
countermax. The loop spanning lines 25-31 sequences
through each thread. Line 26 checks to see if the current
thread has counter state, and, if so, lines 27-30 move that
state to the global counters. Line 27 atomically fetches the
current thread’s state while replacing it with zero. Line 28
splits this state into its counter (in local variable c)
and countermax (in local variable cm) components.
Line 29 adds this thread’s counter to globalcount,
while line 30 subtracts this thread’s countermax from
globalreserve.

Quick Quiz 5.42: What stops a thread from sim-
ply refilling its ct randmax variable immediately after
flush_local_count () on line 14 of Figure 5.20
empties it? ll

Quick Quiz 5.43: What prevents concurrent execu-
tion of the fastpath of either add_count () or sub_
count () from interfering with the ct randmax vari-
able while flush_local_count () is accessing it on
line 27 of Figure 5.20 empties it? H

Lines 1-22 on Figure 5.21 show the code for
balance_count (), which refills the calling thread’s
local ct randmax variable. This function is quite similar

51

1 static void balance_count (void)

2 {

3 int c;

4 int cm;

5 int old;

6 unsigned long limit;

7

8 limit = globalcountmax - globalcount -
9 globalreserve;
10 limit /= num_online_threads();
11 if (limit > MAX_COUNTERMAX)
12 cm = MAX_COUNTERMAX;
13 else
14 cm = limit;
15 globalreserve += cm;

16 c =ocm / 2;
17 if (c > globalcount)

18 c = globalcount;

19 globalcount -= c;

20 old = merge_ctrandmax(c, cm);
21 atomic_set (&ctrandmax, old);
22}

23

24 void count_register_thread(void)
25 {

26 int idx = smp_thread_id();

27

28 spin_lock (&gblcnt_mutex) ;

29 counterp[idx] = &ctrandmax;
30 spin_unlock (&gblcnt_mutex) ;
31 }

32

33 void count_unregister_thread(int nthreadsexpected)
34 {
35 int idx = smp_thread_id();

36

37 spin_lock (&gblcnt_mutex) ;
38 globalize_count () ;

39 counterp[idx] = NULL;

40 spin_unlock (&gblcnt_mutex) ;
41 3}

Figure 5.21: Atomic Limit Counter Utility Functions 2

to that of the preceding algorithms, with changes required
to handle the merged ct randmax variable. Detailed
analysis of the code is left as an exercise for the reader,
as it is with the count_register_thread () func-
tion starting on line 24 and the count_unregister_
thread () function starting on line 33.

Quick Quiz 5.44: Given that the atomic_set ()
primitive does a simple store to the specified atomic_t,
how can line 21 of balance_count () in Figure 5.21
work correctly in face of concurrent flush_local_
count () updates to this variable? l

The next section qualitatively evaluates this design.

5.4.2 Atomic Limit Counter Discussion

This is the first implementation that actually allows the
counter to be run all the way to either of its limits, but it
does so at the expense of adding atomic operations to the
fastpaths, which slow down the fastpaths significantly on

52

Figure 5.22: Signal-Theft State Machine

some systems. Although some workloads might tolerate
this slowdown, it is worthwhile looking for algorithms
with better read-side performance. One such algorithm
uses a signal handler to steal counts from other threads.
Because signal handlers run in the context of the signaled
thread, atomic operations are not necessary, as shown in
the next section.

Quick Quiz 5.45: But signal handlers can be migrated
to some other CPU while running. Doesn’t this possibility
require that atomic instructions and memory barriers are
required to reliably communicate between a thread and a
signal handler that interrupts that thread? Bl

5.4.3 Signal-Theft Limit Counter Design

Even though per-thread state will now be manipulated
only by the corresponding thread, there will still need to
be synchronization with the signal handlers. This syn-
chronization is provided by the state machine shown in
Figure 5.22. The state machine starts out in the IDLE
state, and when add_count () or sub_count () find
that the combination of the local thread’s count and the
global count cannot accommodate the request, the cor-
responding slowpath sets each thread’s theft state to
REQ (unless that thread has no count, in which case it
transitions directly to READY). Only the slowpath, which
holds the gblcnt_mutex lock, is permitted to transi-

CHAPTER 5. COUNTING

1 #define THEFT_IDLE O

2 #define THEFT_REQ 1

3 #define THEFT_ACK 2

4 #define THEFT_READY 3

5

6 int __thread theft = THEFT_IDLE;

7 int __thread counting = 0;

8 unsigned long __thread counter = 0;

9 unsigned long __thread countermax = 0;

10 unsigned long globalcountmax = 10000;
11 unsigned long globalcount = 0;
12 unsigned long globalreserve = 0;

13 unsigned long xcounterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int xtheftp[NR_THREADS] = { NULL };

16 DEFINE_SPINLOCK (gblcnt_mutex) ;
17 #define MAX_COUNTERMAX 100

Figure 5.23: Signal-Theft Limit Counter Data

tion from the IDLE state, as indicated by the green color.’
The slowpath then sends a signal to each thread, and the
corresponding signal handler checks the corresponding
thread’s theft and count ing variables. If the theft
state is not REQ, then the signal handler is not permitted
to change the state, and therefore simply returns. Other-
wise, if the count ing variable is set, indicating that the
current thread’s fastpath is in progress, the signal handler
sets the theft state to ACK, otherwise to READY.

If the the ft state is ACK, only the fastpath is permit-
ted to change the theft state, as indicated by the blue
color. When the fastpath completes, it sets the theft
state to READY.

Once the slowpath sees a thread’s theft state is
READY, the slowpath is permitted to steal that thread’s
count. The slowpath then sets that thread’s the ft state
to IDLE.

Quick Quiz 5.46: In Figure 5.22, why is the REQ
theft state colored red? H

Quick Quiz 5.47: In Figure 5.22, what is the point
of having separate REQ and ACK theft states? Why
not simplify the state machine by collapsing them into
a single REQACK state? Then whichever of the signal
handler or the fastpath gets there first could set the state
to READY.

5.4.4 Signal-Theft Limit Counter Imple-
mentation
Figure 5.23 (count_lim_sig.c) shows the data

structures used by the signal-theft based counter imple-
mentation. Lines 1-7 define the states and values for the

3 For those with black-and-white versions of this book, IDLE and
READY are green, REQ is red, and ACK is blue.

5.4. EXACT LIMIT COUNTERS

per-thread theft state machine described in the preceding
section. Lines 8-17 are similar to earlier implementations,
with the addition of lines 14 and 15 to allow remote ac-
cess to a thread’s countermax and theft variables,
respectively.

Figure 5.24 shows the functions responsible for migrat-
ing counts between per-thread variables and the global
variables. Lines 1-7 shows globalize_count (),
which is identical to earlier implementations. Lines 9-19
shows flush_local_count_sig (), which is the
signal handler used in the theft process. Lines 11 and 12
check to see if the theft state is REQ, and, if not returns
without change. Line 13 executes a memory barrier to en-
sure that the sampling of the theft variable happens before
any change to that variable. Line 14 sets the theft state
to ACK, and, if line 15 sees that this thread’s fastpaths are
not running, line 16 sets the theft state to READY.

Quick Quiz 5.48: In Figure 5.24 function flush_
local_count_sig (), why are there ACCESS_
ONCE () wrappers around the uses of the theft per-
thread variable? ll

Lines 21-49 shows flush_local_count (),
which is called from the slowpath to flush all threads’
local counts. The loop spanning lines 26-34 advances the
theft state for each thread that has local count, and also
sends that thread a signal. Line 27 skips any non-existent
threads. Otherwise, line 28 checks to see if the current
thread holds any local count, and, if not, line 29 sets the
thread’s the ft state to READY and line 30 skips to the
next thread. Otherwise, line 32 sets the thread’s theft
state to REQ and line 33 sends the thread a signal.

Quick Quiz 5.49: In Figure 5.24, why is it safe for
line 28 to directly access the other thread’s countermax
variable? ll

Quick Quiz 5.50: In Figure 5.24, why doesn’t line 33
check for the current thread sending itself a signal? l

Quick Quiz 5.51: The code in Figure 5.24, works with
gcc and POSIX. What would be required to make it also
conform to the ISO C standard? B

The loop spanning lines 35-48 waits until each thread
reaches READY state, then steals that thread’s count.
Lines 36-37 skip any non-existent threads, and the loop
spanning lines 38-42 wait until the current thread’s
theft state becomes READY. Line 39 blocks for a
millisecond to avoid priority-inversion problems, and if
line 40 determines that the thread’s signal has not yet
arrived, line 41 resends the signal. Execution reaches
line 43 when the thread’s the £t state becomes READY,
so lines 43-46 do the thieving. Line 47 then sets the

53
1 static void globalize_count (void)
2 {
3 globalcount += counter;
4 counter = 0;
5 globalreserve —-= countermax;
6 countermax = 0;
7}
8
9 static void flush_local_count_sig(int unused)
10 {
11 if (ACCESS_ONCE (theft) != THEFT_REQ)
12 return;
13 smp_mb () ;
14 ACCESS_ONCE (theft) = THEFT_ACK;
15 if (!counting) {
16 ACCESS_ONCE (theft) = THEFT_READY;
17 }
18 smp_mb () ;
19 }
20
21 static void flush_local_count (void)
22 {
23 int t;
24 thread_id_t tid;
25
26 for_each_tid(t, tid)
27 if (theftp[t] != NULL) {
28 if (*countermaxp([t] == 0) {
29 ACCESS_ONCE (*xtheftp[t]) = THEFT_READY;
30 continue;
31 }
32 ACCESS_ONCE (*theftp[t]) = THEFT_REQ;
33 pthread_kill(tid, SIGUSR1);
34 }
35 for_each_tid(t, tid) {
36 if (theftp[t] == NULL)
37 continue;
38 while (ACCESS_ONCE («theftp([t]) != THEFT_READY)
39 poll (NULL, 0, 1);
40 if (ACCESS_ONCE (xtheftp[t]) == THEFT_REQ)
41 pthread_kill (tid, SIGUSRI1);
42 }
43 globalcount += xcounterp[t];
44 ~counterp(t] = 0;
45 globalreserve -= xcountermaxp[t];
46 «countermaxp[t] = 0;
47 ACCESS_ONCE (*theftp[t]) = THEFT_IDLE;
48 }
49 }
50
51 static void balance_count (void)
52 {
53 countermax = globalcountmax -
54 globalcount - globalreserve;
55 countermax /= num_online_threads();
56 if (countermax > MAX_COUNTERMAX)
57 countermax = MAX_COUNTERMAX;
58 globalreserve += countermax;
59 counter = countermax / 2;
60 if (counter > globalcount)
61 counter = globalcount;
62 globalcount —-= counter;
63 }

Figure 5.24: Signal-Theft Limit Counter Value-Migration
Functions

54

1 int add_count (unsigned long delta)

2 {

3 int fastpath = 0;

4

5 counting = 1;

6 barrier();

7 if (countermax - counter >= delta &&

8 ACCESS_ONCE (theft) <= THEFT_REQ) {
9 counter += delta;
10 fastpath = 1;

11 }

12 barrier();

13 counting = 0;

14 barrier();

15 if (ACCESS_ONCE (theft) == THEFT_ACK) {
16 smp_mb () ;

17 ACCESS_ONCE (theft) = THEFT_READY;
18 }

19 if (fastpath)
20 return 1;

21 spin_lock (&gblcnt_mutex) ;
22 globalize_count () ;
23 if (globalcountmax - globalcount -

24 globalreserve < delta) {

25 flush_local_count ();

26 if (globalcountmax - globalcount -
27 globalreserve < delta) {

28 spin_unlock (&gblcnt_mutex) ;

29 return 0;

30 }

31 }

32 globalcount += delta;

33 balance_count () ;

34 spin_unlock (&gblcnt_mutex) ;
35 return 1;

36 }

Figure 5.25: Signal-Theft Limit Counter Add Function

thread’s theft state back to IDLE.

Quick Quiz 5.52: In Figure 5.24, why does line 41
resend the signal? B

Lines 51-63 show balance_count (), which is sim-
ilar to that of earlier examples.

Figure 5.25 shows the add_count () function. The
fastpath spans lines 5-20, and the slowpath lines 21-35.
Line 5 sets the per-thread count ing variable to 1 so that
any subsequent signal handlers interrupting this thread
will set the theft state to ACK rather than READY,
allowing this fastpath to complete properly. Line 6 pre-
vents the compiler from reordering any of the fastpath
body to precede the setting of counting. Lines 7 and
8 check to see if the per-thread data can accommodate
the add_count () and if there is no ongoing theft in
progress, and if so line 9 does the fastpath addition and
line 10 notes that the fastpath was taken.

In either case, line 12 prevents the compiler from re-
ordering the fastpath body to follow line 13, which per-
mits any subsequent signal handlers to undertake theft.
Line 14 again disables compiler reordering, and then
line 15 checks to see if the signal handler deferred the

CHAPTER 5. COUNTING

38 int sub_count (unsigned long delta)
39 {
40 int fastpath = 0;

42 counting = 1;
43 barrier();
44 if (counter >= delta &&

45 ACCESS_ONCE (theft) <= THEFT_REQ) {
46 counter -= delta;

47 fastpath = 1;

48 }

49 barrier () ;
50 counting = 0;
51 barrier();

52 if (ACCESS_ONCE (theft) == THEFT_ACK) {
53 smp_mb () ;

54 ACCESS_ONCE (theft) = THEFT_READY;

55 }

56 if (fastpath)

57 return 1;

58 spin_lock (&gblcnt_mutex) ;
59 globalize_count () ;
60 if (globalcount < delta) {

61 flush_local_count();

62 if (globalcount < delta) {

63 spin_unlock (&gblcnt_mutex) ;
64 return 0;

65 }

66 }

67 globalcount -= delta;

68 balance_count () ;
69 spin_unlock (&gblcnt_mutex) ;
70 return 1;

Figure 5.26: Signal-Theft Limit Counter Subtract Func-
tion

theft state-change to READY, and, if so, line 16 exe-
cutes a memory barrier to ensure that any CPU that sees
line 17 setting state to READY also sees the effects of
line 9. If the fastpath addition at line 9 was executed, then
line 20 returns success.

Otherwise, we fall through to the slowpath starting at
line 21. The structure of the slowpath is similar to those
of earlier examples, so its analysis is left as an exercise
to the reader. Similarly, the structure of sub_count ()
on Figure 5.26 is the same as that of add_count (), so

1 unsigned long read_count (void)
2 1

3 int t;

4 unsigned long sum;

5

6 spin_lock (&gblcnt_mutex) ;

7 sum = globalcount;

8 for_each_thread(t)

9 if (counterp[t] != NULL)
10 sum += xcounterp[t];
11 spin_unlock (&gblcnt_mutex) ;
12 return sum;
13 }

Figure 5.27: Signal-Theft Limit Counter Read Function

5.5. APPLYING SPECIALIZED PARALLEL COUNTERS 55

1 void count_init (void)

2 {

3 struct sigaction sa;

4

5 sa.sa_handler = flush_local_count_sig;
6 sigemptyset (&sa.sa_mask) ;

7 sa.sa_flags = 0;

8 if (sigaction(SIGUSR1, &sa, NULL) != 0) {
9 perror ("sigaction");
10 exit (-1);
11 }
12 }
13

14 void count_register_thread(void)
15 {
16 int idx = smp_thread_id();

18 spin_lock (&gblcnt_mutex) ;

19 counterp[idx] = &counter;

20 countermaxp[idx] = &countermax;
21 theftp[idx] = &theft;

22 spin_unlock (&gblcnt_mutex) ;
23}

25 void count_unregister_thread(int nthreadsexpected)
26 {
27 int idx = smp_thread_id();

29 spin_lock (&gblcnt_mutex) ;
30 globalize_count ();

31 counterp[idx] = NULL;

32 countermaxp[idx] = NULL;

33 theftp[idx] = NULL;

34 spin_unlock (&gblcnt_mutex) ;
35 }

Figure 5.28: Signal-Theft Limit Counter Initialization
Functions

the analysis of sub_count () is also left as an exercise
for the reader, as is the analysis of read_count () in
Figure 5.27.

Lines 1-12 of Figure 5.28 show count_init (),
which set up flush_local_count_sig() as the
signal handler for STGUSR1, enabling the pthread_
kill () callsin flush_local_count () to invoke
flush_local_count_sig (). The code for thread
registry and unregistry is similar to that of earlier exam-
ples, so its analysis is left as an exercise for the reader.

5.4.5 Signal-Theft Limit Counter Discus-
sion

The signal-theft implementation runs more than twice as
fast as the atomic implementation on my Intel Core Duo
laptop. Is it always preferable?

The signal-theft implementation would be vastly prefer-
able on Pentium-4 systems, given their slow atomic in-
structions, but the old 80386-based Sequent Symmetry
systems would do much better with the shorter path length
of the atomic implementation. However, this increased

update-side performance comes at the prices of higher
read-side overhead: Those POSIX signals are not free. If
ultimate performance is of the essence, you will need to
measure them both on the system that your application is
to be deployed on.

Quick Quiz 5.53: Not only are POSIX signals slow,
sending one to each thread simply does not scale. What
would you do if you had (say) 10,000 threads and needed
the read side to be fast? ll

This is but one reason why high-quality APIs are so
important: they permit implementations to be changed as
required by ever-changing hardware performance charac-
teristics.

Quick Quiz 5.54: What if you want an exact limit
counter to be exact only for its lower limit, but to allow
the upper limit to be inexact? H

5.5 Applying Specialized Parallel
Counters

Although the exact limit counter implementations in Sec-
tion 5.4 can be very useful, they are not much help if the
counter’s value remains near zero at all times, as it might
when counting the number of outstanding accesses to an
I/0 device. The high overhead of such near-zero counting
is especially painful given that we normally don’t care
how many references there are. As noted in the remov-
able I/O device access-count problem posed by Quick
Quiz 5.5, the number of accesses is irrelevant except in
those rare cases when someone is actually trying to re-
move the device.

One simple solution to this problem is to add a large
“bias” (for example, one billion) to the counter in order
to ensure that the value is far enough from zero that the
counter can operate efficiently. When someone wants
to remove the device, this bias is subtracted from the
counter value. Counting the last few accesses will be
quite inefficient, but the important point is that the many
prior accesses will have been counted at full speed.

Quick Quiz 5.55: What else had you better have done
when using a biased counter? ll

Although a biased counter can be quite helpful and
useful, it is only a partial solution to the removable I/O
device access-count problem called out on page 37. When
attempting to remove a device, we must not only know
the precise number of current I/O accesses, we also need
to prevent any future accesses from starting. One way
to accomplish this is to read-acquire a reader-writer lock

56

when updating the counter, and to write-acquire that same
reader-writer lock when checking the counter. Code for
doing I/0O might be as follows:

1 read_lock (&mylock) ;

2 1if (removing) {

3 read_unlock (&mylock) ;
cancel_io();

} else {
add_count (1) ;
read_unlock (&mylock) ;
do_io();
sub_count (1) ;

}

O W 0 J o U b

1

Line 1 read-acquires the lock, and either line 3 or 7
releases it. Line 2 checks to see if the device is being
removed, and, if so, line 3 releases the lock and line 4
cancels the 1/O, or takes whatever action is appropriate
given that the device is to be removed. Otherwise, line 6
increments the access count, line 7 releases the lock, line 8
performs the I/O, and line 9 decrements the access count.

Quick Quiz 5.56: This is ridiculous! We are read-
acquiring a reader-writer lock to update the counter?
What are you playing at???

The code to remove the device might be as follows:

write_lock (&mylock) ;

removing = 1;

sub_count (mybias) ;

write_unlock (&mylock) ;

while (read_count () != 0) {
poll (NULL, 0, 1);

}

remove_device () ;

O J oy U b W N

Line 1 write-acquires the lock and line 4 releases it.
Line 2 notes that the device is being removed, and the
loop spanning lines 5-7 wait for any I/O operations to
complete. Finally, line 8 does any additional processing
needed to prepare for device removal.

Quick Quiz 5.57: What other issues would need to be
accounted for in a real system? W

5.6 Parallel Counting Discussion

This chapter has presented the reliability, performance,
and scalability problems with traditional counting primi-
tives. The C-language ++ operator is not guaranteed to
function reliably in multithreaded code, and atomic oper-
ations to a single variable neither perform nor scale well.
This chapter therefore presented a number of counting al-

CHAPTER 5. COUNTING

gorithms that perform and scale extremely well in certain
special cases.

It is well worth reviewing the lessons from these count-
ing algorithms. To that end, Section 5.6.1 summarizes
performance and scalability, Section 5.6.2 discusses the
need for specialization, and finally, Section 5.6.3 enumer-
ates lessons learned and calls attention to later chapters
that will expand on these lessons.

5.6.1 Parallel Counting Performance

Table 5.1 shows the performance of the four parallel
statistical counting algorithms. All four algorithms pro-
vide near-perfect linear scalability for updates. The per-
thread-variable implementation (count_end. c) is sig-
nificantly faster on updates than the array-based imple-
mentation (count_stat . c), but is slower at reads on
large numbers of core, and suffers severe lock contention
when there are many parallel readers. This contention can
be addressed using the deferred-processing techniques
introduced in Chapter 9, as shown on the count_end__
rcu. c row of Table 5.1. Deferred processing also shines
on the count_stat_eventual.c row, courtesy of
eventual consistency.

Quick Quiz 5.58: On the count_stat.c row of
Table 5.1, we see that the read-side scales linearly with
the number of threads. How is that possible given that the
more threads there are, the more per-thread counters must
be summed up? W

Quick Quiz 5.59: Even on the last row of Table 5.1,
the read-side performance of these statistical counter im-
plementations is pretty horrible. So why bother with
them? W

Figure 5.2 shows the performance of the parallel limit-
counting algorithms. Exact enforcement of the limits
incurs a substantial performance penalty, although on this
4.7GHz Power-6 system that penalty can be reduced by
substituting signals for atomic operations. All of these
implementations suffer from read-side lock contention in
the face of concurrent readers.

Quick Quiz 5.60: Given the performance data shown
in Table 5.2, we should always prefer signals over atomic
operations, right? ll

Quick Quiz 5.61: Can advanced techniques be ap-
plied to address the lock contention for readers seen in
Table 5.27 W

In short, this chapter has demonstrated a number of
counting algorithms that perform and scale extremely
well in a number of special cases. But must our parallel

5.6. PARALLEL COUNTING DISCUSSION

57

Reads

Algorithm Section | Updates | 1 Core [32 Cores

count_stat.c 522 11.5ns | 408 ns 409 ns

count_stat_eventual.c 5.2.3 11.6 ns 1 ns 1 ns

count_end.c 524 6.3ns | 389ns | 51,200 ns

count_end_rcu.c 13.3.1 57ns | 354 ns 501 ns

Table 5.1: Statistical Counter Performance on Power-6
Reads

Algorithm Section | Exact? | Updates | 1 Core [64 Cores
count_lim.c 5.3.2 N 3.6ns | 375ns | 50,700 ns
count_lim_app.c 534 N 11.7ns | 369ns | 51,000 ns
count_lim_atomic.c 54.1 Y 51.4ns | 427 ns | 49,400 ns
count_lim_sig.c 5.4.4 Y 10.2ns | 370 ns | 54,000 ns

Table 5.2: Limit Counter Performance on Power-6

counting be confined to special cases? Wouldn’t it be
better to have a general algorithm that operated efficiently
in all cases? The next section looks at these questions.

5.6.2 Parallel Counting Specializations

The fact that these algorithms only work well in their re-
spective special cases might be considered a major prob-
lem with parallel programming in general. After all, the
C-language ++ operator works just fine in single-threaded
code, and not just for special cases, but in general, right?

This line of reasoning does contain a grain of truth, but
is in essence misguided. The problem is not parallelism
as such, but rather scalability. To understand this, first
consider the C-language ++ operator. The fact is that it
does not work in general, only for a restricted range of
numbers. If you need to deal with 1,000-digit decimal
numbers, the C-language ++ operator will not work for
you.

Quick Quiz 5.62: The ++ operator works just fine
for 1,000-digit numbers! Haven’t you heard of operator
overloading??? W

This problem is not specific to arithmetic. Suppose you
need to store and query data. Should you use an ASCII
file? XML? A relational database? A linked list? A dense
array? A B-tree? A radix tree? Or one of the plethora of
other data structures and environments that permit data to
be stored and queried? It depends on what you need to
do, how fast you need it done, and how large your data
set is—even on sequential systems.

Similarly, if you need to count, your solution will de-
pend on how large of numbers you need to work with,

how many CPUs need to be manipulating a given number
concurrently, how the number is to be used, and what
level of performance and scalability you will need.

Nor is this problem specific to software. The design
for a bridge meant to allow people to walk across a small
brook might be a simple as a single wooden plank. But
you would probably not use a plank to span the kilometers-
wide mouth of the Columbia River, nor would such a
design be advisable for bridges carrying concrete trucks.
In short, just as bridge design must change with increas-
ing span and load, so must software design change as
the number of CPUs increases. That said, it would be
good to automate this process, so that the software adapts
to changes in hardware configuration and in workload.
There has in fact been some research into this sort of au-
tomation [AHST03, SAH103], and the Linux kernel does
some boot-time reconfiguration, including limited binary
rewriting. This sort of adaptation will become increas-
ingly important as the number of CPUs on mainstream
systems continues to increase.

In short, as discussed in Chapter 3, the laws of physics
constrain parallel software just as surely as they constrain
mechanical artifacts such as bridges. These constraints
force specialization, though in the case of software it
might be possible to automate the choice of specialization
to fit the hardware and workload in question.

Of course, even generalized counting is quite special-
ized. We need to do a great number of other things with
computers. The next section relates what we have learned
from counters to topics taken up later in this book.

58

5.6.3 Parallel Counting Lessons

The opening paragraph of this chapter promised that our
study of counting would provide an excellent introduction
to parallel programming. This section makes explicit
connections between the lessons from this chapter and
the material presented in a number of later chapters.

The examples in this chapter have shown that an impor-
tant scalability and performance tool is partitioning. The
counters might be fully partitioned, as in the statistical
counters discussed in Section 5.2, or partially partitioned
as in the limit counters discussed in Sections 5.3 and
5.4. Partitioning will be considered in far greater depth
in Chapter 6, and partial parallelization in particular in
Section 6.4, where it is called parallel fastpath.

Quick Quiz 5.63: But if we are going to have to parti-
tion everything, why bother with shared-memory multi-
threading? Why not just partition the problem completely
and run as multiple processes, each in its own address
space? l

The partially partitioned counting algorithms used lock-
ing to guard the global data, and locking is the subject
of Chapter 7. In contrast, the partitioned data tended to
be fully under the control of the corresponding thread, so
that no synchronization whatsoever was required. This
data ownership will be introduced in Section 6.3.4 and
discussed in more detail in Chapter 8.

Because integer addition and subtraction are extremely
cheap operations compared to typical synchronization
operations, achieving reasonable scalability requires syn-
chronization operations be used sparingly. One way of
achieving this is to batch the addition and subtraction op-
erations, so that a great many of these cheap operations
are handled by a single synchronization operation. Batch-
ing optimizations of one sort or another are used by each
of the counting algorithms listed in Tables 5.1 and 5.2.

Finally, the eventually consistent statistical counter dis-
cussed in Section 5.2.3 showed how deferring activity
(in that case, updating the global counter) can provide
substantial performance and scalability benefits. This ap-
proach allows common case code to use much cheaper
synchronization operations than would otherwise be pos-
sible. Chapter 9 will examine a number of additional
ways that deferral can improve performance, scalability,
and even real-time response.

Summarizing the summary:

1. Partitioning promotes performance and scalability.

2. Partial partitioning, that is, partitioning applied only
to common code paths, works almost as well.

CHAPTER 5. COUNTING

Batch

‘ Work
r)t Partitioning J‘j '

Parallel k 3 fesouree
Partitioning and
Access Control _ k Replication

[

\ \
Interacting
Weaken With Hardware Partition
\
Figure 5.29: Optimization and the Four Parallel-

Programming Tasks

3. Partial partitioning can be applied to code (as in Sec-
tion 5.2°s statistical counters’ partitioned updates
and non-partitioned reads), but also across time (as
in Section 5.3’s and Section 5.4’s limit counters run-
ning fast when far from the limit, but slowly when
close to the limit).

4. Partitioning across time often batches updates locally
in order to reduce the number of expensive global
operations, thereby decreasing synchronization over-
head, in turn improving performance and scalability.
All the algorithms shown in Tables 5.1 and 5.2 make
heavy use of batching.

5. Read-only code paths should remain read-only: Spu-
rious synchronization writes to shared memory kill
performance and scalability, as seen in the count__
end. c row of Table 5.1.

6. Judicious use of delay promotes performance and
scalability, as seen in Section 5.2.3.

7. Parallel performance and scalability is usually a
balancing act: Beyond a certain point, optimiz-
ing some code paths will degrade others. The
count_stat.c and count_end_rcu.c rows
of Table 5.1 illustrate this point.

8. Different levels of performance and scalability will
affect algorithm and data-structure design, as do a
large number of other factors. Figure 5.3 illustrates
this point: Atomic increment might be completely
acceptable for a two-CPU system, but be completely
inadequate for an eight-CPU system.

5.6. PARALLEL COUNTING DISCUSSION

Summarizing still further, we have the “big three” meth-
ods of increasing performance and scalability, namely
(1) partitioning over CPUs or threads, (2) batching so
that more work can be done by each expensive synchro-
nization operations, and (3) weakening synchronization
operations where feasible. As a rough rule of thumb, you
should apply these methods in this order, as was noted ear-
lier in the discussion of Figure 2.6 on page 15. The parti-
tioning optimization applies to the “Resource Partitioning
and Replication” bubble, the batching optimization to the
“Work Partitioning” bubble, and the weakening optimiza-
tion to the “Parallel Access Control” bubble, as shown in
Figure 5.29. Of course, if you are using special-purpose
hardware such as digital signal processors (DSPs), field-
programmable gate arrays (FPGAs), or general-purpose
graphical processing units (GPGPUs), you may need to
pay close attention to the “Interacting With Hardware’
bubble thoughout the design process. For example, the
structure of a GPGPU’s hardware threads and memory
connectivity might richly reward very careful partitioning
and batching design decisions.

In short, as noted at the beginning of this chapter, the
simplicity of counting have allowed us to explore many
fundamental concurrency issues without the distraction
of complex synchronization primitives or elaborate data
structures. Such synchronization primitives and data struc-
tures are covered in later chapters.

)

59

60

CHAPTER 5. COUNTING

Chapter 6

Partitioning and Synchronization Design

Divide and rule.

Philip Il of Macedon

This chapter describes how to design software to
take advantage of the multiple CPUs that are increas-
ingly appearing in commodity systems. It does this
by presenting a number of idioms, or “design pat-
terns” [Ale79, GHJV95, SSRBO0O0] that can help you bal-
ance performance, scalability, and response time. As
noted in earlier chapters, the most important decision
you will make when creating parallel software is how to
carry out the partitioning. Correctly partitioned problems
lead to simple, scalable, and high-performance solutions,
while poorly partitioned problems result in slow and com-
plex solutions. This chapter will help you design partition-
ing into your code, with some discussion of batching and
weakening as well. The word “design” is very important:
You should partition first, batch second, weaken third,
and code fourth. Changing this order often leads to poor
performance and scalability along with great frustration.

To this end, Section 6.1 presents partitioning exercises,
Section 6.2 reviews partitionability design criteria, Sec-
tion 6.3 discusses selecting an appropriate synchroniza-
tion granularity, Section 6.4 gives an overview of im-
portant parallel-fastpath designs that provide speed and
scalability in the common case with a simpler but less-
scalable fallback “slow path” for unusual situations, and
finally Section 6.5 takes a brief look beyond partitioning.

6.1 Partitioning Exercises

This section uses a pair of exercises (the classic Din-
ing Philosophers problem and a double-ended queue) to
demonstrate the value of partitioning.

61

Figure 6.1: Dining Philosophers Problem

6.1.1 Dining Philosophers Problem

Figure 6.1 shows a diagram of the classic Dining Philoso-
phers problem [Dij71]. This problem features five philoso-
phers who do nothing but think and eat a “very difficult
kind of spaghetti” which requires two forks to eat. A
given philosopher is permitted to use only the forks to his
or her immediate right and left, and once a philosopher
picks up a fork, he or she will not put it down until sated.!

The object is to construct an algorithm that, quite liter-
ally, prevents starvation. One starvation scenario would
be if all of the philosophers picked up their leftmost forks
simultaneously. Because none of them would put down
their fork until after they ate, and because none of them
may pick up their second fork until at least one has fin-
ished eating, they all starve. Please note that it is not

! Readers who have difficulty imagining a food that requires two
forks are invited to instead think in terms of chopsticks.

62 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 6.2: Partial Starvation Is Also Bad

Figure 6.3: Dining Philosophers Problem, Textbook Solu-
tion

sufficient to allow at least one philosopher to eat. As Fig-
ure 6.2 shows, starvation of even a few of the philosophers
is to be avoided.

Dijkstra’s solution used a global semaphore, which
works fine assuming negligible communications delays,
an assumption that became invalid in the late 1980s or
early 1990s.2 Therefore, recent solutions number the
forks as shown in Figure 6.3. Each philosopher picks up
the lowest-numbered fork next to his or her plate, then
picks up the highest-numbered fork. The philosopher

2 Tt is all too easy to denigrate Dijkstra from the viewpoint of the
year 2012, more than 40 years after the fact. If you still feel the need
to denigrate Dijkstra, my advice is to publish something, wait 40 years,
and then see how your words stood the test of time.

sitting in the uppermost position in the diagram thus picks
up the leftmost fork first, then the rightmost fork, while
the rest of the philosophers instead pick up their rightmost
fork first. Because two of the philosophers will attempt
to pick up fork 1 first, and because only one of those
two philosophers will succeed, there will be five forks
available to four philosophers. At least one of these four
will be guaranteed to have two forks, and thus be able to
proceed eating.

This general technique of numbering resources and
acquiring them in numerical order is heavily used as a
deadlock-prevention technique. However, it is easy to
imagine a sequence of events that will result in only one
philosopher eating at a time even though all are hungry:

1. P2 picks up fork 1, preventing P1 from taking a fork.
2. P3 picks up fork 2.

3. P4 picks up fork 3.

4. PS5 picks up fork 4.

5. PS5 picks up fork 5 and eats.

6. P5 puts down forks 4 and 5.

7. P4 picks up fork 4 and eats.

In short, this algorithm can result in only one philoso-
pher eating at a given time, even when all five philoso-
phers are hungry, despite the fact that there are more than
enough forks for two philosophers to eat concurrently.

Please think about ways of partitioning the Dining
Philosophers Problem before reading further.

6.1. PARTITIONING EXERCISES

(Intentional blank page)

63

64

CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

6.1. PARTITIONING EXERCISES

Figure 6.4: Dining Philosophers Problem, Partitioned

One approach is shown in Figure 6.4, which includes
four philosophers rather than five to better illustrate the
partition technique. Here the upper and rightmost philoso-
phers share a pair of forks, while the lower and leftmost
philosophers share another pair of forks. If all philoso-
phers are simultaneously hungry, at least two will always
be able to eat concurrently. In addition, as shown in the
figure, the forks can now be bundled so that the pair are
picked up and put down simultaneously, simplifying the
acquisition and release algorithms.

Quick Quiz 6.1: Is there a better solution to the Dining
Philosophers Problem? H

This is an example of “horizontal parallelism” [Inm85]
or “data parallelism”, so named because there is no de-
pendency among the pairs of philosophers. In a horizon-
tally parallel data-processing system, a given item of data
would be processed by only one of a replicated set of
software components.

Quick Quiz 6.2: And in just what sense can this “hori-
zontal parallelism” be said to be “horizontal”? ll

6.1.2 Double-Ended Queue

A double-ended queue is a data structure containing a
list of elements that may be inserted or removed from
either end [Knu73]. It has been claimed that a lock-based
implementation permitting concurrent operations on both
ends of the double-ended queue is difficult [GroO7]. This
section shows how a partitioning design strategy can result
in a reasonably simple implementation, looking at three

65

Lock L Lock R
Header L Header R

Lock L Lock R
Header L] 0 I Header R

Lock L Lock R

HeaderL [=1 0 [S =] 1 [=] HeaderR

Lock L Lock R

SN

Header R

Lock L Lock R

Header L n u Header R

Figure 6.5: Double-Ended Queue With Left- and Right-
Hand Locks

general approaches in the following sections.

6.1.2.1 Left- and Right-Hand Locks

One seemingly straightforward approach would be to
use a doubly linked list with a left-hand lock for left-
hand-end enqueue and dequeue operations along with a
right-hand lock for right-hand-end operations, as shown
in Figure 6.5. However, the problem with this approach is
that the two locks’ domains must overlap when there are
fewer than four elements on the list. This overlap is due to
the fact that removing any given element affects not only
that element, but also its left- and right-hand neighbors.
These domains are indicated by color in the figure, with
blue with downward stripes indicating the domain of the
left-hand lock, red with upward stripes indicating the
domain of the right-hand lock, and purple (with no stripes)
indicating overlapping domains. Although it is possible
to create an algorithm that works this way, the fact that it
has no fewer than five special cases should raise a big red
flag, especially given that concurrent activity at the other
end of the list can shift the queue from one special case
to another at any time. It is far better to consider other
designs.

66 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Lock L
DEQL

Lock R
DEQR

Figure 6.6: Compound Double-Ended Queue

6.1.2.2 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is
shown in Figure 6.6. Two separate double-ended queues
are run in tandem, each protected by its own lock. This
means that elements must occasionally be shuttled from
one of the double-ended queues to the other, in which case
both locks must be held. A simple lock hierarchy may
be used to avoid deadlock, for example, always acquiring
the left-hand lock before acquiring the right-hand lock.
This will be much simpler than applying two locks to
the same double-ended queue, as we can unconditionally
left-enqueue elements to the left-hand queue and right-
enqueue elements to the right-hand queue. The main com-
plication arises when dequeuing from an empty queue, in
which case it is necessary to:

1. If holding the right-hand lock, release it and acquire
the left-hand lock.

2. Acquire the right-hand lock.

3. Rebalance the elements across the two queues.
4. Remove the required element if there is one.
5. Release both locks.

Quick Quiz 6.3: In this compound double-ended
queue implementation, what should be done if the queue
has become non-empty while releasing and reacquiring
the lock? l

The resulting code (locktdeq. c) is quite straight-
forward. The rebalancing operation might well shuttle
a given element back and forth between the two queues,
wasting time and possibly requiring workload-dependent
heuristics to obtain optimal performance. Although this
might well be the best approach in some cases, it is inter-
esting to try for an algorithm with greater determinism.

6.1.2.3 Hashed Double-Ended Queue

One of the simplest and most effective ways to deter-
ministically partition a data structure is to hash it. It is
possible to trivially hash a double-ended queue by assign-
ing each element a sequence number based on its position

DEQO
Lock 0

DEQ 3
Lock 3

DEQ 2
Lock 2

Index L

Index R
Lock R

Lock L

Figure 6.7: Hashed Double-Ended Queue

in the list, so that the first element left-enqueued into
an empty queue is numbered zero and the first element
right-enqueued into an empty queue is numbered one. A
series of elements left-enqueued into an otherwise-idle
queue would be assigned decreasing numbers (-1, -2, -
3, ...), while a series of elements right-enqueued into an
otherwise-idle queue would be assigned increasing num-
bers (2, 3, 4, ...). A key point is that it is not necessary
to actually represent a given element’s number, as this
number will be implied by its position in the queue.

Given this approach, we assign one lock to guard the
left-hand index, one to guard the right-hand index, and
one lock for each hash chain. Figure 6.7 shows the result-
ing data structure given four hash chains. Note that the
lock domains do not overlap, and that deadlock is avoided
by acquiring the index locks before the chain locks, and
by never acquiring more than one lock of each type (index
or chain) at a time.

Each hash chain is itself a double-ended queue, and in
this example, each holds every fourth element. The upper-
most portion of Figure 6.8 shows the state after a single
element (“R1”) has been right-enqueued, with the right-
hand index having been incremented to reference hash
chain 2. The middle portion of this same figure shows the
state after three more elements have been right-enqueued.
As you can see, the indexes are back to their initial states
(see Figure 6.7), however, each hash chain is now non-
empty. The lower portion of this figure shows the state
after three additional elements have been left-enqueued
and an additional element has been right-enqueued.

From the last state shown in Figure 6.8, a left-dequeue
operation would return element “L-2” and leave the left-
hand index referencing hash chain 2, which would then
contain only a single element (“R2”). In this state, a
left-enqueue running concurrently with a right-enqueue
would result in lock contention, but the probability of
such contention can be reduced to arbitrarily low levels

6.1. PARTITIONING EXERCISES

R1
DEQO |DEQ1 |DEQ2 | DEQ3
Index L Index R
R4 R1 R2 R3
DEQO |DEQ1 |DEQ2 | DEQ3
Index L Index R
R4 R5 R2 R3
LO R1 L-2 L-1
DEQO |DEQ1 | DEQ2 | DEQ3
Index L Index R

Figure 6.8: Hashed Double-Ended Queue After Insertions

by using a larger hash table.

Figure 6.9 shows how 12 elements would be organized
in a four-hash-bucket parallel double-ended queue. Each
underlying single-lock double-ended queue holds a one-
quarter slice of the full parallel double-ended queue.

Figure 6.10 shows the corresponding C-language data
structure, assuming an existing struct degq that pro-
vides a trivially locked double-ended-queue implementa-
tion. This data structure contains the left-hand lock on
line 2, the left-hand index on line 3, the right-hand lock
on line 4 (which is cache-aligned in the actual implemen-
tation), the right-hand index on line 5, and, finally, the
hashed array of simple lock-based double-ended queues

67

R4 | R5 | R6 | R7
Lo | R1 | R2 | R3
L-4 | L-3 | L-2 | L1

L-8 | L-7 | L-6 | L-5

Figure 6.9: Hashed Double-Ended Queue With 12 Ele-
ments
1 struct pdeqg {
2 spinlock_t llock;
3 int lidx;
4 spinlock_t rlock;
5 int ridx;
6 struct deg bkt [DEQ_N_BKTS];
7}

Figure 6.10: Lock-Based Parallel Double-Ended Queue
Data Structure

on line 6. A high-performance implementation would
of course use padding or special alignment directives to
avoid false sharing.

Figure 6.11 (Lockhdeq. c) shows the implementa-
tion of the enqueue and dequeue functions.® Discussion
will focus on the left-hand operations, as the right-hand
operations are trivially derived from them.

Lines 1-13 show pdeq pop_1 (), which left-
dequeues and returns an element if possible, returning
NULL otherwise. Line 6 acquires the left-hand spinlock,
and line 7 computes the index to be dequeued from. Line 8
dequeues the element, and, if line 9 finds the result to be
non-NULL, line 10 records the new left-hand index. Ei-
ther way, line 11 releases the lock, and, finally, line 12
returns the element if there was one, or NULL otherwise.

Lines 29-38 shows pdeq_push_1 (), which left-
enqueues the specified element. Line 33 acquires the
left-hand lock, and line 34 picks up the left-hand in-
dex. Line 35 left-enqueues the specified element onto
the double-ended queue indexed by the left-hand index.
Line 36 then updates the left-hand index and line 37 re-
leases the lock.

As noted earlier, the right-hand operations are com-
pletely analogous to their left-handed counterparts, so
their analysis is left as an exercise for the reader.

Quick Quiz 6.4: Is the hashed double-ended queue a
good solution? Why or why not? ll

3 One could easily create a polymorphic implementation in any
number of languages, but doing so is left as an exercise for the reader.

68 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

1 struct cds_list_head *pdeg_pop_1(struct pdeqg =*d)
2

3 struct cds_list_head =xe;

4 int 1i;

5

6 spin_lock (&d->1lock) ;

7 i = moveright (d->1idx);

8 e = deq_pop_1l (&d->bkt[i]);

9 if (e != NULL)
10 d->1lidx = 1i;
11 spin_unlock (&d->1lock) ;
12 return e;
13}
14
15 struct cds_list_head *pdeqg_pop_r (struct pdeqg =*d)
16 {

17 struct cds_list_head =xe;
18 int 1i;

19

20 spin_lock (&d->rlock) ;

21 i = moveleft (d->ridx);

22 e = deq_pop_r (&d->bkt[i]);
23 if (e != NULL)

24 d->ridx = 1i;

25 spin_unlock (&d->rlock) ;

26 return e;

27 }

28

29 void pdeq_push_1 (struct cds_list_head xe, struct pdeqg =*d)
30 {

31 int 1i;

32

33 spin_lock (&d->1lock) ;

34 i = d->1lidx;

35 deq_push_1 (e, &d->bkt[i]);
36 d->1lidx = moveleft (d->1idx);
37 spin_unlock (&d->1lock) ;

40 void pdeq_push_r(struct cds_list_head xe, struct pdeq xd)
41 |
42 int 1i;

44 spin_lock (&d->rlock) ;

45 i = d->ridx;

46 deqg_push_r (e, &d->bkt[i]);

47 d->ridx = moveright (d->ridx);
48 spin_unlock (&d->rlock) ;

Figure 6.11: Lock-Based Parallel Double-Ended Queue Implementation

6.1. PARTITIONING EXERCISES

6.1.2.4 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue,
using a trivial rebalancing scheme that moves all the ele-
ments from the non-empty queue to the now-empty queue.

Quick Quiz 6.5: Move all the elements to the queue
that became empty? In what possible universe is this
brain-dead solution in any way optimal???

In contrast to the hashed implementation presented in
the previous section, the compound implementation will
build on a sequential implementation of a double-ended
queue that uses neither locks nor atomic operations.

Figure 6.12 shows the implementation. Unlike the
hashed implementation, this compound implementation
is asymmetric, so that we must consider the pdeq_pop__
1() and pdeq_pop_r () implementations separately.

Quick Quiz 6.6: Why can’t the compound parallel
double-ended queue implementation be symmetric? ll

The pdeq_pop_1 () implementation is shown on
lines 1-16 of the figure. Line 5 acquires the left-hand lock,
which line 14 releases. Line 6 attempts to left-dequeue
an element from the left-hand underlying double-ended
queue, and, if successful, skips lines 8-13 to simply return
this element. Otherwise, line 8 acquires the right-hand
lock, line 9 left-dequeues an element from the right-hand
queue, and line 10 moves any remaining elements on the
right-hand queue to the left-hand queue, line 11 initializes
the right-hand queue, and line 12 releases the right-hand
lock. The element, if any, that was dequeued on line 10
will be returned.

The pdeq_pop_r () implementation is shown on
lines 18-38 of the figure. As before, line 22 acquires
the right-hand lock (and line 36 releases it), and line 23
attempts to right-dequeue an element from the right-hand
queue, and, if successful, skips lines 24-35 to simply re-
turn this element. However, if line 24 determines that
there was no element to dequeue, line 25 releases the
right-hand lock and lines 26-27 acquire both locks in
the proper order. Line 28 then attempts to right-dequeue
an element from the right-hand list again, and if line 29
determines that this second attempt has failed, line 30
right-dequeues an element from the left-hand queue (if
there is one available), line 31 moves any remaining ele-
ments from the left-hand queue to the right-hand queue,
and line 32 initializes the left-hand queue. Either way,
line 34 releases the left-hand lock.

Quick Quiz 6.7: Why is it necessary to retry the right-
dequeue operation on line 28 of Figure 6.127 B

Quick Quiz 6.8: Surely the left-hand lock must some-
times be available!!! So why is it necessary that line 25 of

69

Figure 6.12 unconditionally release the right-hand lock?
]

The pdeq_push_1 () implementation is shown on
lines 40-47 of Figure 6.12. Line 44 acquires the left-
hand spinlock, line 45 left-enqueues the element onto
the left-hand queue, and finally line 46 releases the lock.
The pdeg_enqueue_r () implementation (shown on
lines 49-56) is quite similar.

6.1.2.5 Double-Ended Queue Discussion

The compound implementation is somewhat more com-
plex than the hashed variant presented in Section 6.1.2.3,
but is still reasonably simple. Of course, a more intel-
ligent rebalancing scheme could be arbitrarily complex,
but the simple scheme shown here has been shown to per-
form well compared to software alternatives [DCW'11]
and even compared to algorithms using hardware as-
sist [DLM'10]. Nevertheless, the best we can hope for
from such a scheme is 2x scalability, as at most two
threads can be holding the dequeue’s locks concurrently.
This limitation also applies to algorithms based on non-
blocking synchronization, such as the compare-and-swap-
based dequeue algorithm of Michael [Mic03].*

Quick Quiz 6.9: Why are there not one but two solu-
tions to the double-ended queue problem? H

In fact, as noted by Dice et al. [DLM'10], an unsyn-
chronized single-threaded double-ended queue signifi-
cantly outperforms any of the parallel implementations
they studied. Therefore, the key point is that there can be
significant overhead enqueuing to or dequeuing from a
shared queue, regardless of implementation. This should
come as no surprise given the material in Chapter 3, given
the strict FIFO nature of these queues.

Furthermore, these strict FIFO queues are strictly FIFO
only with respect to linearization points [HW90]® that
are not visible to the caller, in fact, in these examples, the
linearization points are buried in the lock-based critical
sections. These queues are not strictly FIFO with re-
spect to (say) the times at which the individual operations
started [HKLP12]. This indicates that the strict FIFO
property is not all that valuable in concurrent programs,
and in fact, Kirsch et al. present less-strict queues that

4 This paper is interesting in that it showed that special double-
compare-and-swap (DCAS) instructions are not needed for lock-free im-
plementations of double-ended queues. Instead, the common compare-
and-swap (e.g., x86 cmpxchg) suffices.

5 In short, a linearization point is a single point within a given
function where that function can be said to have taken effect. In this
lock-based implementation, the linearization points can be said to be
anywhere within the critical section that does the work.

70

void pdeqg_push_1(struct cds_list_head x*e,

void pdeqg_push_r(struct cds_list_head x*e,

CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

struct cds_list_head xpdeq pop_1(struct pdeqg =*d)
{
struct cds_list_head =xe;

spin_lock (&d->1lock) ;
e = deqg_pop_1l(&d->1deq);
if (e NULL) {
spin_lock (&d->rlock) ;
e = deqg_pop_l (&d->rdeq);
cds_list_splice (&d->rdeq.chain, &d->ldeq.chain);
CDS_INIT_LIST_HEAD (&d->rdeq.chain);
spin_unlock (&d->rlock) ;

}
spin_unlock (&d->1lock) ;
return e;

}

struct cds_list_head xpdeq_pop_r (struct pdeqg =*d)
{

struct cds_list_head xe;

spin_lock (&d->rlock) ;

e = deg_pop_r (&d->rdeq);

if (e == NULL) {
spin_unlock (&d->rlock) ;
spin_lock (&d->1lock) ;
spin_lock (&d->rlock) ;

e = deg_pop_r (&d->rdeq) ;
if (e == NULL) {
e = deqg_pop_r (&d->1deq);

cds_list_splice (&d->1deqg.chain, &d->rdeqg.chain);
CDS_INIT_LIST_HEAD (&d->1ldeq.chain);
}
spin_unlock (&d->1lock) ;
}
spin_unlock (&d->rlock) ;
return e;

}

struct pdeqg xd)
{

int 1i;

spin_lock (&d->1lock) ;

deg_push_1 (e, &d->1ldeq);

spin_unlock (&d->1lock) ;
}

struct pdeqg =xd)
{

int 1;

spin_lock (&d->rlock) ;
deg_push_r (e, &d->rdeq);
spin_unlock (&d->rlock) ;

Figure 6.12: Compound Parallel Double-Ended Queue Implementation

6.2. DESIGN CRITERIA

provide improved performance and scalability [KLP12].6
All that said, if you are pushing all the data used by your
concurrent program through a single queue, you really
need to rethink your overall design.

6.1.3 Partitioning Example Discussion

The optimal solution to the dining philosophers problem
given in the answer to the Quick Quiz in Section 6.1.1 is
an excellent example of “horizontal parallelism” or “data
parallelism”. The synchronization overhead in this case
is nearly (or even exactly) zero. In contrast, the double-
ended queue implementations are examples of “vertical
parallelism” or “pipelining”, given that data moves from
one thread to another. The tighter coordination required
for pipelining in turn requires larger units of work to
obtain a given level of efficiency.

Quick Quiz 6.10: The tandem double-ended queue
runs about twice as fast as the hashed double-ended queue,
even when I increase the size of the hash table to an
insanely large number. Why is that? H

Quick Quiz 6.11: Is there a significantly better way of
handling concurrency for double-ended queues? H

These two examples show just how powerful partition-
ing can be in devising parallel algorithms. Section 6.3.5
looks briefly at a third example, matrix multiply. How-
ever, all three of these examples beg for more and better
design criteria for parallel programs, a topic taken up in
the next section.

6.2 Design Criteria

One way to obtain the best performance and scalability
is to simply hack away until you converge on the best
possible parallel program. Unfortunately, if your program
is other than microscopically tiny, the space of possi-
ble parallel programs is so huge that convergence is not
guaranteed in the lifetime of the universe. Besides, what
exactly is the “best possible parallel program”? After
all, Section 2.2 called out no fewer than three parallel-
programming goals of performance, productivity, and
generality, and the best possible performance will likely
come at a cost in terms of productivity and generality.
We clearly need to be able to make higher-level choices

6 Nir Shavit produced relaxed stacks for roughly the same rea-
sons [Shall]. This situation leads some to believe that the linearization
points are useful to theorists rather than developers, and leads others
to wonder to what extent the designers of such data structures and
algorithms were considering the needs of their users.

71

at design time in order to arrive at an acceptably good
parallel program before that program becomes obsolete.

However, more detailed design criteria are required to
actually produce a real-world design, a task taken up in
this section. This being the real world, these criteria often
conflict to a greater or lesser degree, requiring that the
designer carefully balance the resulting tradeoffs.

As such, these criteria may be thought of as the
“forces” acting on the design, with particularly good
tradeoffs between these forces being called “design pat-
terns” [Ale79, GHIV95].

The design criteria for attaining the three parallel-
programming goals are speedup, contention, overhead,
read-to-write ratio, and complexity:

Speedup: As noted in Section 2.2, increased perfor-
mance is the major reason to go to all of the time and
trouble required to parallelize it. Speedup is defined
to be the ratio of the time required to run a sequential
version of the program to the time required to run a
parallel version.

Contention: If more CPUs are applied to a parallel pro-
gram than can be kept busy by that program, the
excess CPUs are prevented from doing useful work
by contention. This may be lock contention, memory
contention, or a host of other performance killers.

Work-to-Synchronization Ratio: A uniprocessor,
single-threaded, non-preemptible, and non-
interruptible’ version of a given parallel program
would not need any synchronization primitives.
Therefore, any time consumed by these primitives
(including communication cache misses as well
as message latency, locking primitives, atomic
instructions, and memory barriers) is overhead that
does not contribute directly to the useful work that
the program is intended to accomplish. Note that
the important measure is the relationship between
the synchronization overhead and the overhead of
the code in the critical section, with larger critical
sections able to tolerate greater synchronization
overhead. The work-to-synchronization ratio is
related to the notion of synchronization efficiency.

Read-to-Write Ratio: A data structure that is rarely up-
dated may often be replicated rather than partitioned,
and furthermore may be protected with asymmet-
ric synchronization primitives that reduce readers’

7 Either by masking interrupts or by being oblivious to them.

72 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

synchronization overhead at the expense of that of
writers, thereby reducing overall synchronization
overhead. Corresponding optimizations are possible
for frequently updated data structures, as discussed
in Chapter 5.

Complexity: A parallel program is more complex than
an equivalent sequential program because the paral-
lel program has a much larger state space than does
the sequential program, although these larger state
spaces can in some cases be easily understood given
sufficient regularity and structure. A parallel pro-
grammer must consider synchronization primitives,
messaging, locking design, critical-section identifi-
cation, and deadlock in the context of this larger state
space.

This greater complexity often translates to higher
development and maintenance costs. Therefore, bud-
getary constraints can limit the number and types
of modifications made to an existing program, since
a given degree of speedup is worth only so much
time and trouble. Worse yet, added complexity can
actually reduce performance and scalability.

Therefore, beyond a certain point, there may be po-
tential sequential optimizations that are cheaper and
more effective than parallelization. As noted in Sec-
tion 2.2.1, parallelization is but one performance
optimization of many, and is furthermore an opti-
mization that applies most readily to CPU-based
bottlenecks.

These criteria will act together to enforce a maximum
speedup. The first three criteria are deeply interrelated, so
the remainder of this section analyzes these interrelation-
ships.®

Note that these criteria may also appear as part of the
requirements specification. For example, speedup may act
as a relative desideratum (“the faster, the better”) or as an
absolute requirement of the workload (“the system must
support at least 1,000,000 web hits per second”). Classic
design pattern languages describe relative desiderata as
forces and absolute requirements as context.

An understanding of the relationships between these
design criteria can be very helpful when identifying ap-
propriate design tradeoffs for a parallel program.

8 A real-world parallel system will be subject to many additional
design criteria, such as data-structure layout, memory size, memory-
hierarchy latencies, bandwidth limitations, and I/O issues.

1. The less time a program spends in critical sections,
the greater the potential speedup. This is a conse-
quence of Amdahl’s Law [Amd67] and of the fact
that only one CPU may execute within a given criti-
cal section at a given time.

More specifically, the fraction of time that the pro-
gram spends in a given exclusive critical section
must be much less than the reciprocal of the num-
ber of CPUs for the actual speedup to approach the
number of CPUs. For example, a program running
on 10 CPUs must spend much less than one tenth of
its time in the most-restrictive critical section if it is
to scale at all well.

2. Contention effects will consume the excess CPU
and/or wallclock time should the actual speedup be
less than the number of available CPUs. The larger
the gap between the number of CPUs and the ac-
tual speedup, the less efficiently the CPUs will be
used. Similarly, the greater the desired efficiency,
the smaller the achievable speedup.

3. If the available synchronization primitives have high
overhead compared to the critical sections that they
guard, the best way to improve speedup is to reduce
the number of times that the primitives are invoked
(perhaps by batching critical sections, using data
ownership, using asymmetric primitives (see Sec-
tion 9), or by moving toward a more coarse-grained
design such as code locking).

4. If the critical sections have high overhead compared
to the primitives guarding them, the best way to im-
prove speedup is to increase parallelism by moving
to reader/writer locking, data locking, asymmetric,
or data ownership.

5. If the critical sections have high overhead compared
to the primitives guarding them and the data structure
being guarded is read much more often than modi-
fied, the best way to increase parallelism is to move
to reader/writer locking or asymmetric primitives.

6. Many changes that improve SMP performance, for
example, reducing lock contention, also improve
real-time latencies [McKO05c¢].

Quick Quiz 6.12: Don'’t all these problems with crit-
ical sections mean that we should just always use non-
blocking synchronization [Her90], which don’t have criti-
cal sections? ll

6.3. SYNCHRONIZATION GRANULARITY

Sequential
Program |
Partition Batch
—> Code
Locking | ¢
Partition Batch
> Data
Locking | ¢
Own Disown

Data
Ownership

Figure 6.13: Design Patterns and Lock Granularity

6.3 Synchronization Granularity

Figure 6.13 gives a pictorial view of different levels of
synchronization granularity, each of which is described
in one of the following sections. These sections focus
primarily on locking, but similar granularity issues arise
with all forms of synchronization.

6.3.1 Sequential Program

If the program runs fast enough on a single processor, and
has no interactions with other processes, threads, or in-
terrupt handlers, you should remove the synchronization
primitives and spare yourself their overhead and complex-
ity. Some years back, there were those who would argue
that Moore’s Law would eventually force all programs
into this category. However, as can be seen in Figure 6.14,
the exponential increase in single-threaded performance
halted in about 2003. Therefore, increasing performance
will increasingly require parallelism.® The debate as to
whether this new trend will result in single chips with
thousands of CPUs will not be settled soon, but given that
Paul is typing this sentence on a dual-core laptop, the age
of SMP does seem to be upon us. It is also important to

9 This plot shows clock frequencies for newer CPUs theoretically
capable of retiring one or more instructions per clock, and MIPS for
older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for taking this approach is that the newer CPUs’
ability to retire multiple instructions per clock is typically limited by
memory-system performance.

73

10000 =TT T T T T 7
»
L i i
s 1000 | .
< i]
8 - -]
% 100 g =
g i o]
£ 4
~ 10 + =
8 | ++ -
S i #+ +]
-] 1E + -
o _]
&} +
oq L— 1 1 441]
Yo} o To} o Te) o Te) o Te}
N~ (e0) [e0] (o] [e2] o o — —
» » » » » o o o o
— — — ~— -~ (aV] A Al Al
Year

Figure 6.14: MIPS/Clock-Frequency Trend for Intel
CPUs

note that Ethernet bandwidth is continuing to grow, as
shown in Figure 6.15. This growth will motivate multi-
threaded servers in order to handle the communications
load.

Please note that this does nor mean that you should
code each and every program in a multi-threaded manner.
Again, if a program runs quickly enough on a single
processor, spare yourself the overhead and complexity of
SMP synchronization primitives. The simplicity of the
hash-table lookup code in Figure 6.16 underscores this
point.!® A key point is that speedups due to parallelism
are normally limited to the number of CPUs. In contrast,
speedups due to sequential optimizations, for example,
careful choice of data structure, can be arbitrarily large.

On the other hand, if you are not in this happy situation,
read on!

6.3.2 Code Locking

Code locking is quite simple due to the fact that is uses
only global locks.!! It is especially easy to retrofit an ex-
isting program to use code locking in order to run it on a
multiprocessor. If the program has only a single shared re-
source, code locking will even give optimal performance.

10 The examples in this section are taken from Hart et al. [HMBO06],
adapted for clarity by gathering related code from multiple files.

"' If your program instead has locks in data structures, or, in the
case of Java, uses classes with synchronized instances, you are instead
using “data locking”, described in Section 6.3.3.

74 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

1e+06 FT——T—T—T T T 1T 7173

° 100000 [Ethernet |
o 5
S 10000 F
£ [
RS 1000
3 [
> 100 |

2

= [
o 10 F

o [i

1__ + -

[+ i

01 I N N N R B B

o 0 o o} o T} o To] o [Te)

N N 0O 00O OO O ©O O ™ v

(o)} (o)} D (o)} (o)} (o)} o o o o

- - = - - - N N N N

Year

Figure 6.15: Ethernet Bandwidth vs. Intel x86 CPU

Performance

struct hash_table
{

long nbuckets;

struct node *xbuckets;
bi

typedef struct node {
unsigned long key;
9 struct node =*next;
10 } node_t;

W oUW N

12 int hash_search(struct hash_table xh, long key)
13 {

14 struct node =*cur;

15

16 cur = h->buckets[key % h->nbuckets];
17 while (cur != NULL) {

18 if (cur->key >= key) {

19 return (cur->key == key);
20 }

21 cur = cur->next;

22 }

23 return 0;

24 }

Figure 6.16: Sequential-Program Hash Table Search

However, many of the larger and more complex programs
require much of the execution to occur in critical sections,
which in turn causes code locking to sharply limits their
scalability.

Therefore, you should use code locking on programs
that spend only a small fraction of their execution time
in critical sections or from which only modest scaling
is required. In these cases, code locking will provide
a relatively simple program that is very similar to its
sequential counterpart, as can be seen in Figure 6.17.
However, note that the simple return of the comparison
in hash_search () in Figure 6.16 has now become
three statements due to the need to release the lock before
returning.

spinlock_t hash_lock;

1

2

3 struct hash_table

4 {

5 long nbuckets;

6 struct node xxbuckets;
T}

8

9 typedef struct node {
10 unsigned long key;

11 struct node xnext;
12 } node_t;
13

14 int hash_search(struct hash_table xh, long key)
15 {

16 struct node =*cur;
17 int retval;
18

19 spin_lock (&hash_lock);
20 cur = h->buckets[key % h->nbuckets];

21 while (cur != NULL) {

22 if (cur->key >= key) {

23 retval = (cur->key == key);
24 spin_unlock (&¢hash_lock) ;
25 return retval;

26 }

27 cur = cur->next;

28 }

29 spin_unlock (&hash_lock) ;

30 return 0;

31 }

Figure 6.17: Code-Locking Hash Table Search

Unfortunately, code locking is particularly prone to
“lock contention”, where multiple CPUs need to acquire
the lock concurrently. SMP programmers who have taken
care of groups of small children (or groups of older people
who are acting like children) will immediately recognize
the danger of having only one of something, as illustrated
in Figure 6.18.

One solution to this problem, named “data locking”, is
described in the next section.

6.3. SYNCHRONIZATION GRANULARITY

Figure 6.18: Lock Contention

6.3.3 Data Locking

Many data structures may be partitioned, with each par-
tition of the data structure having its own lock. Then
the critical sections for each part of the data structure
can execute in parallel, although only one instance of the
critical section for a given part could be executing at a
given time. You should use data locking when contention
must be reduced, and where synchronization overhead is
not limiting speedups. Data locking reduces contention
by distributing the instances of the overly-large critical
section across multiple data structures, for example, main-
taining per-hash-bucket critical sections in a hash table,
as shown in Figure 6.19. The increased scalability again
results in a slight increase in complexity in the form of an
additional data structure, the struct bucket.

In contrast with the contentious situation shown in
Figure 6.18, data locking helps promote harmony, as il-
lustrated by Figure 6.20—and in parallel programs, this
almost always translates into increased performance and
scalability. For this reason, data locking was heavily used
by Sequent in both its DYNIX and DYNIX/ptx operating
systems [BK8S5, Inm85, Gar90, Dov90, MD92, MG92,
MS93].

However, as those who have taken care of small chil-
dren can again attest, even providing enough to go around
is no guarantee of tranquillity. The analogous situation
can arise in SMP programs. For example, the Linux

75

1 struct hash_table

2 {

3 long nbuckets;

4 struct bucket xxbuckets;
5 };

6

7 struct bucket {

8 spinlock_t bucket_lock;
9 node_t =list_head;

10 };
11

12 typedef struct node {
13 unsigned long key;

14 struct node #*next;
15 } node_t;
16

17 int hash_search(struct hash_table *h, long key)
18 {
19 struct bucket xbp;

20 struct node =*cur;
21 int retval;
22

23 bp = h->buckets[key % h->nbuckets];
24 spin_lock (§bp->bucket_lock) ;
25 cur = bp->list_head;

26 while (cur != NULL) {

27 if (cur->key >= key) {

28 retval = (cur->key == key);
29 spin_unlock (&bp->bucket_lock);
30 return retval;

31 }

32 cur = cur->next;

33 }

34 spin_unlock (&bp->bucket_lock);
35 return 0;

36 }

Figure 6.19: Data-Locking Hash Table Search

kernel maintains a cache of files and directories (called
“dcache”). Each entry in this cache has its own lock, but
the entries corresponding to the root directory and its di-
rect descendants are much more likely to be traversed than
are more obscure entries. This can result in many CPUs
contending for the locks of these popular entries, resulting
in a situation not unlike that shown in Figure 6.21.

In many cases, algorithms can be designed to reduce
the instance of data skew, and in some cases eliminate it
entirely (as appears to be possible with the Linux kernel’s
dcache [MSS04]). Data locking is often used for parti-
tionable data structures such as hash tables, as well as
in situations where multiple entities are each represented
by an instance of a given data structure. The task list in
version 2.6.17 of the Linux kernel is an example of the
latter, each task structure having its own proc_1lock.

A key challenge with data locking on dynamically allo-
cated structures is ensuring that the structure remains in
existence while the lock is being acquired. The code in
Figure 6.19 finesses this challenge by placing the locks
in the statically allocated hash buckets, which are never
freed. However, this trick would not work if the hash

76 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 6.20: Data Locking

table were resizeable, so that the locks were now dynami-
cally allocated. In this case, there would need to be some
means to prevent the hash bucket from being freed during
the time that its lock was being acquired.

Quick Quiz 6.13: What are some ways of prevent-
ing a structure from being freed while its lock is being
acquired? H

6.3.4 Data Ownership

Data ownership partitions a given data structure over the
threads or CPUs, so that each thread/CPU accesses its
subset of the data structure without any synchronization
overhead whatsoever. However, if one thread wishes to
access some other thread’s data, the first thread is unable
to do so directly. Instead, the first thread must commu-
nicate with the second thread, so that the second thread
performs the operation on behalf of the first, or, alterna-
tively, migrates the data to the first thread.

Data ownership might seem arcane, but it is used very
frequently:

1. Any variables accessible by only one CPU or thread
(such as auto variables in C and C++) are owned
by that CPU or process.

2. An instance of a user interface owns the correspond-

Figure 6.21: Data Locking and Skew

ing user’s context. It is very common for applica-
tions interacting with parallel database engines to be
written as if they were entirely sequential programs.
Such applications own the user interface and his cur-
rent action. Explicit parallelism is thus confined to
the database engine itself.

3. Parametric simulations are often trivially parallelized
by granting each thread ownership of a particular
region of the parameter space. There are also com-
puting frameworks designed for this type of prob-
lem [UoCO08].

If there is significant sharing, communication between
the threads or CPUs can result in significant complexity
and overhead. Furthermore, if the most-heavily used data
happens to be that owned by a single CPU, that CPU will
be a “hot spot”, sometimes with results resembling that
shown in Figure 6.21. However, in situations where no
sharing is required, data ownership achieves ideal per-
formance, and with code that can be as simple as the
sequential-program case shown in Figure 6.16. Such situ-
ations are often referred to as “embarrassingly parallel”,
and, in the best case, resemble the situation previously
shown in Figure 6.20.

Another important instance of data ownership occurs
when the data is read-only, in which case, all threads can
“own” it via replication.

Data ownership will be presented in more detail in
Chapter 8.

6.3. SYNCHRONIZATION GRANULARITY

6.3.5 Locking Granularity and Perfor-
mance

This section looks at locking granularity and performance
from a mathematical synchronization-efficiency view-
point. Readers who are uninspired by mathematics might
choose to skip this section.

The approach is to use a crude queueing model for the
efficiency of synchronization mechanism that operate on
a single shared global variable, based on an M/M/1 queue.
M/M/1 queuing models are based on an exponentially
distributed “inter-arrival rate” A and an exponentially
distributed “‘service rate” y. The inter-arrival rate A can
be thought of as the average number of synchronization
operations per second that the system would process if the
synchronization were free, in other words, A is an inverse
measure of the overhead of each non-synchronization
unit of work. For example, if each unit of work was a
transaction, and if each transaction took one millisecond
to process, excluding synchronization overhead, then A
would be 1,000 transactions per second.

The service rate p is defined similarly, but for the av-
erage number of synchronization operations per second
that the system would process if the overhead of each
transaction was zero, and ignoring the fact that CPUs
must wait on each other to complete their synchronization
operations, in other words, u can be roughly thought of
as the synchronization overhead in absence of contention.
For example, suppose that each synchronization opera-
tion involves an atomic increment instruction, and that a
computer system is able to do an atomic increment every
25 nanoseconds on each CPU to a private variable.'”> The
value of u is therefore about 40,000,000 atomic incre-
ments per second.

Of course, the value of A increases with increasing
numbers of CPUs, as each CPU is capable of processing
transactions independently (again, ignoring synchroniza-
tion):

A =nk 6.1)

where n is the number of CPUs and Ay is the
transaction-processing capability of a single CPU. Note
that the expected time for a single CPU to execute a single
transaction is 1/2g.

12 of course, if there are 8 CPUs all incrementing the same shared
variable, then each CPU must wait at least 175 nanoseconds for each of
the other CPUs to do its increment before consuming an additional 25
nanoseconds doing its own increment. In actual fact, the wait will be
longer due to the need to move the variable from one CPU to another.

77
>
o S e [e S g
[T~ AN BRAEN
Q0 N \ N
QO i : ' \
= \ |
L \ H
c ! 100
Ke) ! N
© '. '. 75 A
N [: z i
S | 50 | g
b= 125 =
e 10 -
(3 I

I T N N I B
ofololoNoloNoRoNe)
~—ANOTOONO®

100

Number of CPUs (Threads)

Figure 6.22: Synchronization Efficiency

Because the CPUs have to “wait in line” behind each
other to get their chance to increment the single shared
variable, we can use the M/M/1 queueing-model expres-
sion for the expected total waiting time:

1

T=— 6.2
Substituting the above value of A:
T= o (6.3)
H—nko '

Now, the efficiency is just the ratio of the time required
to process a transaction in absence of synchronization
(1/2) to the time required including synchronization

(T+1/20):

1/2
= 6.4
= Tk ©4)
Substituting the above value for 7 and simplifying:
u
5 —n
e= 0 iﬂ(— (6.5)
g~ =1

But the value of (/A is just the ratio of the time re-
quired to process the transaction (absent synchronization
overhead) to that of the synchronization overhead itself
(absent contention). If we call this ratio f, we have:

__fon
f—=(n—-1)
Figure 6.22 plots the synchronization efficiency e as
a function of the number of CPUs/threads n for a few

(6.6)

78 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

1024

Matrix Multiply Efficiency
o
(&)

0 1 L1
1 10 100

Number of CPUs (Threads)

Figure 6.23: Matrix Multiply Efficiency

values of the overhead ratio f. For example, again using
the 25-nanosecond atomic increment, the f = 10 line cor-
responds to each CPU attempting an atomic increment
every 250 nanoseconds, and the f = 100 line corresponds
to each CPU attempting an atomic increment every 2.5
microseconds, which in turn corresponds to several thou-
sand instructions. Given that each trace drops off sharply
with increasing numbers of CPUs or threads, we can con-
clude that synchronization mechanisms based on atomic
manipulation of a single global shared variable will not
scale well if used heavily on current commodity hardware.
This is a mathematical depiction of the forces leading to
the parallel counting algorithms that were discussed in
Chapter 5.

The concept of efficiency is useful even in cases having
little or no formal synchronization. Consider for example
a matrix multiply, in which the columns of one matrix
are multiplied (via “dot product”) by the rows of another,
resulting in an entry in a third matrix. Because none of
these operations conflict, it is possible to partition the
columns of the first matrix among a group of threads,
with each thread computing the corresponding columns
of the result matrix. The threads can therefore operate
entirely independently, with no synchronization overhead
whatsoever, as is done in matmul . c. One might there-
fore expect a parallel matrix multiply to have a perfect
efficiency of 1.0.

However, Figure 6.23 tells a different story, especially
for a 64-by-64 matrix multiply, which never gets above
an efficiency of about 0.7, even when running single-
threaded. The 512-by-512 matrix multiply’s efficiency
is measurably less than 1.0 on as few as 10 threads, and
even the 1024-by-1024 matrix multiply deviates notice-

ably from perfection at a few tens of threads. Neverthe-
less, this figure clearly demonstrates the performance and
scalability benefits of batching: If you must incur syn-
chronization overhead, you may as well get your money’s
worth.

Quick Quiz 6.14: How can a single-threaded 64-by-
64 matrix multiple possibly have an efficiency of less
than 1.0? Shouldn’t all of the traces in Figure 6.23 have
efficiency of exactly 1.0 when running on only one thread?
]

Given these inefficiencies, it is worthwhile to look into
more-scalable approaches such as the data locking de-
scribed in Section 6.3.3 or the parallel-fastpath approach
discussed in the next section.

Quick Quiz 6.15: How are data-parallel techniques
going to help with matrix multiply? It is already data
parallel!!! H

6.4 Parallel Fastpath

Fine-grained (and therefore usually higher-performance)
designs are typically more complex than are coarser-
grained designs. In many cases, most of the overhead
is incurred by a small fraction of the code [Knu73]. So
why not focus effort on that small fraction?

This is the idea behind the parallel-fastpath design pat-
tern, to aggressively parallelize the common-case code
path without incurring the complexity that would be re-
quired to aggressively parallelize the entire algorithm.
You must understand not only the specific algorithm you
wish to parallelize, but also the workload that the algo-
rithm will be subjected to. Great creativity and design
effort is often required to construct a parallel fastpath.

Parallel fastpath combines different patterns (one for
the fastpath, one elsewhere) and is therefore a template
pattern. The following instances of parallel fastpath occur
often enough to warrant their own patterns, as depicted in
Figure 6.24:

1. Reader/Writer Locking (described below in Sec-
tion 6.4.1).

2. Read-copy update (RCU), which may be used as
a high-performance replacement for reader/writer
locking, is introduced in Section 9.5, and will not be
discussed further in this chapter.

3. Hierarchical Locking ([McK96a]), which is touched
upon in Section 6.4.2.

6.4. PARALLEL FASTPATH

Reader/Writer
> Locking
N y,
> RCU
Parallel N /
Fastpath
Hierarchical
> Locking
N y,
Allocator
Caches

Figure 6.24: Parallel-Fastpath Design Patterns

4. Resource Allocator Caches ([McK96a, MS93]). See
Section 6.4.3 for more detail.

6.4.1 Reader/Writer Locking

If synchronization overhead is negligible (for example, if
the program uses coarse-grained parallelism with large
critical sections), and if only a small fraction of the crit-
ical sections modify data, then allowing multiple read-
ers to proceed in parallel can greatly increase scalability.
Writers exclude both readers and each other. There are
many implementations of reader-writer locking, includ-
ing the POSIX implementation described in Section 4.2.4.
Figure 6.25 shows how the hash search might be imple-
mented using reader-writer locking.

Reader/writer locking is a simple instance of asymmet-
ric locking. Snaman [ST87] describes a more ornate six-
mode asymmetric locking design used in several clustered
systems. Locking in general and reader-writer locking in
particular is described extensively in Chapter 7.

6.4.2 Hierarchical Locking

The idea behind hierarchical locking is to have a coarse-
grained lock that is held only long enough to work out
which fine-grained lock to acquire. Figure 6.26 shows
how our hash-table search might be adapted to do hier-
archical locking, but also shows the great weakness of
this approach: we have paid the overhead of acquiring a

79

rwlock_t hash_lock;

struct hash_table
{
long nbuckets;
struct node =*x*buckets;

bi

oUW N

9 typedef struct node {
10 unsigned long key;

11 struct node =*next;
12 } node_t;
13

14 int hash_search(struct hash_table xh, long key)
15 |

16 struct node =*cur;
17 int retval;
18

19 read_lock (&hash_lock);
20 cur = h->buckets[key % h->nbuckets];

21 while (cur != NULL) ({

22 if (cur->key >= key) {

23 retval = (cur->key == key);
24 read_unlock (&hash_lock);

25 return retval;

26 }

27 cur = cur->next;

28 }

29 read_unlock (&hash_lock);

30 return 0;

Figure 6.25: Reader-Writer-Locking Hash Table Search

second lock, but we only hold it for a short time. In this
case, the simpler data-locking approach would be simpler
and likely perform better.

Quick Quiz 6.16: In what situation would hierarchical
locking work well?

6.4.3 Resource Allocator Caches

This section presents a simplified schematic of a parallel
fixed-block-size memory allocator. More detailed descrip-
tions may be found in the literature [MG92, MS93, BAO1,
MSKO1] or in the Linux kernel [Tor03].

6.4.3.1 Parallel Resource Allocation Problem

The basic problem facing a parallel memory allocator is
the tension between the need to provide extremely fast
memory allocation and freeing in the common case and
the need to efficiently distribute memory in face of unfa-
vorable allocation and freeing patterns.

To see this tension, consider a straightforward applica-
tion of data ownership to this problem—simply carve up
memory so that each CPU owns its share. For example,
suppose that a system with two CPUs has two gigabytes
of memory (such as the one that I am typing on right
now). We could simply assign each CPU one gigabyte

80 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

1 struct hash_table

2 {

3 long nbuckets;

4 struct bucket xxbuckets;
5 };

6

7 struct bucket {

8 spinlock_t bucket_lock;
9 node_t *1list_head;
10 };
11

12 typedef struct node {
13 spinlock_t node_lock;
14 unsigned long key;

15 struct node *next;
16 } node_t;
17

18 int hash_search(struct hash_table *h, long key)

20 struct bucket xbp;

21 struct node =*cur;
22 int retval;
23

24 bp = h—>buckets[key % h->nbuckets];
25 spin_lock (&bp->bucket_lock);
26 cur = bp->list_head;

27 while (cur != NULL) {

28 if (cur->key >= key) {

29 spin_lock (&cur—->node_lock) ;

30 spin_unlock (&bp->bucket_lock);
31 retval = (cur->key == key);

32 spin_unlock (&cur->node_lock) ;
33 return retval;

34 }

35 cur = cur->next;

36 }

37 spin_unlock (&bp->bucket_lock);
38 return 0;

Figure 6.26: Hierarchical-Locking Hash Table Search

of memory, and allow each CPU to access its own pri-
vate chunk of memory, without the need for locking and
its complexities and overheads. Unfortunately, this sim-
ple scheme breaks down if an algorithm happens to have
CPU 0 allocate all of the memory and CPU 1 the free it, as
would happen in a simple producer-consumer workload.

The other extreme, code locking, suffers from excessive
lock contention and overhead [MS93].

6.4.3.2 Parallel Fastpath for Resource Allocation

The commonly used solution uses parallel fastpath with
each CPU owning a modest cache of blocks, and with a
large code-locked shared pool for additional blocks. To
prevent any given CPU from monopolizing the memory
blocks, we place a limit on the number of blocks that can
be in each CPU’s cache. In a two-CPU system, the flow
of memory blocks will be as shown in Figure 6.27: when
a given CPU is trying to free a block when its pool is full,
it sends blocks to the global pool, and, similarly, when

-

|
i
- Global Pool
! i
S ! i 2
S 1 (Code Locked) i 2
) ‘ boood 5]
> >
O *E (@)
1S
L
T A I
| i
i CPU 0 Pool CPU 1 Pool :
| .
. |
| .
i !
Lo _ !

Allocate/Free

Figure 6.27: Allocator Cache Schematic

that CPU is trying to allocate a block when its pool is
empty, it retrieves blocks from the global pool.

6.4.3.3 Data Structures

The actual data structures for a “toy” implementation of
allocator caches are shown in Figure 6.28. The “Global
Pool” of Figure 6.27 is implemented by globalmem
of type struct globalmempool, and the two CPU
pools by the per-CPU variable percpumem of type
struct percpumempool. Both of these data struc-
tures have arrays of pointers to blocks in their pool
fields, which are filled from index zero upwards. Thus,
if globalmem.pool [3] is NULL, then the remainder
of the array from index 4 up must also be NULL. The
cur fields contain the index of the highest-numbered full
element of the poo1l array, or -1 if all elements are empty.
All elements from globalmem.pool[0] through
globalmem.pool [globalmem. cur] must be full,
and all the rest must be empty. !>

The operation of the pool data structures is illustrated
by Figure 6.29, with the six boxes representing the array
of pointers making up the pool field, and the number pre-
ceding them representing the cur field. The shaded boxes
represent non-NULL pointers, while the empty boxes rep-
resent NULL pointers. An important, though potentially

13 Both pool sizes (TARGET_POOL_SIZE and GLOBAL_POOL_
SIZE) are unrealistically small, but this small size makes it easier to
single-step the program in order to get a feel for its operation.

6.4. PARALLEL FASTPATH

#define TARGET_POOL_SIZE 3
#define GLOBAL_POOL_SIZE 40

struct globalmempool {

spinlock_t mutex;

int cur;

struct memblock xpool [GLOBAL_POOL_SIZE];
} globalmem;

@ J o0 WN

10 struct percpumempool {

11 int cur;

12 struct memblock #xpool[2 » TARGET_POOL_SIZE];
13 };

14

15 DEFINE_PER_THREAD (struct percpumempool, percpumem) ;

Figure 6.28: Allocator-Cache Data Structures

(Empty) -1

Figure 6.29: Allocator Pool Schematic

confusing, invariant of this data structure is that the cur
field is always one smaller than the number of non-NULL
pointers.

6.4.3.4 Allocation Function

The allocation function memblock_alloc () may be
seen in Figure 6.30. Line 7 picks up the current thread’s
per-thread pool, and line 8 check to see if it is empty.

If so, lines 9-16 attempt to refill it from the global pool
under the spinlock acquired on line 9 and released on
line 16. Lines 10-14 move blocks from the global to the
per-thread pool until either the local pool reaches its target
size (half full) or the global pool is exhausted, and line 15
sets the per-thread pool’s count to the proper value.

In either case, line 18 checks for the per-thread pool
still being empty, and if not, lines 19-21 remove a block
and return it. Otherwise, line 23 tells the sad tale of

81
1 struct memblock *memblock_alloc (void)
2 {
3 int 1i;
4 struct memblock *p;
5 struct percpumempool xpcpp;
6
7 pcpp = &__get_thread_var (percpumem) ;
8 if (pcpp->cur < 0) {
9 spin_lock (&globalmem.mutex) ;
10 for (i = 0; 1 < TARGET_POOL_SIZE &&
11 globalmem.cur >= 0; i++) {
12 pcpp->pool[i] = globalmem.pool[globalmem.cur];
13 globalmem.pool [globalmem.cur—--] = NULL;
14 }
15 pcpp->cur = i - 1;
16 spin_unlock (&globalmem.mutex) ;
17 }
18 if (pcpp->cur >= 0) {

19 p = pcpp->pool[pcpp->cur];

20 pcpp->pool [pcpp->cur--] = NULL;
21 return p;

22 }

23 return NULL;

24 }

Figure 6.30: Allocator-Cache Allocator Function

1 void memblock_free (struct memblock xp)

2

3 int 1i;

4 struct percpumempool xpcpp;

5

6 pcpp = &___get_thread_var (percpumem) ;

7 if (pcpp->cur >= 2 x TARGET_POOL_SIZE - 1) {

8 spin_lock (&globalmem.mutex) ;

9 for (i = pcpp->cur; i >= TARGET_POOL_SIZE; i--) {
10 globalmem.pool [++globalmem.cur] = pcpp->pool[i];
11 pcpp->pool[i] = NULL;

12 }

13 pcpp->cur = i;

14 spin_unlock (&globalmem.mutex) ;
15 }

16 pcpp->pool [++pcpp->cur] = p;
17 }

Figure 6.31: Allocator-Cache Free Function

memory exhaustion.

6.4.3.5 Free Function

Figure 6.31 shows the memory-block free function.
Line 6 gets a pointer to this thread’s pool, and line 7
checks to see if this per-thread pool is full.

If so, lines 8-15 empty half of the per-thread pool into
the global pool, with lines 8 and 14 acquiring and releas-
ing the spinlock. Lines 9-12 implement the loop moving
blocks from the local to the global pool, and line 13 sets
the per-thread pool’s count to the proper value.

In either case, line 16 then places the newly freed block
into the per-thread pool.

82 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

30 T T T T
pe] SCXXXX X
§ 25t .
[0}
(2]
<]
S o0 _
s
[
I]
1]
[0}
o
[T
B 10 - ++ﬁ< + =
] L
= +H T+
Q X
] 5 X X .
= XTSRS X XXX
0 | | | |
0 5 10 15 20 25

Allocation Run Length

Figure 6.32: Allocator Cache Performance

6.4.3.6 Performance

Rough performance results'* are shown in Figure 6.32,
running on a dual-core Intel x86 running at 1GHz (4300
bogomips per CPU) with at most six blocks allowed in
each CPU’s cache. In this micro-benchmark, each thread
repeatedly allocates a group of blocks and then frees all
the blocks in that group, with the number of blocks in
the group being the “allocation run length” displayed on
the x-axis. The y-axis shows the number of successful
allocation/free pairs per microsecond—failed allocations
are not counted. The “X’’s are from a two-thread run,
while the “+”s are from a single-threaded run.

Note that run lengths up to six scale linearly and
give excellent performance, while run lengths greater
than six show poor performance and almost always also
show negative scaling. It is therefore quite important
to size TARGET_POOL_SIZE sufficiently large, which
fortunately is usually quite easy to do in actual prac-
tice [MSKO1], especially given today’s large memories.
For example, in most systems, it is quite reasonable to
set TARGET_POOL_SIZE to 100, in which case alloca-
tions and frees are guaranteed to be confined to per-thread
pools at least 99% of the time.

As can be seen from the figure, the situations where
the common-case data-ownership applies (run lengths up
to six) provide greatly improved performance compared

14 This data was not collected in a statistically meaningful way, and
therefore should be viewed with great skepticism and suspicion. Good
data-collection and -reduction practice is discussed in Chapter 11. That
said, repeated runs gave similar results, and these results match more
careful evaluations of similar algorithms.

to the cases where locks must be acquired. Avoiding
synchronization in the common case will be a recurring
theme through this book.

Quick Quiz 6.17: In Figure 6.32, there is a pattern of
performance rising with increasing run length in groups
of three samples, for example, for run lengths 10, 11, and
12. Why? R

Quick Quiz 6.18: Allocation failures were observed
in the two-thread tests at run lengths of 19 and greater.
Given the global-pool size of 40 and the per-thread target
pool size s of three, number of threads n equal to two, and
assuming that the per-thread pools are initially empty with
none of the memory in use, what is the smallest allocation
run length m at which failures can occur? (Recall that
each thread repeatedly allocates m block of memory, and
then frees the m blocks of memory.) Alternatively, given
n threads each with pool size s, and where each thread
repeatedly first allocates m blocks of memory and then
frees those m blocks, how large must the global pool
size be? Note: Obtaining the correct answer will require
you to examine the smpalloc. c source code, and very
likely single-step it as well. You have been warned! ll

6.4.3.7 Real-World Design

The toy parallel resource allocator was quite simple, but
real-world designs expand on this approach in a number
of ways.

First, real-world allocators are required to handle a
wide range of allocation sizes, as opposed to the single
size shown in this toy example. One popular way to do
this is to offer a fixed set of sizes, spaced so as to balance
external and internal fragmentation, such as in the late-
1980s BSD memory allocator [MK88]. Doing this would
mean that the “globalmem” variable would need to be
replicated on a per-size basis, and that the associated lock
would similarly be replicated, resulting in data locking
rather than the toy program’s code locking.

Second, production-quality systems must be able to
repurpose memory, meaning that they must be able to coa-
lesce blocks into larger structures, such as pages [MS93].
This coalescing will also need to be protected by a lock,
which again could be replicated on a per-size basis.

Third, coalesced memory must be returned to the un-
derlying memory system, and pages of memory must also
be allocated from the underlying memory system. The
locking required at this level will depend on that of the un-
derlying memory system, but could well be code locking.
Code locking can often be tolerated at this level, because

6.5. BEYOND PARTITIONING

Level | Locking
Per-thread pool Data ownership
Global block pool Data locking

| Purpose
High-speed allocation
Distributing blocks among
threads
Combining blocks into pages
Memory from/to system

Coalescing
System memory

Data locking
Code locking

Table 6.1: Schematic of Real-World Parallel Allocator

this level is so infrequently reached in well-designed sys-
tems [MSKO1].

Despite this real-world design’s greater complexity,
the underlying idea is the same—repeated application of
parallel fastpath, as shown in Table 6.1.

6.5 Beyond Partitioning

This chapter has discussed how data partitioning can be
used to design simple linearly scalable parallel programs.
Section 6.3.4 hinted at the possibilities of data replication,
which will be used to great effect in Section 9.5.

The main goal of applying partitioning and replication
is to achieve linear speedups, in other words, to ensure
that the total amount of work required does not increase
significantly as the number of CPUs or threads increases.
A problem that can be solved via partitioning and/or repli-
cation, resulting in linear speedups, is embarrassingly
parallel. But can we do better?

To answer this question, let us examine the solution of
labyrinths and mazes. Of course, labyrinths and mazes
have been objects of fascination for millenia [Wik12],
so it should come as no surprise that they are generated
and solved using computers, including biological com-
puters [Adal 1], GPGPUs [Eri08], and even discrete hard-
ware [KFC11]. Parallel solution of mazes is sometimes
used as a class project in universities [ETH11, Unil0]
and as a vehicle to demonstrate the benefits of parallel-
programming frameworks [Fos10].

Common advice is to use a parallel work-queue algo-
rithm (PWQ) [ETH11, Fos10]. This section evaluates this
advice by comparing PWQ against a sequential algorithm
(SEQ) and also against an alternative parallel algorithm,
in all cases solving randomly generated square mazes.
Section 6.5.1 discusses PWQ, Section 6.5.2 discusses
an alternative parallel algorithm, Section 6.5.3 analyzes
its anomalous performance, Section 6.5.4 derives an im-
proved sequential algorithm from the alternative paral-
lel algorithm, Section 6.5.5 makes further performance
comparisons, and finally Section 6.5.6 presents future
directions and concluding remarks.

83
1 int maze_solve (maze xmp, cell sc, cell ec)
2 {
3 cell ¢ = sc;
4 cell n;
5 int vi = 0;
6
7 maze_try_visit_cell(mp, ¢, ¢, &n, 1);
8 for (;;) {
9 while (!maze_find_any_next_cell (mp, c, &n)) {
10 if (++vi >= mp->vi)
11 return 0;
12 c = mp->visited([vi].c;
13 }
14 do {
15 if (n == ec) {
16 return 1;
17 }
18 c = n;
19 } while (maze_find_any_next_cell (mp, c, &n));
20 c = mp->visited[vi].c;
21 }
22}

Figure 6.33: SEQ Pseudocode

6.5.1 Work-Queue Parallel Maze Solver

PWQ is based on SEQ, which is shown in Figure 6.33
(maze_seq.c). The maze is represented by a 2D array
of cells and a linear-array-based work queue named —>
visited.

Line 7 visits the initial cell, and each iteration of the
loop spanning lines 8-21 traverses passages headed by
one cell. The loop spanning lines 9-13 scans the —>
visited][] array for a visited cell with an unvisited
neighbor, and the loop spanning lines 14-19 traverses one
fork of the submaze headed by that neighbor. Line 20
initializes for the next pass through the outer loop.

The pseudocode formaze_try_visit_cell () is
shown on lines 1-12 of Figure 6.34 (maze.c). Line 4
checks to see if cells c and n are adjacent and connected,
while line 5 checks to see if cell n has not yet been visited.
The celladdr () function returns the address of the
specified cell. If either check fails, line 6 returns failure.
Line 7 indicates the next cell, line 8 records this cell in
the next slot of the —>visited[] array, line 9 indicates
that this slot is now full, and line 10 marks this cell as
visited and also records the distance from the maze start.
Line 11 then returns success.

The pseudocode for maze_find_any_next_
cell () is shown on lines 14-28 of Figure 6.34 (maze.
c). Line 17 picks up the current cell’s distance plus 1,
while lines 19, 21, 23, and 25 check the cell in each direc-
tion, and lines 20, 22, 24, and 26 return true if the corre-
sponding cell is a candidate next cell. The prevcol (),
nextcol (), prevrow (), and nextrow () each do
the specified array-index-conversion operation. If none of

84 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

int maze_try_visit_cell (struct maze *mp, cell c, cell t, 1 T

1

2 cell xn, int d)
3 {

4 if (!maze_cells_connected(mp, c, t) ||
5

6

7

8

(xcelladdr (mp, t) & VISITED))
return 0;
*n = t;
mp->visited[mp->vi] = t;

9 mp->vi++;

10 «xcelladdr (mp, t) |= VISITED | d;

11 return 1;

12 }

13

14 int maze_find_any_next_cell (struct maze »*mp, cell c,
15 cell #n)

16 {

17 int d = (*celladdr (mp, c) & DISTANCE) + 1;

18

19 if (maze_try_visit_cell (mp, c, prevcol(c), n, d))
20 return 1;

21 if (maze_try_visit_cell (mp, ¢, nextcol(c), n, d)
22 return 1;

23 if (maze_try_visit_cell (mp, c, prevrow(c), n, d)
24 return 1;

25 if (maze_try_visit_cell (mp, ¢, nextrow(c), n, d)
26 return 1;

27 return 0;

28 }

Figure 6.34: SEQ Helper Pseudocode

1 2 3
2 3 4
3 4 5

Figure 6.35: Cell-Number Solution Tracking

the cells is a candidate, line 27 returns false.

The path is recorded in the maze by counting the num-
ber of cells from the starting point, as shown in Fig-
ure 6.35, where the starting cell is in the upper left and
the ending cell is in the lower right. Starting at the ending
cell and following consecutively decreasing cell numbers
traverses the solution.

The parallel work-queue solver is a straightforward
parallelization of the algorithm shown in Figures 6.33 and
6.34. Line 10 of Figure 6.33 must use fetch-and-add, and
the local variable vi must be shared among the various
threads. Lines 5 and 10 of Figure 6.34 must be combined
into a CAS loop, with CAS failure indicating a loop in
the maze. Lines 8-9 of this figure must use fetch-and-
add to arbitrate concurrent attempts to record cells in the
->visited[] array.

This approach does provide significant speedups on a

Probability
o
(¢,
T

0 | | | | |
0 20 40 60 80 100 120 140

CDF of Solution Time (ms)

Figure 6.36: CDF of Solution Times For SEQ and PWQ

dual-CPU Lenovo'W500 running at 2.53GHz, as shown
in Figure 6.36, which shows the cumulative distribution
functions (CDFs) for the solution times of the two al-
gorithms, based on the solution of 500 different square
500-by-500 randomly generated mazes. The substantial
overlap of the projection of the CDFs onto the x-axis will
be addressed in Section 6.5.3.

Interestingly enough, the sequential solution-path track-
ing works unchanged for the parallel algorithm. However,
this uncovers a significant weakness in the parallel algo-
rithm: At most one thread may be making progress along
the solution path at any given time. This weakness is
addressed in the next section.

6.5.2 Alternative Parallel Maze Solver

Youthful maze solvers are often urged to start at both ends,
and this advice has been repeated more recently in the
context of automated maze solving [Unil0]. This advice
amounts to partitioning, which has been a powerful paral-
lelization strategy in the context of parallel programming
for both operating-system kernels [BK85, Inm85] and
applications [Pat10]. This section applies this strategy,
using two child threads that start at opposite ends of the
solution path, and takes a brief look at the performance
and scalability consequences.

The partitioned parallel algorithm (PART), shown in
Figure 6.37 (maze_part.c), is similar to SEQ, but has
a few important differences. First, each child thread has
its own visited array, passed in by the parent as shown
on line 1, which must be initialized to all [-1,-1]. Line 7
stores a pointer to this array into the per-thread variable
myvisited to allow access by helper functions, and
similarly stores a pointer to the local visit index. Second,

6.5. BEYOND PARTITIONING

1 int maze_solve_child(maze »mp, cell xvisited, cell sc)
2 {
3 cell c;
4 cell n;
5 int vi = 0;
6
7 myvisited = visited; myvi = &vi;
8 c = visited[vi];
9 do {
10 while (!maze_find_any_next_cell (mp, c, &n)) {
11 if (visited[++vi].row < 0)
12 return 0;
13 if (ACCESS_ONCE (mp->done))
14 return 1;
15 c = visited[vi];
16 }
17 do {
18 if (ACCESS_ONCE (mp->done))
19 return 1;
20 c = n;
21 } while (maze_find_any_next_cell (mp, c, &n));
22 c = visited[vi];
23 } while (!ACCESS_ONCE (mp->done)) ;
24 return 1;
25}

Figure 6.37: Partitioned Parallel Solver Pseudocode

the parent visits the first cell on each child’s behalf, which
the child retrieves on line 8. Third, the maze is solved
as soon as one child locates a cell that has been visited
by the other child. When maze_try_visit_cell ()
detects this, it sets a —>done field in the maze structure.
Fourth, each child must therefore periodically check the
—>done field, as shown on lines 13, 18, and 23. The
ACCESS_ONCE () primitive must disable any compiler
optimizations that might combine consecutive loads or
that might reload the value. A C++1x volatile relaxed
load suffices [Bec11]. Finally, the maze_find_any_
next_cell () function must use compare-and-swap to
mark a cell as visited, however no constraints on ordering
are required beyond those provided by thread creation
and join.

The pseudocode for maze_find_any_next_
cell () is identical to that shown in Figure 6.34, but
the pseudocode for maze_try_visit_cell () dif-
fers, and is shown in Figure 6.38. Lines 8-9 check to see
if the cells are connected, returning failure if not. The
loop spanning lines 11-18 attempts to mark the new cell
visited. Line 13 checks to see if it has already been visited,
in which case line 16 returns failure, but only after line 14
checks to see if we have encountered the other thread, in
which case line 15 indicates that the solution has been
located. Line 19 updates to the new cell, lines 20 and 21
update this thread’s visited array, and line 22 returns suc-
cess.

Performance testing revealed a surprising anomaly,

85

1 int maze_try_visit_cell (struct maze »mp, int c, int t,
2 int *n, int d)
3 {
4 cell _t t;
5 cell_t =tp;
6 int vi;
7
8 if (!maze_cells_connected(mp, c, t)
9 return 0;
10 tp = celladdr (mp, t);
11 do {
12 t = ACCESS_ONCE (*tp) ;
13 if (t & VISITED) {
14 if ((t & TID) != mytid)
15 mp->done = 1;
16 return 0;
17 }
18 } while (!CAS(tp, t, t | VISITED | myid | d));
19 *n = t;
20 vi = (smyvi)++;
21 myvisited[vi] = t;
22 return 1;
23}

Figure 6.38: Partitioned Parallel Helper Pseudocode

1 T
09
0.8
0.7
0.6
05
04
03 |
02} i
01|/
o L 1 1
0 20 40 60 80 100 120 140

CDF of Solution Time (ms)

Probability

Figure 6.39: CDF of Solution Times For SEQ, PWQ, and
PART

shown in Figure 6.39. The median solution time for PART
(17 milliseconds) is more than four times faster than that
of SEQ (79 milliseconds), despite running on only two
threads. The next section analyzes this anomaly.

6.5.3 Performance Comparison I

The first reaction to a performance anomaly is to check
for bugs. Although the algorithms were in fact finding
valid solutions, the plot of CDFs in Figure 6.39 assumes
independent data points. This is not the case: The per-
formance tests randomly generate a maze, and then run
all solvers on that maze. It therefore makes sense to plot
the CDF of the ratios of solution times for each gener-
ated maze, as shown in Figure 6.40, greatly reducing the

86

CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

1 —rrrr
0.9
0.8

I
0.7 !
0.6
!
0.5 SEQ/PWQ / SEQ/PART
f
0.4 ’,’ -

0.3

¢
J |

/

/

/

/

S

w20 0 vl

0.2
0.1

0.1 1 100
CDF of Speedup Relative to SEQ

Probability

0

Figure 6.40: CDF of SEQ/PWQ and SEQ/PART Solution-
Time Ratios

|
o

LJ[_,
me

Figure 6.41: Reason for Small Visit Percentages

o

CDFs’ overlap. This plot reveals that for some mazes,
PART is more than forty times faster than SEQ. In con-
trast, PWQ is never more than about two times faster
than SEQ. A forty-times speedup on two threads demands
explanation. After all, this is not merely embarrassingly
parallel, where partitionability means that adding threads
does not increase the overall computational cost. It is in-
stead humiliatingly parallel: Adding threads significantly
reduces the overall computational cost, resulting in large
algorithmic superlinear speedups.

Further investigation showed that PART sometimes vis-
ited fewer than 2% of the maze’s cells, while SEQ and
PWQ never visited fewer than about 9%. The reason for
this difference is shown by Figure 6.41. If the thread
traversing the solution from the upper left reaches the cir-
cle, the other thread cannot reach the upper-right portion
of the maze. Similarly, if the other thread reaches the
square, the first thread cannot reach the lower-left portion
of the maze. Therefore, PART will likely visit a small
fraction of the non-solution-path cells. In short, the super-

linear speedups are due to threads getting in each others’

MW r—T—TT T T T T T
120 - A
I
P
- 100 | A
Léi SEQ}; ?ﬁw
g 80 L .
= A e
5 ol A5 pwa o
5 T
o] e
B 40| rs i
20 |- PART a
0 N T R N T N

o L
0 10 20 30 40 50 60 70 80 90 100
Percent of Maze Cells Visited

Figure 6.42: Correlation Between Visit Percentage and
Solution Time

Jo 00
000 i
|

Figure 6.43: PWQ Potential Contention Points

way. This is a sharp contrast with decades of experience
with parallel programming, where workers have struggled
to keep threads out of each others’ way.

Figure 6.42 confirms a strong correlation between cells
visited and solution time for all three methods. The slope
of PART’s scatterplot is smaller than that of SEQ, indi-
cating that PART’s pair of threads visits a given fraction
of the maze faster than can SEQ’s single thread. PART’s
scatterplot is also weighted toward small visit percent-
ages, confirming that PART does less total work, hence
the observed humiliating parallelism.

The fraction of cells visited by PWQ is similar to that
of SEQ. In addition, PWQ’s solution time is greater than
that of PART, even for equal visit fractions. The reason
for this is shown in Figure 6.43, which has a red circle on
each cell with more than two neighbors. Each such cell
can result in contention in PWQ, because one thread can
enter but two threads can exit, which hurts performance,
as noted earlier in this chapter. In contrast, PART can
incur such contention but once, namely when the solution
is located. Of course, SEQ never contends.

6.5. BEYOND PARTITIONING

1
09 |
08 | b .
07 | D -
06 P -
0.5 Pwa| 7/ -
04 ' -
0.3 !]
0.2 I .
0.1 / 'SEQ -03 -

0 MEETETIN O 2 A AT I m
0.1 1 10 100

CDF of Speedup Relative to SEQ

Probability

Figure 6.44: Effect of Compiler Optimization (-O3)

Although PART’s speedup is impressive, we should
not neglect sequential optimizations. Figure 6.44 shows
that SEQ, when compiled with -O3, is about twice as
fast as unoptimized PWQ, approaching the performance
of unoptimized PART. Compiling all three algorithms
with -O3 gives results similar to (albeit faster than) those
shown in Figure 6.40, except that PWQ provides almost
no speedup compared to SEQ, in keeping with Amdahl’s
Law [Amd67]. However, if the goal is to double per-
formance compared to unoptimized SEQ, as opposed to
achieving optimality, compiler optimizations are quite
attractive.

Cache alignment and padding often improves perfor-
mance by reducing false sharing. However, for these
maze-solution algorithms, aligning and padding the maze-
cell array degrades performance by up to 42% for
1000x1000 mazes. Cache locality is more important
than avoiding false sharing, especially for large mazes.
For smaller 20-by-20 or 50-by-50 mazes, aligning and
padding can produce up to a 40% performance improve-
ment for PART, but for these small sizes, SEQ performs
better anyway because there is insufficient time for PART
to make up for the overhead of thread creation and de-
struction.

In short, the partitioned parallel maze solver is an inter-
esting example of an algorithmic superlinear speedup. If
“algorithmic superlinear speedup” causes cognitive disso-
nance, please proceed to the next section.

6.5.4 Alternative Sequential Maze Solver

The presence of algorithmic superlinear speedups sug-
gests simulating parallelism via co-routines, for example,
manually switching context between threads on each pass

87

1
0.9 -
0.8 -
0.7 -
0.6 -
0.5
0.4
0.3
0.2
0.1

Probability
1

L1 il

0.1 1 10 100
CDF of Speedup Relative to SEQ (-O3)

Figure 6.45: Partitioned Coroutines

12 ——rrr
8. 10 —
3
o 8 T
e
2 s} i -
kS :
[} : i
i i i
Q 4 - : : _)——/9
-8 : P S
a2 i

100 1000
Maze Size

Figure 6.46: Varying Maze Size vs. SEQ

through the main do-while loop in Figure 6.37. This
context switching is straightforward because the context
consists only of the variables ¢ and vi: Of the numer-
ous ways to achieve the effect, this is a good tradeoff
between context-switch overhead and visit percentage.
As can be seen in Figure 6.45, this coroutine algorithm
(COPART) is quite effective, with the performance on one
thread being within about 30% of PART on two threads

(maze_2seq.c).

6.5.5 Performance Comparison II

Figures 6.46 and 6.47 show the effects of varying maze
size, comparing both PWQ and PART running on two
threads against either SEQ or COPART, respectively, with
90%-confidence error bars. PART shows superlinear scal-
ability against SEQ and modest scalability against CO-
PART for 100-by-100 and larger mazes. PART exceeds

88 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

1.8 —
1.6 |- . -
14 | LT 4

12

0.8 -
06
0.4

Speedup Relative to COPART (-O3)
T

02

10 100
Maze Size

Figure 6.47: Varying Maze Size vs. COPART

35 T T T T T T

3 1

25 -

Mean Speedup Relative to COPART (-O3)

1 2 3 4 5 6 7 8
Number of Threads

Figure 6.48: Mean Speedup vs. Number of Threads,
1000x1000 Maze

theoretical energy-efficiency breakeven against COPART
at roughly the 200-by-200 maze size, given that power
consumption rises as roughly the square of the frequency
for high frequencies [Mud00], so that 1.4x scaling on two
threads consumes the same energy as a single thread at
equal solution speeds. In contrast, PWQ shows poor scala-
bility against both SEQ and COPART unless unoptimized:
Figures 6.46 and 6.47 were generated using -O3.

Figure 6.48 shows the performance of PWQ and PART
relative to COPART. For PART runs with more than two
threads, the additional threads were started evenly spaced
along the diagonal connecting the starting and ending
cells. Simplified link-state routing [BG87] was used to
detect early termination on PART runs with more than
two threads (the solution is flagged when a thread is con-
nected to both beginning and end). PWQ performs quite
poorly, but PART hits breakeven at two threads and again
at five threads, achieving modest speedups beyond five

threads. Theoretical energy efficiency breakeven is within
the 90% confidence interval for seven and eight threads.
The reasons for the peak at two threads are (1) the lower
complexity of termination detection in the two-thread case
and (2) the fact that there is a lower probability of the third
and subsequent threads making useful forward progress:
Only the first two threads are guaranteed to start on the so-
lution line. This disappointing performance compared to
results in Figure 6.47 is due to the less-tightly integrated
hardware available in the larger and older Xeon®system
running at 2.66GHz.

6.5.6 Future Directions and Conclusions

Much future work remains. First, this section applied
only one technique used by human maze solvers. Oth-
ers include following walls to exclude portions of the
maze and choosing internal starting points based on the
locations of previously traversed paths. Second, different
choices of starting and ending points might favor different
algorithms. Third, although placement of the PART algo-
rithm’s first two threads is straightforward, there are any
number of placement schemes for the remaining threads.
Optimal placement might well depend on the starting
and ending points. Fourth, study of unsolvable mazes
and cyclic mazes is likely to produce interesting results.
Fifth, the lightweight C++11 atomic operations might
improve performance. Sixth, it would be interesting to
compare the speedups for three-dimensional mazes (or of
even higher-order mazes). Finally, for mazes, humiliating
parallelism indicated a more-efficient sequential imple-
mentation using coroutines. Do humiliatingly parallel
algorithms always lead to more-efficient sequential imple-
mentations, or are there inherently humiliatingly parallel
algorithms for which coroutine context-switch overhead
overwhelms the speedups?

This section demonstrated and analyzed parallelization
of maze-solution algorithms. A conventional work-queue-
based algorithm did well only when compiler optimiza-
tions were disabled, suggesting that some prior results
obtained using high-level/overhead languages will be in-
validated by advances in optimization.

This section gave a clear example where approaching
parallelism as a first-class optimization technique rather
than as a derivative of a sequential algorithm paves the
way for an improved sequential algorithm. High-level
design-time application of parallelism is likely to be a
fruitful field of study. This section took the problem of
solving mazes from mildly scalable to humiliatingly par-

6.6. PARTITIONING, PARALLELISM, AND OPTIMIZATION

allel and back again. It is hoped that this experience will
motivate work on parallelism as a first-class design-time
whole-application optimization technique, rather than as
a grossly suboptimal after-the-fact micro-optimization to
be retrofitted into existing programs.

6.6 Partitioning, Parallelism, and
Optimization

Most important, although this chapter has demonstrated
that although applying parallelism at the design level gives
excellent results, this final section shows that this is not
enough. For search problems such as maze solution, this
section has shown that search strategy is even more im-
portant than parallel design. Yes, for this particular type
of maze, intelligently applying parallelism identified a su-
perior search strategy, but this sort of luck is no substitute
for a clear focus on search strategy itself.

As noted back in Section 2.2, parallelism is but one po-
tential optimization of many. A successful design needs to
focus on the most important optimization. Much though I
might wish to claim otherwise, that optimization might or
might not be parallelism.

However, for the many cases where parallelism is the
right optimization, the next section covers that synchro-
nization workhorse, locking.

90

CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Chapter 7

Locking

Locking is the worst general-purpose
synchronization mechanism except for all
those other mechanisms that have been tried
from time to time.

With apologies to the memory of Winston
Churchill and to whoever he was quoting

In recent concurrency research, the role of villain is of-
ten played by locking. In many papers and presentations,
locking stands accused of promoting deadlocks, convoy-
ing, starvation, unfairness, data races, and all manner of
other concurrency sins. Interestingly enough, the role of
workhorse in production-quality shared-memory parallel
software is played by, you guessed it, locking. This chap-
ter will look into this dichotomy between villain and hero,
as fancifully depicted in Figures 7.1 and 7.2.

There are a number of reasons behind this Jekyll-and-
Hyde dichotomy:

1. Many of locking’s sins have pragmatic design solu-
tions that work well in most cases, for example:

(a) Use of lock hierarchies to avoid deadlock.

(b) Deadlock-detection tools, for example, the
Linux kernel’s lockdep facility [Cor0O6a].

(c) Locking-friendly data structures, such as ar-
rays, hash tables, and radix trees, which will
be covered in Chapter 10.

2. Some of locking’s sins are problems only at high
levels of contention, levels reached only by poorly
designed programs.

3. Some of locking’s sins are avoided by using other
synchronization mechanisms in concert with locking.
These other mechanisms include statistical counters
(see Chapter 5), reference counters (see Section 9.2),

91

hazard pointers (see Section 9.3), sequence-locking
readers (see Section 9.4), RCU (see Section 9.5),
and simple non-blocking data structures (see Sec-
tion 14.3).

. Until quite recently, almost all large shared-memory
parallel programs were developed in secret, so that
it was difficult for most researchers to learn of these
pragmatic solutions.

5. Locking works extremely well for some software
artifacts and extremely poorly for others. Develop-
ers who have worked on artifacts for which locking
works well can be expected to have a much more pos-
itive opinion of locking than those who have worked
on artifacts for which locking works poorly, as will
be discussed in Section 7.5.

. All good stories need a villain, and locking has a long
and honorable history serving as a research-paper
whipping boy.

Quick Quiz 7.1: Just how can serving as a whipping
boy be considered to be in any way honorable??? ll

This chapter will give an overview of a number of ways
to avoid locking’s more serious sins.

7.1 Staying Alive

Given that locking stands accused of deadlock and starva-
tion, one important concern for shared-memory parallel
developers is simply staying alive. The following sections
therefore cover deadlock, livelock, starvation, unfairness,
and inefficiency.

92

Figure 7.2: Locking: Workhorse or Hero?

7.1.1 Deadlock

Deadlock occurs when each of a group of threads is hold-
ing at least one lock while at the same time waiting on a
lock held by a member of that same group.

Without some sort of external intervention, deadlock
is forever. No thread can acquire the lock it is waiting on
until that lock is released by the thread holding it, but the
thread holding it cannot release it until the holding thread
acquires the lock that it is waiting on.

We can create a directed-graph representation of a dead-
lock scenario with nodes for threads and locks, as shown

CHAPTER 7. LOCKING

Lock 1
Thread A @
[Lock 3]e Thread B
Thread C @

Figure 7.3: Deadlock Cycle

in Figure 7.3. An arrow from a lock to a thread indicates
that the thread holds the lock, for example, Thread B
holds Locks 2 and 4. An arrow from a thread to a lock in-
dicates that the thread is waiting on the lock, for example,
Thread B is waiting on Lock 3.

A deadlock scenario will always contain at least one
deadlock cycle. In Figure 7.3, this cycle is Thread B,
Lock 3, Thread C, Lock 4, and back to Thread B.

Quick Quiz 7.2: But the definition of deadlock only
said that each thread was holding at least one lock and
waiting on another lock that was held by some thread.
How do you know that there is a cycle? B

Although there are some software environments such
as database systems that can repair an existing deadlock,
this approach requires either that one of the threads be
killed or that a lock be forcibly stolen from one of the
threads. This killing and forcible stealing can be appro-
priate for transactions, but is often problematic for kernel
and application-level use of locking: dealing with the
resulting partially updated structures can be extremely
complex, hazardous, and error-prone.

Kernels and applications therefore work to avoid dead-
locks rather than to recover from them. There are
a number of deadlock-avoidance strategies, including
locking hierarchies (Section 7.1.1.1), local locking hi-
erarchies (Section 7.1.1.2), layered locking hierarchies
(Section 7.1.1.3), strategies for dealing with APIs con-
taining pointers to locks (Section 7.1.1.4), conditional
locking (Section 7.1.1.5), acquiring all needed locks
first (Section 7.1.1.6), single-lock-at-a-time designs (Sec-
tion 7.1.1.7), and strategies for signal/interrupt han-
dlers (Section 7.1.1.8). Although there is no deadlock-
avoidance strategy that works perfectly for all situations,

7.1. STAYING ALIVE

there is a good selection of deadlock-avoidance tools to
choose from.

7.1.1.1 Locking Hierarchies

Locking hierarchies order the locks and prohibit acquiring
locks out of order. In Figure 7.3, we might order the
locks numerically, so that a thread was forbidden from
acquiring a given lock if it already held a lock with the
same or a higher number. Thread B has violated this
hierarchy because it is attempting to acquire Lock 3 while
holding Lock 4, which permitted the deadlock to occur.

Again, to apply a locking hierarchy, order the locks
and prohibit out-of-order lock acquisition. In large pro-
gram, it is wise to use tools to enforce your locking hier-
archy [Cor06a].

7.1.1.2 Local Locking Hierarchies

However, the global nature of locking hierarchies make
them difficult to apply to library functions. After all,
the program using a given library function has not even
been written yet, so how can the poor library-function
implementor possibly hope to adhere to the yet-to-be-
written program’s locking hierarchy?

One special case that is fortunately the common case
is when the library function does not invoke any of the
caller’s code. In this case, the caller’s locks will never be
acquired while holding any of the library’s locks, so that
there cannot be a deadlock cycle containing locks from
both the library and the caller.

Quick Quiz 7.3: Are there any exceptions to this rule,
so that there really could be a deadlock cycle containing
locks from both the library and the caller, even given
that the library code never invokes any of the caller’s
functions? l

But suppose that a library function does invoke the
caller’s code. For example, the gsort () function in-
vokes a caller-provided comparison function. A concur-
rent implementation of gsort () likely uses locking,
which might result in deadlock in the perhaps-unlikely
case where the comparison function is a complicated func-
tion involving also locking. How can the library function
avoid deadlock?

The golden rule in this case is “Release all locks be-
fore invoking unknown code.” To follow this rule, the
gsort () function must release all locks before invoking
the comparison function.

Quick Quiz 7.4: Butif gsort () releases all its locks

93

Figure 7.4: Without Local Locking Hierarchy for gsort()

Figure 7.5: Local Locking Hierarchy for gsort()

before invoking the comparison function, how can it pro-
tect against races with other gsort () threads? B

To see the benefits of local locking hierarchies, com-
pare Figures 7.4 and 7.5. In both figures, application
functions foo () and bar () invoke gsort () while
holding Locks A and B, respectively. Because this is a
parallel implementation of gsort (), it acquires Lock C.
Function foo () passes function cmp () to gsort (),
and cmp () acquires Lock B. Function bar () passes
a simple integer-comparison function (not shown) to
gsort (), and this simple function does not acquire any
locks.

Now, if gsort () holds Lock C while calling cmp ()

94

Figure 7.6: Layered Locking Hierarchy for gsort()

in violation of the golden release-all-locks rule above, as
shown in Figure 7.4, deadlock can occur. To see this,
suppose that one thread invokes foo () while a second
thread concurrently invokes bar (). The first thread will
acquire Lock A and the second thread will acquire Lock B.
If the first thread’s call to gsort () acquires Lock C,
then it will be unable to acquire Lock B when it calls
cmp () . But the first thread holds Lock C, so the second
thread’s call to gsort () will be unable to acquire it, and
thus unable to release Lock B, resulting in deadlock.

In contrast, if gsort () releases Lock C before in-
voking the comparison function (which is unknown code
from gsort () ’s perspective, then deadlock is avoided
as shown in Figure 7.5.

If each module releases all locks before invoking un-
known code, then deadlock is avoided if each module
separately avoids deadlock. This rule therefore greatly
simplifies deadlock analysis and greatly improves modu-
larity.

7.1.1.3 Layered Locking Hierarchies

Unfortunately, it might not be possible for gsort () to
release all of its locks before invoking the comparison
function. In this case, we cannot construct a local locking

CHAPTER 7. LOCKING

struct locked_list {
spinlock_t s;
struct list_head h;

1
2
3
4 };
5
6 struct list_head xlist_start (struct locked_list x1lp)
7 {
8 spin_lock (&1lp->s);
9 return list_next (1lp, &lp->h);
10 }

12 struct list_head xlist_next (struct locked_list «lp,
13 struct list_head *np)
14 {

15 struct list_head =*ret;

17 ret = np->next;

18 if (ret == &lp->h) {
19 spin_unlock (&1lp->s);
20 ret = NULL;

21 }
22 return ret;

Figure 7.7: Concurrent List Iterator

hierarchy by releasing all locks before invoking unknown
code. However, we can instead construct a layered lock-
ing hierarchy, as shown in Figure 7.6. here, the cmp ()
function uses a new Lock D that is acquired after all of
Locks A, B, and C, avoiding deadlock. we therefore have
three layers to the global deadlock hierarchy, the first con-
taining Locks A and B, the second containing Lock C,
and the third containing Lock D.

Please note that it is not typically possible to mechan-
ically change cmp () to use the new Lock D. Quite the
opposite: It is often necessary to make profound design-
level modifications. Nevertheless, the effort required for
such modifications is normally a small price to pay in
order to avoid deadlock.

For another example where releasing all locks before
invoking unknown code is impractical, imagine an iterator
over a linked list, as shown in Figure 7.7 (locked_
list.c). The list_start () function acquires a
lock on the list and returns the first element (if there is
one), and 1ist_next () either returns a pointer to the
next element in the list or releases the lock and returns
NULL if the end of the list has been reached.

Figure 7.8 shows how this list iterator may be used.
Lines 1-4 define the 1ist_ints element containing a
single integer, and lines 6-17 show how to iterate over
the list. Line 11 locks the list and fetches a pointer to the
first element, line 13 provides a pointer to our enclosing
list_ints structure, line 14 prints the corresponding
integer, and line 15 moves to the next element. This is
quite simple, and hides all of the locking.

That is, the locking remains hidden as long as the code

7.1. STAYING ALIVE

1 struct list_ints {

2 struct list_head n;

3 int aj;

4 };

5

6 void list_print (struct locked_list xlp)
7 A

8 struct list_head =np;

9 struct list_ints xip;

10
11 np = list_start (1p);
12 while (np != NULL) {
13 ip = list_entry(np, struct list_ints, n);
14 printf ("\t%d\n", ip->a);
15 np = list_next (lp, np);
16 }
17 }

Figure 7.8: Concurrent List Iterator Usage

processing each list element does not itself acquire a lock
that is held across some other call to 1ist_start ()
or list_next (), which results in deadlock. We can
avoid the deadlock by layering the locking hierarchy to
take the list-iterator locking into account.

This layered approach can be extended to an arbitrarily
large number of layers, but each added layer increases
the complexity of the locking design. Such increases in
complexity are particularly inconvenient for some types of
object-oriented designs, in which control passes back and
forth among a large group of objects in an undisciplined
manner.! This mismatch between the habits of object-
oriented design and the need to avoid deadlock is an
important reason why parallel programming is perceived
by some to be so difficult.

Some alternatives to highly layered locking hierarchies
are covered in Chapter 9.

7.1.1.4 Locking Hierarchies and Pointers to Locks

Althought there are some exceptions, an external API
containing a pointer to a lock is very often a misdesigned
API. Handing an internal lock to some other software
component is after all the antithesis of information hiding,
which is in turn a key design principle.

Quick Quiz 7.5: Name one common exception where
it is perfectly reasonable to pass a pointer to a lock into a
function.

One exception is functions that hand off some entity,
where the caller’s lock must be held until the handoff
is complete, but where the lock must be released before
the function returns. One example of such a function is
the POSIX pthread_cond_wait () function, where

I One name for this is “object-oriented spaghetti code.”

95

spin_lock (&lock2);
layer_2_processing (pkt);
nextlayer = layer_1 (pkt);
spin_lock (&nextlayer->lockl);
layer_1_processing (pkt) ;
spin_unlock (&lock2) ;
spin_unlock (&nextlayer->lockl);

S oUW N

Figure 7.9: Protocol Layering and Deadlock

1 retry:

2 spin_lock (&lock2) ;

3 layer_2_processing (pkt);

4 nextlayer = layer_ 1 (pkt);

5 if (!spin_trylock (&nextlayer—->lockl)) {

6 spin_unlock (&lock2) ;

7 spin_lock (&nextlayer->lockl) ;

8 spin_lock (&lock?2) ;

9 if (layer_1(pkt) != nextlayer) ({
10 spin_unlock (&nextlayer->lockl);
11 spin_unlock (&lock2) ;

12 goto retry;
13 }
14 }

15 layer_1_processing (pkt);
16 spin_unlock (&lock2);
17 spin_unlock (&nextlayer->lockl);

Figure 7.10: Avoiding Deadlock Via Conditional Locking

passing an pointer to a pthread_mutex_t prevents
hangs due to lost wakeups.

Quick Quiz 7.6: Doesn’t the fact that pthread_
cond_wait () first releases the mutex and then re-
acquires it eliminate the possibility of deadlock? H

In short, if you find yourself exporting an API with a
pointer to a lock as an argument or the return value, do
youself a favor and carefully reconsider your API design.
It might well be the right thing to do, but experience
indicates that this is unlikely.

7.1.1.5 Conditional Locking

But suppose that there is no reasonable locking hierar-
chy. This can happen in real life, for example, in layered
network protocol stacks where packets flow in both di-
rections. In the networking case, it might be necessary
to hold the locks from both layers when passing a packet
from one layer to another. Given that packets travel both
up and down the protocol stack, this is an excellent recipe
for deadlock, as illustrated in Figure 7.9. Here, a packet
moving down the stack towards the wire must acquire the
next layer’s lock out of order. Given that packets moving
up the stack away from the wire are acquiring the locks
in order, the lock acquisition in line 4 of the figure can
result in deadlock.

One way to avoid deadlocks in this case is to impose
a locking hierarchy, but when it is necessary to acquire a

96

lock out of order, acquire it conditionally, as shown in Fig-
ure 7.10. Instead of unconditionally acquiring the layer-
1 lock, line 5 conditionally acquires the lock using the
spin_trylock () primitive. This primitive acquires
the lock immediately if the lock is available (returning
non-zero), and otherwise returns zero without acquiring
the lock.

If spin_trylock () was successful, line 15 does
the needed layer-1 processing. Otherwise, line 6 releases
the lock, and lines 7 and 8 acquire them in the correct
order. Unfortunately, there might be multiple networking
devices on the system (e.g., Ethernet and WiFi), so that
the layer_1 () function must make a routing decision.
This decision might change at any time, especially if the
system is mobile.> Therefore, line 9 must recheck the
decision, and if it has changed, must release the locks and
start over.

Quick Quiz 7.7: Can the transformation from Fig-
ure 7.9 to Figure 7.10 be applied universally? Bl

Quick Quiz 7.8: But the complexity in Figure 7.10 is
well worthwhile given that it avoids deadlock, right? ll

7.1.1.6 Acquire Needed Locks First

In an important special case of conditional locking all
needed locks are acquired before any processing is carried
out. In this case, processing need not be idempotent: if it
turns out to be impossible to acquire a given lock without
first releasing one that was already acquired, just release
all the locks and try again. Only once all needed locks are
held will any processing be carried out.

However, this procedure can result in livelock, which
will be discussed in Section 7.1.2.

Quick Quiz 7.9: When using the “acquire needed
locks first” approach described in Section 7.1.1.6, how
can livelock be avoided? B

A related approach, two-phase locking [BHG87], has
seen long production use in transactional database sys-
tems. In the first phase of a two-phase locking transaction,
locks are acquired but not released. Once all needed locks
have been acquired, the transaction enters the second
phase, where locks are released, but not acquired. This
locking approach allows databases to provide serializabil-
ity guarantees for their transactions, in other words, to
guarantee that all values seen and produced by the trans-
actions are consistent with some global ordering of all
the transactions. Many such systems rely on the abil-
ity to abort transactions, although this can be simplified

2 And, in contrast to the 1900s, mobility is the common case.

CHAPTER 7. LOCKING

by avoiding making any changes to shared data until all
needed locks are acquired. Livelock and deadlock are
issues in such systems, but practical solutions may be
found in any of a number of database textbooks.

7.1.1.7 Single-Lock-at-a-Time Designs

In some cases, it is possible to avoid nesting locks, thus
avoiding deadlock. For example, if a problem is perfectly
partitionable, a single lock may be assigned to each par-
tition. Then a thread working on a given partition need
only acquire the one corresponding lock. Because no
thread ever holds more than one lock at a time, deadlock
is impossible.

However, there must be some mechanism to ensure that
the needed data structures remain in existence during the
time that neither lock is held. One such mechanism is
discussed in Section 7.4 and several others are presented
in Chapter 9.

7.1.1.8 Signal/Interrupt Handlers

Deadlocks involving signal handlers are often quickly dis-
missed by noting that it is not legal to invoke pthread_
mutex_lock () from within a signal handler [Ope97].
However, it is possible (though almost always unwise) to
hand-craft locking primitives that can be invoked from sig-
nal handlers. Besides which, almost all operating-system
kernels permit locks to be acquired from within interrupt
handlers, which are the kernel analog to signal handlers.

The trick is to block signals (or disable interrupts, as
the case may be) when acquiring any lock that might
be acquired within an interrupt handler. Furthermore, if
holding such a lock, it is illegal to attempt to acquire
any lock that is ever acquired outside of a signal handler
without blocking signals.

Quick Quiz 7.10: Why is it illegal to acquire a Lock A
that is acquired outside of a signal handler without block-
ing signals while holding a Lock B that is acquired within
a signal handler? l

If a lock is acquired by the handlers for several signals,
then each and every one of these signals must be blocked
whenever that lock is acquired, even when that lock is
acquired within a signal handler.

Quick Quiz 7.11: How can you legally block signals
within a signal handler? ll

Unfortunately, blocking and unblocking signals can be
expensive in some operating systems, notably including
Linux, so performance concerns often mean that locks
acquired in signal handlers are only acquired in signal

7.1. STAYING ALIVE

void threadl (void)
{
retry:
spin_lock (&lockl);
do_one_thing () ;
if (!spin_trylock(&lock2)) {
spin_unlock (&lockl);
goto retry;

0 J oUW N

9 }
10 do_another_thing () ;
11 spin_unlock (&lock2);
12 spin_unlock (&lockl);
13 }

15 void thread2 (void)

16 {

17 retry:

18 spin_lock (&lock2) ;

19 do_a_third_thing();

20 if (!spin_trylock(&lockl)) {

21 spin_unlock (&lock2);
22 goto retry;
23 }

24 do_a_fourth_thing();
25 spin_unlock (&lockl);
26 spin_unlock (&lock2);
27 }

Figure 7.11: Abusing Conditional Locking

handlers, and that lockless synchronization mechanisms
are used to communicate between application code and
signal handlers.

Or that signal handlers are avoided completely except
for handling fatal errors.

Quick Quiz 7.12: If acquiring locks in signal handlers
is such a bad idea, why even discuss ways of making it
safe? W

7.1.1.9 Discussion

There are a large number of deadlock-avoidance strategies
available to the shared-memory parallel programmer, but
there are sequential programs for which none of them is a
good fit. This is one of the reasons that expert program-
mers have more than one tool in their toolbox: locking
is a powerful concurrency tool, but there are jobs better
addressed with other tools.

Quick Quiz 7.13: Given an object-oriented application
that passes control freely among a group of objects such
that there is no straightforward locking hierarchy,’ layered
or otherwise, how can this application be parallelized? H

Nevertheless, the strategies described in this section
have proven quite useful in many settings.

7.1.2 Livelock and Starvation

3 Also known as “object-oriented spaghetti code.”

97

Although conditional locking can be an effective
deadlock-avoidance mechanism, it can be abused. Con-
sider for example the beautifully symmetric example
shown in Figure 7.11. This example’s beauty hides an
ugly livelock. To see this, consider the following sequence
of events:

1. Thread 1 acquires 1ockl on line 4, then invokes
do_one_thing ().

2. Thread 2 acquires 1ock?2 on line 18, then invokes
do_a_third_thing().

3. Thread 1 attempts to acquire 1ock?2 on line 6, but
fails because Thread 2 holds it.

4. Thread 2 attempts to acquire Lock1 on line 20, but
fails because Thread 1 holds it.

5. Thread 1 releases 1ockl on line 7, then jumps to
retry at line 3.

6. Thread 2 releases 1ock?2 on line 21, and jumps to
retry atline 17.

7. The livelock dance repeats from the beginning.

Quick Quiz 7.14: How can the livelock shown in Fig-
ure 7.11 be avoided? B

Livelock can be thought of as an extreme form of star-
vation where a group of threads starve, rather than just
one of them.*

Livelock and starvation are serious issues in software
transactional memory implementations, and so the con-
cept of contention manager has been introduced to en-
capsulate these issues. In the case of locking, simple
exponential backoff can often address livelock and star-
vation. The idea is to introduce exponentially increasing
delays before each retry, as shown in Figure 7.12.

Quick Quiz 7.15: What problems can you spot in the
code in Figure 7.127

However, for better results, the backoff should be
bounded, and even better high-contention results have
been obtained via queued locking [And90], which is dis-
cussed more in Section 7.3.2. Of course, best of all is to
use a good parallel design so that lock contention remains
low.

98

void threadl (void)
{

1
2
3 unsigned int wait = 1;

4 retry:

5 spin_lock (&lockl) ;

6 do_one_thing () ;

7 if (!spin_trylock(&lock2)) {
8 spin_unlock (&lockl) ;

9 sleep (wait) ;

10 wait = wait << 1;
11 goto retry;
12 }

13 do_another_thing() ;
14 spin_unlock (&lock2) ;
15 spin_unlock (&lockl) ;

16 }

17

18 void thread2 (void)

19 {

20 unsigned int wait = 1;
21 retry:

22 spin_lock (&lock2);
23 do_a_third_thing();
24 if (!spin_trylock(&lockl)) {

25 spin_unlock (&lock2);
26 sleep (wait);

27 wait = wait << 1;
28 goto retry;

29 }

30 do_a_fourth_thing();
31 spin_unlock (&lockl);
32 spin_unlock (&lock2) ;

Figure 7.12: Conditional Locking and Exponential Back-
off

7.1.3 Unfairness

Unfairness can be thought of as a less-severe form of star-
vation, where a subset of threads contending for a given
lock are granted the lion’s share of the acquisitions. This
can happen on machines with shared caches or NUMA
characteristics, for example, as shown in Figure 7.13. If
CPU 0 releases a lock that all the other CPUs are attempt-
ing to acquire, the interconnect shared between CPUs 0
and 1 means that CPU 1 will have an advantage over
CPUs 2-7. Therefore CPU 1 will likely acquire the lock.
If CPU 1 hold the lock long enough for CPU 0 to be
requesting the lock by the time CPU 1 releases it and
vice versa, the lock can shuttle between CPUs 0O and 1,
bypassing CPUs 2-7.

Quick Quiz 7.16: Wouldn’t it be better just to use
a good parallel design so that lock contention was low
enough to avoid unfairness? H

4 Try not to get too hung up on the exact definitions of terms like
livelock, starvation, and unfairness. Anything that causes a group of
threads to fail to make adequate forward progress is a problem that
needs to be fixed, regardless of what name you choose for it.

CHAPTER 7. LOCKING

CPUO CPU 1 CPU 2 CPU 3
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory |<—=| System Interconnect |<—=| Memory

zZ= N
Interconnect Interconnect
Cache Cache Cache Cache
CPU4 CPUS5 CPU®B CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8GHz Clock Period (8cm)

Figure 7.13: System Architecture and Lock Unfairness

7.1.4 Inefficiency

Locks are implemented using atomic instructions and
memory barriers, and often involve cache misses. As we
saw in Chapter 3, these instructions are quite expensive,
roughly two orders of magnitude greater overhead than
simple instructions. This can be a serious problem for
locking: If you protect a single instruction with a lock,
you will increase the overhead by a factor of one hundred.
Even assuming perfect scalability, one hundred CPUs
would be required to keep up with a single CPU executing
the same code without locking.

This situation underscores the synchronization-
granularity tradeoff discussed in Section 6.3, especially
Figure 6.22: Too coarse a granularity will limit scalabil-
ity, while too fine a granularity will result in excessive
synchronization overhead.

That said, once a lock is held, the data protected by that
lock can be accessed by the lock holder without interfer-
ence. Acquiring a lock might be expensive, but once held,
the CPU’s caches are an effective performance booster, at
least for large critical sections.

Quick Quiz 7.17: How might the lock holder be inter-
fered with?

7.2 Types of Locks

There are a surprising number of types of locks, more
than this short chapter can possibly do justice to. The
following sections discuss exclusive locks (Section 7.2.1),

7.2. TYPES OF LOCKS

reader-writer locks (Section 7.2.2), multi-role locks (Sec-
tion 7.2.3), and scoped locking (Section 7.2.4).

7.2.1 Exclusive Locks

Exclusive locks are what they say they are: only one
thread may hold the lock at a time. The holder of such
a lock thus has exclusive access to all data protected by
that lock, hence the name.

Of course, this all assumes that this lock is held across
all accesses to data purportedly protected by the lock.
Although there are some tools that can help, the ultimate
responsibility for ensuring that the lock is acquired in all
necessary code paths rests with the developer.

Quick Quiz 7.18: Does it ever make sense to have
an exclusive lock acquisition immediately followed by a
release of that same lock, that is, an empty critical section?
|

7.2.2 Reader-Writer Locks

Reader-writer locks [CHP71] permit any number of read-
ers to hold the lock concurrently on the one hand or a
single writer to hold the lock on the other. In theory, then,
reader-writer locks should allow excellent scalability for
data that is read often and written rarely. In practice, the
scalability will depend on the reader-writer lock imple-
mentation.

The classic reader-writer lock implementation involves
a set of counters and flags that are manipulated atomi-
cally. This type of implementation suffers from the same
problem as does exclusive locking for short critical sec-
tions: The overhead of acquiring and releasing the lock is
about two orders of magnitude greater than the overhead
of a simple instruction. Of course, if the critical section
is long enough, the overhead of acquiring and releasing
the lock becomes negligible. However, because only one
thread at a time can be manipulating the lock, the required
critical-section size increases with the number of CPUs.

It is possible to design a reader-writer lock that is
much more favorable to readers through use of per-
thread exclusive locks [HW92]. To read, a thread ac-
quires only its own lock. To write, a thread acquires all
locks. In the absence of writers, each reader incurs only
atomic-instruction and memory-barrier overhead, with no
cache misses, which is quite good for a locking primi-
tive. Unfortunately, writers must incur cache misses as
well as atomic-instruction and memory-barrier overhead—
multiplied by the number of threads.

99

g | 8

S| S| E|w| 8

S| 2| 5| §|E

jan) 2| 2| & =

12| B33 ¢

Z|5| 53|38

=| 212/ 2|23

=

Z|S|S|&| &4
Null (Not Held)
Concurrent Read X
Concurrent Write X | XX
Protected Read X X | X
Protected Write X[X[XX
Exclusive X | X[X | XX

Table 7.1: VAX/VMS Distributed Lock Manager Policy

In short, reader-writer locks can be quite useful in a
number of situations, but each type of implementation
does have its drawbacks. The canonical use case for
reader-writer locking involves very long read-side critical
sections, preferably measured in hundreds of microsec-
onds or even milliseconds.

7.2.3 Beyond Reader-Writer Locks

Reader-writer locks and exclusive locks differ in their
admission policy: exclusive locks allow at most one
holder, while reader-writer locks permit an arbitrary num-
ber of read-holders (but only one write-holder). There is a
very large number of possible admission policies, one of
which is that of the VAX/VMS distributed lock manager
(DLM) [ST87], which is shown in Table 7.1. Blank cells
indicate compatible modes, while cells containing “X”
indicate incompatible modes.

The VAX/VMS DLM uses six modes. For purposes
of comparison, exclusive locks use two modes (not held
and held), while reader-writer locks use three modes (not
held, read held, and write held).

The first mode is null, or not held. This mode is com-
patible with all other modes, which is to be expected: If
a thread is not holding a lock, it should not prevent any
other thread from acquiring that lock.

The second mode is concurrent read, which is com-
patible with every other mode except for exclusive. The
concurrent-read mode might be used to accumulate ap-
proximate statistics on a data structure, while permitting
updates to proceed concurrently.

The third mode is concurrent write, which is compati-
ble with null, concurrent read, and concurrent write. The
concurrent-write mode might be used to update approxi-

100

mate statistics, while still permitting reads and concurrent
updates to proceed concurrently.

The fourth mode is protected read, which is compati-
ble with null, concurrent read, and protected read. The
protected-read mode might be used to obtain a consistent
snapshot of the data structure, while permitting reads but
not updates to proceed concurrently.

The fifth mode is protected write, which is compatible
with null and concurrent read. The protected-write mode
might be used to carry out updates to a data structure that
could interfere with protected readers but which could be
tolerated by concurrent readers.

The sixth and final mode is exclusive, which is compat-
ible only with null. The exclusive mode is used when it is
necessary to exclude all other accesses.

It is interesting to note that exclusive locks and reader-
writer locks can be emulated by the VAX/VMS DLM. Ex-
clusive locks would use only the null and exclusive modes,
while reader-writer locks might use the null, protected-
read, and protected-write modes.

Quick Quiz 7.19: Is there any other way for the
VAX/VMS DLM to emulate a reader-writer lock? ll

Although the VAX/VMS DLM policy has seen
widespread production use for distributed databases, it
does not appear to be used much in shared-memory ap-
plications. One possible reason for this is that the greater
communication overheads of distributed databases can
hide the greater overhead of the VAX/VMS DLM’s more-
complex admission policy.

Nevertheless, the VAX/VMS DLM is an interesting
illustration of just how flexible the concepts behind lock-
ing can be. It also serves as a very simple introduction
to the locking schemes used by modern DBMSes, which
can have more than thirty locking modes, compared to
VAX/VMS’s six.

7.2.4 Scoped Locking

The locking primitives discussed thus far require explicit
acquisition and release primitives, for example, spin_
lock () and spin_unlock (), respectively. Another
approach is to use the object-oriented “resource alloca-
tion is initialization” (RAII) pattern [ES90].5 This pattern
is often applied to auto variables in languages like C++,
where the corresponding constructor is invoked upon en-
try to the object’s scope, and the corresponding destructor
is invoked upon exit from that scope. This can be applied

5> Though more clearly expressed at

stroustrup.com/bs_fag2.html#finally.

http://www.

CHAPTER 7. LOCKING

to locking by having the constructor acquire the lock and
the destructor free it.

This approach can be quite useful, in fact in 1990 I was
convinced that it was the only type of locking that was
needed.® One very nice property of RAII locking is that
you don’t need to carefully release the lock on each and
every code path that exits that scope, a property that can
eliminate a troublesome set of bugs.

However, RAII locking also has a dark side. RAII
makes it quite difficult to encapsulate lock acquisition
and release, for example, in iterators. In many iterator
implementations, you would like to acquire the lock in
the iterator’s “start” function and release it in the iterator’s
“stop” function. RAII locking instead requires that the
lock acquisition and release take place in the same level
of scoping, making such encapsulation difficult or even
impossible.

RAII locking also prohibits overlapping critical sec-
tions, due to the fact that scopes must nest. This prohibi-
tion makes it difficult or impossible to express a number of
useful constructs, for example, locking trees that mediate
between multiple concurrent attempts to assert an event.
Of an arbitrarily large group of concurrent attempts, only
one need succeed, and the best strategy for the remaining
attempts is for them to fail as quickly and painlessly as
possible. Otherwise, lock contention becomes pathologi-
cal on large systems (where “large” is many hundreds of
CPUs).

Example data structures (taken from the Linux ker-
nel’s implementation of RCU) are shown in Figure 7.14.
Here, each CPU is assigned a leaf rcu_node structure,
and each rcu_node structure has a pointer to its parent
(named, oddly enough, —>parent), up to the root rcu__
node structure, which has a NULL ->parent pointer.
The number of child rcu_node structures per parent can
vary, but is typically 32 or 64. Each rcu_node structure
also contains a lock named —>fqgslock.

The general approach is a tournament, where a given
CPU conditionally acquires its leaf rcu_node struc-
ture’s —>fgslock, and, if successful, attempt to acquire
that of the parent, then release that of the child. In addi-
tion, at each level, the CPU checks a global gp_flags
variable, and if this variable indicates that some other
CPU has asserted the event, the first CPU drops out of
the competition. This acquire-then-release sequence con-
tinues until either the gp_ f1ags variable indicates that
someone else won the tournament, one of the attempts

6 My later work with parallelism at Sequent Computer Systems
very quickly disabused me of this misguided notion.

http://www.stroustrup.com/bs_faq2.html#finally
http://www.stroustrup.com/bs_faq2.html#finally

7.3. LOCKING IMPLEMENTATION ISSUES

Root rcu_node
Structure
Leaf rcu_node e 0 o Leaf rcu_node
Structure 0 Structure N
T To o e T T To o 0 T
o £ - —
o D) | + |
oo —
SO 5 z- z
* S
pd
5 2
o £ (@]
© 5
o
O

Figure 7.14: Locking Hierarchy

to acquire an —>fgslock fails, or the root rcu_node
structure’s —>fgslock as been acquired.

Simplified code to implement this is shown in Fig-
ure 7.15. The purpose of this function is to mediate be-
tween CPUs who have concurrently detected a need to
invoke the do_force_quiescent_state () func-
tion. At any given time, it only makes sense for one
instance of do_force_quiescent_state () tobe
active, so if there are multiple concurrent callers, we
need at most one of them to actually invoke do_force_
quiescent_state (), and we need the rest to (as
quickly and painlessly as possible) give up and leave.

To this end, each pass through the loop spanning lines 7-
15 attempts to advance up one level in the rcu_node
hierarcy. If the gp_flags variable is already set (line 8)
or if the attempt to acquire the current rcu_node struc-
ture’s —>fgslock is unsuccessful (line 9), then local
variable ret is set to 1. If line 10 sees that local variable
rnp_old is non-NULL, meaning that we hold rnp_
0ld’s =>fqgs_lock, line 11 releases this lock (but only
after the attempt has been made to acquire the parent
rcu_node structure’s —>fgslock). If line 12 sees that
either line 8 or 9 saw a reason to give up, line 13 returns to
the caller. Otherwise, we must have acquired the current
rcu_node structure’s —>fgslock, so line 14 saves a
pointer to this structure in local variable rnp_old in
preparation for the next pass through the loop.

If control reaches line 16, we won the tournament, and

101

void force_quiescent_state (struct rcu_node *rnp_leaf)
{

1
2
3 int ret;

4 struct rcu_node *rnp = rnp_leaf;
5 struct rcu_node *rnp_old = NULL;
6

7

8

for (; rnp != NULL; rnp = rnp->parent) {
ret = (ACCESS_ONCE (gp_flags)) ||
9 'raw_spin_trylock (&rnp->fgslock);
10 if (rnp_old != NULL)
11 raw_spin_unlock (&rnp_old->fgslock);
12 if (ret)
13 return;
14 rnp_old = rnp;
15 }
16 if (!ACCESS_ONCE (gp_flags)) {
17 ACCESS_ONCE (gp_flags) = 1;
18 do_force_quiescent_state();
19 ACCESS_ONCE (gp_£flags) = 0;
20 }
21 raw_spin_unlock (&rnp_old->fgslock);
22}

Figure 7.15: Conditional Locking to Reduce Contention

now holds the root rcu_node structure’s —>fgslock.
If line 16 still sees that the global variable gp_flags is
zero, line 17 sets gp_flags to one, line 18 invokes
do_force_quiescent_state (), and line 19 re-
sets gp__f lags back to zero. Either way, line 21 releases
the root rcu_node structure’s —>fgslock.

Quick Quiz 7.20: The code in Figure 7.15 is ridicu-
lously complicated! Why not conditionally acquire a
single global lock? H

Quick Quiz 7.21: Wait a minute! If we “win” the
tournament on line 16 of Figure 7.15, we get to do all the
work of do_force_quiescent_state (). Exactly
how is that a win, really? H

This function illustrates the not-uncommon pattern of
hierarchical locking. This pattern is quite difficult to im-
plement using RAII locking, just like the iterator encap-
sulation noted earlier, and so the lock/unlock primitives
will be needed for the foreseeable future.

7.3 Locking Implementation Issues

Developers are almost always best-served by using what-
ever locking primitives are provided by the system, for
example, the POSIX pthread mutex locks [Ope97, But97].
Nevertheless, studying sample implementations can be
helpful, as can considering the challenges posed by ex-
treme workloads and environments.

102

typedef int xchglock_t;
#define DEFINE_XCHG_LOCK (n) xchglock_t n = 0

1
2
3
4 void xchg_lock (xchglock_t *xp)
5 {
6 while (xchg(xp, 1) == 1) {
7 while (xxp == 1)
8 continue;
9 }
10 }

12 void xchg_unlock (xchglock_t =xxp)
13 {

14 (void) xchg (xp, 0);

15 }

Figure 7.16: Sample Lock Based on Atomic Exchange

7.3.1 Sample Exclusive-Locking Imple-
mentation Based on Atomic Ex-
change

This section reviews the implementation shown in Fig-
ure 7.16. The data structure for this lock is just an int,
as shown on line 1, but could be any integral type. The
initial value of this lock is zero, meaning “unlocked”, as
shown on line 2.

Quick Quiz 7.22: Why not rely on the C language’s
default initialization of zero instead of using the explicit
initializer shown on line 2 of Figure 7.167? B

Lock acquisition is carried out by the xchg_lock ()
function shown on lines 4-9. This function uses a nested
loop, with the outer loop repeatedly atomically exchang-
ing the value of the lock with the value one (meaning
“locked”). If the old value was already the value one (in
other words, someone else already holds the lock), then
the inner loop (lines 7-8) spins until the lock is available,
at which point the outer loop makes another attempt to
acquire the lock.

Quick Quiz 7.23: Why bother with the inner loop on
lines 7-8 of Figure 7.167 Why not simply repeatedly do
the atomic exchange operation on line 6? l

Lock release is carried out by the xchg_unlock ()
function shown on lines 12-15. Line 14 atomically ex-
changes the value zero (“unlocked”) into the lock, thus
marking it as having been released.

Quick Quiz 7.24: Why not simply store zero into the
lock word on line 14 of Figure 7.16? B

This lock is a simple example of a test-and-set
lock [SR84], but very similar mechanisms have been used
extensively as pure spinlocks in production.

CHAPTER 7. LOCKING

7.3.2 Other Exclusive-Locking Implemen-
tations

There are a great many other possible implementations
of locking based on atomic instructions, many of which
are reviewed by Mellor-Crummey and Scott [MCS91].
These implementations represent different points in a
multi-dimensional design tradeoff [McK96b]. For ex-
ample, the atomic-exchange-based test-and-set lock pre-
sented in the previous section works well when contention
is low and has the advantage of small memory footprint.
It avoids giving the lock to threads that cannot use it, but
as a result can suffer from unfairness or even starvation at
high contention levels.

In contrast, ticket lock [MCS91], which is used in the
Linux kernel, avoids unfairness at high contention levels,
but as a consequence of its first-in-first-out discipline can
grant the lock to a thread that is currently unable to use
it, for example, due to being preempted, interrupted, or
otherwise out of action. However, it is important to avoid
getting too worried about the possibility of preemption
and interruption, given that this preemption and interrup-
tion might just as well happen just after the lock was
acquired.”

All locking implementations where waiters spin on a
single memory location, including both test-and-set locks
and ticket locks, suffer from performance problems at
high contention levels. The problem is that the thread
releasing the lock must update the value of the corre-
sponding memory location. At low contention, this is not
a problem: The corresponding cache line is very likely
still local to and writeable by the thread holding the lock.
In contrast, at high levels of contention, each thread at-
tempting to acquire the lock will have a read-only copy
of the cache line, and the lock holder will need to inval-
idate all such copies before it can carry out the update
that releases the lock. In general, the more CPUs and
threads there are, the greater the overhead incurred when
releasing the lock under conditions of high contention.

This negative scalability has motivated a number of
different queued-lock implementations [And90, GT90,
MCS91, WKS94, Cra93, MLH94, TS93]. Queued locks
avoid high cache-invalidation overhead by assigning each
thread a queue element. These queue elements are linked
together into a queue that governs the order that the lock
will be granted to the waiting threads. The key point is

7 Besides, the best way of handling high lock contention is to avoid
it in the first place! However, there are some situation where high lock
contention is the lesser of the available evils, and in any case, studying
schemes that deal with high levels of contention is good mental exercise.

7.3. LOCKING IMPLEMENTATION ISSUES

that each thread spins on its own queue element, so that
the lock holder need only invalidate the first element from
the next thread’s CPU’s cache. This arrangement greatly
reduces the overhead of lock handoff at high levels of
contention.

More recent queued-lock implementations also take the
system’s architecture into account, preferentially grant-
ing locks locally, while also taking steps to avoid starva-
tion [SSVMO02, RH03, RH02, JMRR02, MCMO02]. Many
of these can be thought of as analogous to the elevator
algorithms traditionally used in scheduling disk I/O.

Unfortunately, the same scheduling logic that improves
the efficiency of queued locks at high contention also in-
creases their overhead at low contention. Beng-Hong Lim
and Anant Agarwal therefore combined a simple test-and-
set lock with a queued lock, using the test-and-set lock
at low levels of contention and switching to the queued
lock at high levels of contention [LA94], thus getting low
overhead at low levels of contention and getting fairness
and high throughput at high levels of contention. Brown-
ing et al. took a similar approach, but avoided the use of
a separate flag, so that the test-and-set fast path uses the
same sequence of instructions that would be used in a
simple test-and-set lock [BMMMO5]. This approach has
been used in production.

Another issue that arises at high levels of contention
is when the lock holder is delayed, especially when the
delay is due to preemption, which can result in priority
inversion, where a low-priority thread holds a lock, but
is preempted by a medium priority CPU-bound thread,
which results in a high-priority process blocking while
attempting to acquire the lock. The result is that the
CPU-bound medium-priority process is preventing the
high-priority process from running. One solution is pri-
ority inheritance [LR80], which has been widely used
for real-time computing [SRL90a, Cor06b], despite some
lingering controversy over this practice [YodO4a, Loc02].

Another way to avoid priority inversion is to pre-
vent preemption while a lock is held. Because pre-
venting preemption while locks are held also improves
throughput, most proprietary UNIX kernels offer some
form of scheduler-conscious synchronization mecha-
nism [KWS97], largely due to the efforts of a certain
sizable database vendor. These mechanisms usually
take the form of a hint that preemption would be in-
appropriate. These hints frequently take the form of a
bit set in a particular machine register, which enables
extremely low per-lock-acquisition overhead for these
mechanisms. In contrast, Linux avoids these hints, in-

103

stead getting similar results from a mechanism called
futexes [FRK02, Mol06, Ros06, Drel1].

Interestingly enough, atomic instructions are not
strictly needed to implement locks [Dij65, Lam74]. An
excellent exposition of the issues surrounding locking
implementations based on simple loads and stores may
be found in Herlihy’s and Shavit’s textbook [HS08]. The
main point echoed here is that such implementations cur-
rently have little practical application, although a careful
study of them can be both entertaining and enlightening.
Nevertheless, with one exception described below, such
study is left as an exercise for the reader.

Gamsa et al. [GKAS99, Section 5.3] describe a token-
based mechanism in which a token circulates among the
CPUs. When the token reaches a given CPU, it has exclu-
sive access to anything protected by that token. There are
any number of schemes that may be used to implement
the token-based mechanism, for example:

1. Maintain a per-CPU flag, which is initially zero for
all but one CPU. When a CPU’s flag is non-zero, it
holds the token. When it finishes with the token, it
zeroes its flag and sets the flag of the next CPU to
one (or to any other non-zero value).

2. Maintain a per-CPU counter, which is initially set to
the corresponding CPU’s number, which we assume
to range from zero to N — 1, where N is the number
of CPUs in the system. When a CPU’s counter is
greater than that of the next CPU (taking counter
wrap into account), the first CPU holds the token.
When it is finished with the token, it sets the next
CPU’s counter to a value one greater than its own
counter.

Quick Quiz 7.25: How can you tell if one counter is
greater than another, while accounting for counter wrap?
|

Quick Quiz 7.26: Which is better, the counter ap-
proach or the flag approach? B

This lock is unusual in that a given CPU cannot nec-
essarily acquire it immediately, even if no other CPU is
using it at the moment. Instead, the CPU must wait un-
til the token comes around to it. This is useful in cases
where CPUs need periodic access to the critical section,
but can tolerate variances in token-circulation rate. Gamsa
et al. [GKAS99] used it to implement a variant of read-
copy update (see Section 9.5), but it could also be used to
protect periodic per-CPU operations such as flushing per-
CPU caches used by memory allocators [MS93], garbage-

104

int delete (int key)
{

int b;
struct element =*p;

b hashfunction (key) ;

P hashtable[b];

if (p == NULL || p->key != key)
9 return 0;

10 spin_lock (&p—>lock) ;

11 hashtable[b] = NULL;

12 spin_unlock (&p->1lock);

13 kfree(p);

14 return 1;

15 }

Figure 7.17: Per-Element Locking Without Existence
Guarantees

collecting per-CPU data structures, or flushing per-CPU
data to shared storage (or to mass storage, for that matter).

As increasing numbers of people gain familiarity with
parallel hardware and parallelize increasing amounts of
code, we can expect more special-purpose locking primi-
tives to appear. Nevertheless, you should carefully con-
sider this important safety tip: Use the standard synchro-
nization primitives whenever humanly possible. The big
advantage of the standard synchronization primitives over
roll-your-own efforts is that the standard primitives are
typically much less bug-prone.®

7.4 Lock-Based Existence Guaran-
tees

A key challenge in parallel programming is to pro-
vide existence guarantees [GKAS99], so that attempts to
access a given object can rely on that object being in exis-
tence throughout a given access attempt. In some cases,
existence guarantees are implicit:

1. Global variables and static local variables in the base
module will exist as long as the application is run-
ning.

2. Global variables and static local variables in a loaded
module will exist as long as that module remains
loaded.

3. A module will remain loaded as long as at least one
of its functions has an active instance.

8 And yes, I have done at least my share of roll-your-own synchro-
nization primitives. However, you will notice that my hair is much
greyer than it was before I started doing that sort of work. Coinci-
dence? Maybe. But are you really willing to risk your own hair turning
prematurely grey?

CHAPTER 7. LOCKING

4. A given function instance’s on-stack variables will
exist until that instance returns.

5. If you are executing within a given function or have
been called (directly or indirectly) from that function,
then the given function has an active instance.

These implicit existence guarantees are straightforward,
though bugs involving implicit existence guarantees really
can happen.

Quick Quiz 7.27: How can relying on implicit exis-
tence guarantees result in a bug? A

But the more interesting—and troublesome—guarantee
involves heap memory: A dynamically allocated data
structure will exist until it is freed. The problem to be
solved is to synchronize the freeing of the structure with
concurrent accesses to that same structure. One way to
do this is with explicit guarantees, such as locking. If a
given structure may only be freed while holding a given
lock, then holding that lock guarantees that structure’s
existence.

But this guarantee depends on the existence of the lock
itself. One straightforward way to guarantee the lock’s
existence is to place the lock in a global variable, but
global locking has the disadvantage of limiting scalability.
One way of providing scalability that improves as the size
of the data structure increases is to place a lock in each
element of the structure. Unfortunately, putting the lock
that is to protect a data element in the data element itself is
subject to subtle race conditions, as shown in Figure 7.17.

Quick Quiz 7.28: What if the element we need to
delete is not the first element of the list on line 8 of Fig-
ure 7.177 W

Quick Quiz 7.29: What race condition can occur in
Figure 7.177 W

One way to fix this example is to use a hashed set of
global locks, so that each hash bucket has its own lock,
as shown in Figure 7.18. This approach allows acquiring
the proper lock (on line 9) before gaining a pointer to
the data element (on line 10). Although this approach
works quite well for elements contained in a single par-
titionable data structure such as the hash table shown in
the figure, it can be problematic if a given data element
can be a member of multiple hash tables or given more-
complex data structures such as trees or graphs. These
problems can be solved, in fact, such solutions form the
basis of lock-based software transactional memory im-
plementations [ST95, DSS06]. However, Chapter 9 de-
scribes simpler—and faster—ways of providing existence
guarantees.

7.5. LOCKING: HERO OR VILLAIN?

int delete (int key)
{

1
2
3 int b;

4 struct element *p;
5 spinlock_t =*sp;
6

7

8

b = hashfunction (key);
sp = &locktable[b];

9 spin_lock (sp);

10 p = hashtable[b];

11 if (p == NULL || p->key != key) {
12 spin_unlock (sp);

13 return 0;

14 }

15 hashtable[b] = NULL;

16 spin_unlock (sp);
17 kfree(p);
18 return 1;

Figure 7.18: Per-Element Locking With Lock-Based Ex-
istence Guarantees

7.5 Locking: Hero or Villain?

As is often the case in real life, locking can be either
hero or villain, depending on how it is used and on the
problem at hand. In my experience, those writing whole
applications are happy with locking, those writing parallel
libraries are less happy, and those parallelizing existing
sequential libraries are extremely unhappy. The following
sections discuss some reasons for these differences in
viewpoints.

7.5.1 Locking For Applications: Hero!

When writing an entire application (or entire kernel), de-
velopers have full control of the design, including the
synchronization design. Assuming that the design makes
good use of partitioning, as discussed in Chapter 6, lock-
ing can be an extremely effective synchronization mech-
anism, as demonstrated by the heavy use of locking in
production-quality parallel software.

Nevertheless, although such software usually bases
most of its synchronization design on locking, such soft-
ware also almost always makes use of other synchro-
nization mechanisms, including special counting algo-
rithms (Chapter 5), data ownership (Chapter 8), ref-
erence counting (Section 9.2), sequence locking (Sec-
tion 9.4), and read-copy update (Section 9.5). In addition,
practitioners use tools for deadlock detection [CorO6a],
lock acquisition/release balancing [Cor04b], cache-
miss analysis [Thell], hardware-counter-based profil-
ing [EGMdB11, Thel2], and many more besides.

Given careful design, use of a good combination of
synchronization mechanisms, and good tooling, locking

105
works quite well for applications and kernels.

7.5.2 Locking For Parallel Libraries: Just
Another Tool

Unlike applications and kernels, the designer of a library
cannot know the locking design of the code that the library
will be interacting with. In fact, that code might not be
written for years to come. Library designers therefore
have less control and must exercise more care when laying
out their synchronization design.

Deadlock is of course of particular concern, and the
techniques discussed in Section 7.1.1 need to be applied.
One popular deadlock-avoidance strategy is therefore to
ensure that the library’s locks are independent subtrees of
the enclosing program’s locking hierarchy. However, this
can be harder than it looks.

One complication was discussed in Section 7.1.1.2,
namely when library functions call into application code,
with gsort () ’s comparison-function argument being
a case in point. Another complication is the interaction
with signal handlers. If an application signal handler is
invoked from a signal received within the library func-
tion, deadlock can ensue just as surely as if the library
function had called the signal handler directly. A final
complication occurs for those library functions that can
be used between a fork ()/exec () pair, for example,
due to use of the system () function. In this case, if
your library function was holding a lock at the time of the
fork (), then the child process will begin life with that
lock held. Because the thread that will release the lock is
running in the parent but not the child, if the child calls
your library function, deadlock will ensue.

The following strategies may be used to avoid deadlock
problems in these cases:

1. Don’t use either callbacks or signals.

2. Don’t acquire locks from within callbacks or signal
handlers.

3. Let the caller control synchronization.

4. Parameterize the library API to delegate locking to
caller.

5. Explicitly avoid callback deadlocks.
6. Explicitly avoid signal-handler deadlocks.

Each of these strategies is discussed in one of the fol-
lowing sections.

106

7.5.2.1 Use Neither Callbacks Nor Signals

If a library function avoids callbacks and the application
as a whole avoids signals, then any locks acquired by that
library function will be leaves of the locking-hierarchy
tree. This arrangement avoids deadlock, as discussed in
Section 7.1.1.1. Although this strategy works extremely
well where it applies, there are some applications that
must use signal handlers, and there are some library func-
tions (such as the gsort () function discussed in Sec-
tion 7.1.1.2) that require callbacks.

The strategy described in the next section can often be
used in these cases.

7.5.2.2 Avoid Locking in Callbacks and Signal Han-
dlers

If neither callbacks nor signal handlers acquire locks, then
they cannot be involved in deadlock cycles, which allows
straightforward locking hierarchies to once again consider
library functions to be leaves on the locking-hierarchy tree.
This strategy works very well for most uses of gsort,
whose callbacks usually simply compare the two values
passed in to them. This strategy also works wonderfully
for many signal handlers, especially given that acquiring
locks from within signal handlers is generally frowned
upon [Gro01],” but can fail if the application needs to
manipulate complex data structures from a signal handler.

Here are some ways to avoid acquiring locks in signal
handlers even if complex data structures must be manipu-
lated:

1. Use simple data structures based on non-blocking
synchronization, as will be discussed in Sec-
tion 14.3.1.

2. If the data structures are too complex for reasonable
use of non-blocking synchronization, create a queue
that allows non-blocking enqueue operations. In the
signal handler, instead of manipulating the complex
data structure, add an element to the queue describ-
ing the required change. A separate thread can then
remove elements from the queue and carry out the
required changes using normal locking. There are
a number of readily available implementations of
concurrent queues [KLP12, Des09, MS96].

This strategy should be enforced with occasional man-
ual or (preferably) automated inspections of callbacks and

9 But the standard’s words do not stop clever coders from creating
their own home-brew locking primitives from atomic operations.

CHAPTER 7. LOCKING

signal handlers. When carrying out these inspections, be
wary of clever coders who might have (unwisely) created
home-brew locks from atomic operations.

7.5.2.3 Caller Controls Synchronization

Let the caller control synchronization. This works ex-
tremely well when the library functions are operating on
independent caller-visible instances of a data structure,
each of which may be synchronized separately. For ex-
ample, if the library functions operate on a search tree,
and if the application needs a large number of indepen-
dent search trees, then the application can associate a lock
with each tree. The application then acquires and releases
locks as needed, so that the library need not be aware of
parallelism at all. Instead, the application controls the
parallelism, so that locking can work very well, as was
discussed in Section 7.5.1.

However, this strategy fails if the library implements
a data structure that requires internal concurrency, for
example, a hash table or a parallel sort. In this case, the
library absolutely must control its own synchronization.

7.5.2.4 Parameterize Library Synchronization

The idea here is to add arguments to the library’s API
to specify which locks to acquire, how to acquire and
release them, or both. This strategy allows the application
to take on the global task of avoiding deadlock by specify-
ing which locks to acquire (by passing in pointers to the
locks in question) and how to acquire them (by passing
in pointers to lock acquisition and release functions), but
also allows a given library function to control its own con-
currency by deciding where the locks should be acquired
and released.

In particular, this strategy allows the lock acquisition
and release functions to block signals as needed without
the library code needing to be concerned with which sig-
nals need to be blocked by which locks. The separation
of concerns used by this strategy can be quite effective,
but in some cases the strategies laid out in the following
sections can work better.

That said, passing explicit pointers to locks to external
APIs must be very carefully considered, as discussed
in Section 7.1.1.4. Although this practice is sometimes
the right thing to do, you should do yourself a favor by
looking into alternative designs first.

7.5. LOCKING: HERO OR VILLAIN?

7.5.2.5 Explicitly Avoid Callback Deadlocks

The basic rule behind this strategy was discussed in Sec-
tion 7.1.1.2: “Release all locks before invoking unknown
code.” This is usually the best approach because it allows
the application to ignore the library’s locking hierarchy:
the library remains a leaf or isolated subtree of the appli-
cation’s overall locking hierarchy.

In cases where it is not possible to release all locks
before invoking unknown code, the layered locking hier-
archies described in Section 7.1.1.3 can work well. For
example, if the unknown code is a signal handler, this
implies that the library function block signals across all
lock acquisitions, which can be complex and slow. There-
fore, in cases where signal handlers (probably unwisely)
acquire locks, the strategies in the next section may prove
helpful.

7.5.2.6 Explicitly Avoid Signal-Handler Deadlocks

Signal-handler deadlocks can be explicitly avoided as
follows:

1. If the application invokes the library function from
within a signal handler, then that signal must be
blocked every time that the library function is in-
voked from outside of a signal handler.

2. If the application invokes the library function while
holding a lock acquired within a given signal handler,
then that signal must be blocked every time that the
library function is called outside of a signal handler.

These rules can be enforced by using tools sim-
ilar to the Linux kernel’s lockdep lock dependency
checker [Cor06a]. One of the great strengths of lockdep
is that it is not fooled by human intuition [Ros11].

7.5.2.7 Library Functions Used Between fork() and
exec()

As noted earlier, if a thread executing a library function is
holding a lock at the time that some other thread invokes
fork (), the fact that the parent’s memory is copied to
create the child means that this lock will be born held in
the child’s context. The thread that will release this lock
is running in the parent, but not in the child, which means
that the child’s copy of this lock will never be released.
Therefore, any attempt on the part of the child to invoke
that same library function will result in deadlock.

One approach to this problem would be to have the
library function check to see if the owner of the lock

107

is still running, and if not, “breaking” the lock by re-
initializing and then acquiring it. However, this approach
has a couple of vulnerabilities:

1. The data structures protected by that lock are likely
to be in some intermediate state, so that naively
breaking the lock might result in arbitrary memory
corruption.

2. If the child creates additional threads, two threads
might break the lock concurrently, with the result
that both threads believe they own the lock. This
could again result in arbitrary memory corruption.

The at fork () function is provided to help deal with
these situations. The idea is to register a triplet of func-
tions, one to be called by the parent before the fork (),
one to be called by the parent after the fork (), and one
to be called by the child after the fork (). Appropriate
cleanups can then be carried out at these three points.

Be warned, however, that coding of at fork () han-
dlers is quite subtle in general. The cases where
atfork () works best are cases where the data struc-
ture in question can simply be re-initialized by the child.

7.5.2.8 Parallel Libraries: Discussion

Regardless of the strategy used, the description of the
library’s API must include a clear description of that strat-
egy and how the caller should interact with that strategy.
In short, constructing parallel libraries using locking is
possible, but not as easy as constructing a parallel appli-
cation.

7.5.3 Locking For Parallelizing Sequential
Libraries: Villain!

With the advent of readily available low-cost multicore
systems, a common task is parallelizing an existing library
that was designed with only single-threaded use in mind.
This all-too-common disregard for parallelism can result
in a library API that is severely flawed from a parallel-
programming viewpoint. Candidate flaws include:

1. Implicit prohibition of partitioning.
2. Callback functions requiring locking.
3. Object-oriented spaghetti code.

These flaws and the consequences for locking are dis-
cussed in the following sections.

108

7.5.3.1 Partitioning Prohibited

Suppose that you were writing a single-threaded hash-
table implementation. It is easy and fast to maintain an
exact count of the total number of items in the hash table,
and also easy and fast to return this exact count on each
addition and deletion operation. So why not?

One reason is that exact counters do not perform or
scale well on multicore systems, as was seen in Chapter 5.
As a result, the parallelized implementation of the hash
table will not perform or scale well.

So what can be done about this? One approach is to
return an approximate count, using one of the algorithms
from Chapter 5. Another approach is to drop the element
count altogether.

Either way, it will be necessary to inspect uses of the
hash table to see why the addition and deletion operations
need the exact count. Here are a few possibilities:

1. Determining when to resize the hash table. In this
case, an approximate count should work quite well.
It might also be useful to trigger the resizing opera-
tion from the length of the longest chain, which can
be computed and maintained in a nicely partitioned
per-chain manner.

2. Producing an estimate of the time required to tra-
verse the entire hash table. An approximate count
works well in this case, also.

3. For diagnostic purposes, for example, to check for
items being lost when transferring them to and from
the hash table. This clearly requires an exact count.
However, given that this usage is diagnostic in na-
ture, it might suffice to maintain the lengths of the
hash chains, then to infrequently sum them up while
locking out addition and deletion operations.

It turns out that there is now a strong theoretical ba-
sis for some of the constraints that performance and
scalability place on a parallel library’s APIs [AGH" 11a,
AGH™11b, McK11b]. Anyone designing a parallel li-
brary needs to pay close attention to those constraints.

Although it is all too easy to blame locking for what
are really problems due to a concurrency-unfriendly API,
doing so is not helpful. On the other hand, one has little
choice but to sympathize with the hapless developer who
made this choice in (say) 1985. It would have been a
rare and courageous developer to anticipate the need for
parallelism at that time, and it would have required an
even more rare combination of brilliance and luck to
actually arrive at a good parallel-friendly API.

CHAPTER 7. LOCKING

Times change, and code must change with them. That
said, there might be a huge number of users of a popular
library, in which case an incompatible change to the API
would be quite foolish. Adding a parallel-friendly API
to complement the existing heavily used sequential-only
API is probably the best course of action in this situation.

Nevertheless, human nature being what it is, we can ex-
pect our hapless developer to be more likely to complain
about locking than about his or her own poor (though
understandable) API design choices.

7.5.3.2 Deadlock-Prone Callbacks

Sections 7.1.1.2, 7.1.1.3, and 7.5.2 described how undisci-
plined use of callbacks can result in locking woes. These
sections also described how to design your library func-
tion to avoid these problems, but it is unrealistic to expect
a 1990s programmer with no experience in parallel pro-
gramming to have followed such a design. Therefore,
someone attempting to parallelize an existing callback-
heavy single-threaded library will likely have many op-
portunities to curse locking’s villainy.

If there are a very large number of uses of a callback-
heavy library, it may be wise to again add a parallel-
friendly API to the library in order to allow existing
users to convert their code incrementally. Alternatively,
some advocate use of transactional memory in these cases.
While the jury is still out on transactional memory, Sec-
tion 17.2 discusses its strengths and weaknesses. It is
important to note that hardware transactional memory
(discussed in Section 17.3) cannot help here unless the
hardware transactional memory implementation provides
forward-progress guarantees, which few do. Other alter-
natives that appear to be quite practical (if less heavily
hyped) include the methods discussed in Sections 7.1.1.5,
and 7.1.1.6, as well as those that will be discussed in
Chapters 8 and 9.

7.5.3.3 Object-Oriented Spaghetti Code

Object-oriented programming went mainstream sometime
in the 1980s or 1990s, and as a result there is a huge
amount of object-oriented code in production, much of
it single-threaded. Although object orientation can be a
valuable software technique, undisciplined use of objects
can easily result in object-oriented spaghetti code. In
object-oriented spaghetti code, control flits from object
to object in an essentially random manner, making the
code hard to understand and even harder, and perhaps
impossible, to accommodate a locking hierarchy.

7.6. SUMMARY

Although many might argue that such code should be
cleaned up in any case, such things are much easier to
say than to do. If you are tasked with parallelizing such
a beast, you can reduce the number of opportunities to
curse locking by using the techniques described in Sec-
tions 7.1.1.5, and 7.1.1.6, as well as those that will be
discussed in Chapters 8 and 9. This situation appears to
be the use case that inspired transactional memory, so it
might be worth a try as well. That said, the choice of
synchronization mechanism should be made in light of
the hardware habits discussed in Chapter 3. After all,
if the overhead of the synchronization mechanism is or-
ders of magnitude more than that of the operations being
protected, the results are not going to be pretty.

And that leads to a question well worth asking in these
situations: Should the code remain sequential? For ex-
ample, perhaps parallelism should be introduced at the
process level rather than the thread level. In general, if a
task is proving extremely hard, it is worth some time spent
thinking about not only alternative ways to accomplish
that particular task, but also alternative tasks that might
better solve the problem at hand.

7.6 Summary

Locking is perhaps the most widely used and most gen-
erally useful synchronization tool. However, it works
best when designed into an application or library from
the beginning. Given the large quantity of pre-existing
single-threaded code that might need to one day run in
parallel, locking should therefore not be the only tool in
your parallel-programming toolbox. The next few chap-
ters will discuss other tools, and how they can best be
used in concert with locking and with each other.

109

110 CHAPTER 7. LOCKING

Chapter 8

Data Ownership

It is mine, I tell you. My own. My precious.
Yes, my precious.

Gollum in “The Fellowship of the Ring”,
J.R.R. Tolkien

One of the simplest ways to avoid the synchronization
overhead that comes with locking is to parcel the data
out among the threads (or, in the case of kernels, CPUs)
so that a given piece of data is accessed and modified
by only one of the threads. Interestingly enough, data
ownership covers each of the “big three” parallel design
techniques: It partitions over threads (or CPUs, as the case
may be), it batches all local operations, and its elimination
of synchronization operations is weakening carried to its
logical extreme. It should therefore be no surprise that
data ownership is used extremely heavily, in fact, it is one
usage pattern that even novices use almost instinctively.
In fact, it is used so heavily that this chapter will not
introduce any new examples, but will instead reference
examples from previous chapters.

Quick Quiz 8.1: What form of data ownership is ex-
tremely difficult to avoid when creating shared-memory
parallel programs (for example, using pthreads) in C or
C++71

There are a number of approaches to data ownership.
Section 8.1 presents the logical extreme in data ownership,
where each thread has its own private address space. Sec-
tion 8.2 looks at the opposite extreme, where the data is
shared, but different threads own different access rights to
the data. Section 8.3 describes function shipping, which is
a way of allowing other threads to have indirect access to
data owned by a particular thread. Section 8.4 describes
how designated threads can be assigned ownership of
a specified function and the related data. Section 8.5
discusses improving performance by transforming algo-
rithms with shared data to instead use data ownership.

111

Finally, Section 8.6 lists a few software environments that
feature data ownership as a first-class citizen.

8.1 Multiple Processes

Section 4.1 introduced the following example:

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.l.out

cat compute_it.2.out

g wN e

This example runs two instances of the compute_it
program in parallel, as separate processes that do not share
memory. Therefore, all data in a given process is owned
by that process, so that almost the entirety of data in the
above example is owned. This approach almost entirely
eliminates synchronization overhead. The resulting com-
bination of extreme simplicity and optimal performance
is obviously quite attractive.

Quick Quiz 8.2: What synchronization remains in the
example shown in Section 8.17 H

Quick Quiz 8.3: Is there any shared data in the exam-
ple shown in Section 8.1? W

This same pattern can be written in C as well as in sh,
as illustrated by Figures 4.2 and 4.3.

The next section discusses use of data ownership in
shared-memory parallel programs.

8.2 Partial Data Ownership and
pthreads
Chapter 5 makes heavy use of data ownership, but adds a

twist. Threads are not allowed to modify data owned by
other threads, but they are permitted to read it. In short,

112

the use of shared memory allows more nuanced notions
of ownership and access rights.

For example, consider the per-thread statistical counter
implementation shown in Figure 5.9 on page 42. Here,
inc_count () updates only the corresponding thread’s
instance of counter, while read_count () accesses,
but does not modify, all threads’ instances of counter.

Quick Quiz 8.4: Does it ever make sense to have
partial data ownership where each thread reads only its
own instance of a per-thread variable, but writes to other
threads’ instances?

Pure data ownership is also both common and use-
ful, for example, the per-thread memory-allocator caches
discussed in Section 6.4.3 starting on page 79. In this
algorithm, each thread’s cache is completely private to
that thread.

8.3 Function Shipping

The previous section described a weak form of data own-
ership where threads reached out to other threads’ data.
This can be thought of as bringing the data to the func-
tions that need it. An alternative approach is to send the
functions to the data.

Such an approach is illustrated in Section 5.4.3 be-
ginning on page 52, in particular the f1lush_local_
count_sig () and flush_local_count () func-
tions in Figure 5.24 on page 53.

The flush_local_count_sig() function is
a signal handler that acts as the shipped function.
The pthread_kill () function in flush_local_
count () sends the signal—shipping the function—and
then waits until the shipped function executes. This
shipped function has the not-unusual added complication
of needing to interact with any concurrently executing
add_count () or sub_count () functions (see Fig-
ure 5.25 on page 54 and Figure 5.26 on page 54).

Quick Quiz 8.5: What mechanisms other than POSIX
signals may be used for function shipping? ll

8.4 Designated Thread

The earlier sections describe ways of allowing each thread
to keep its own copy or its own portion of the data. In con-
trast, this section describes a functional-decomposition
approach, where a special designated thread owns the
rights to the data that is required to do its job. The eventu-
ally consistent counter implementation described in Sec-

CHAPTER 8. DATA OWNERSHIP

tion 5.2.3 provides an example. This implementation has
a designated thread that runs the eventual () function
shown on lines 15-32 of Figure 5.8. This eventual ()
thread periodically pulls the per-thread counts into the
global counter, so that accesses to the global counter will,
as the name says, eventually converge on the actual value.

Quick Quiz 8.6: But none of the data in the
eventual () function shown on lines 15-32 of Fig-
ure 5.8 is actually owned by the eventual () thread!
In just what way is this data ownership???

8.5 Privatization

One way of improving the performance and scalability of
a shared-memory parallel program is to transform it so as
to convert shared data to private data that is owned by a
particular thread.

An excellent example of this is shown in the answer
to one of the Quick Quizzes in Section 6.1.1, which uses
privatization to produce a solution to the Dining Philoso-
phers problem with much better performance and scal-
ability than that of the standard textbook solution. The
original problem has five philosophers sitting around the
table with one fork between each adjacent pair of philoso-
phers, which permits at most two philosophers to eat
concurrently.

We can trivially privatize this problem by providing an
additional five forks, so that each philosopher has his or
her own private pair of forks. This allows all five philoso-
phers to eat concurrently, and also offers a considerable
reduction in the spread of certain types of disease.

In other cases, privatization imposes costs. For ex-
ample, consider the simple limit counter shown in Fig-
ure 5.12 on page 45. This is an example of an algorithm
where threads can read each others’ data, but are only
permitted to update their own data. A quick review of the
algorithm shows that the only cross-thread accesses are
in the summation loop in read_count (). If this loop
is eliminated, we move to the more-efficient pure data
ownership, but at the cost of a less-accurate result from
read_count ().

Quick Quiz 8.7: Is it possible to obtain greater accu-
racy while still maintaining full privacy of the per-thread
data? W

In short, privatization is a powerful tool in the parallel
programmer’s toolbox, but it must nevertheless be used
with care. Just like every other synchronization prim-
itive, it has the potential to increase complexity while
decreasing performance and scalability.

8.6. OTHER USES OF DATA OWNERSHIP

8.6 Other Uses of Data Ownership

Data ownership works best when the data can be parti-
tioned so that there is little or no need for cross thread
access or update. Fortunately, this situation is reasonably
common, and in a wide variety of parallel-programming
environments.

Examples of data ownership include:

1. All message-passing environments, such as
MPI [MPI08] and BOINC [UoCO08].

2. Map-reduce [Jac08].

3. Client-server systems, including RPC, web ser-
vices, and pretty much any system with a back-end
database server.

4. Shared-nothing database systems.

5. Fork-join systems with separate per-process address
spaces.

6. Process-based parallelism, such as the Erlang lan-
guage.

7. Private variables, for example, C-language on-stack
auto variables, in threaded environments.

Data ownership is perhaps the most underappreciated
synchronization mechanism in existence. When used
properly, it delivers unrivaled simplicity, performance,
and scalability. Perhaps its simplicity costs it the respect
that it deserves. Hopefully a greater appreciation for the
subtlety and power of data ownership will lead to greater
level of respect, to say nothing of leading to greater perfor-
mance and scalability coupled with reduced complexity.

113

114 CHAPTER 8. DATA OWNERSHIP

Chapter 9

Deferred Processing

All things come to those who wait.

Violet Fane

The strategy of deferring work goes back before the
dawn of recorded history. It has occasionally been derided
as procrastination or even as sheer laziness. However, in
the last few decades workers have recognized this strat-
egy’s value in simplifying and streamlining parallel algo-
rithms [KL80, Mas92]. Believe it or not, “laziness” in
parallel programming often outperforms and out-scales in-
dustriousness! These performance and scalability benefits
stem from the fact that deferring work often enables weak-
ening of synchronization primitives, thereby reducing
synchronization overhead. General approaches of work
deferral include reference counting (Section 9.2), haz-
ard pointers (Section 9.3), sequence locking (Section 9.4),
and RCU (Section 9.5). Finally, Section 9.6 describes how
to choose among the work-deferral schemes covered in
this chapter and Section 9.7 discusses the role of updates.
But first we will introduce an example algorithm that will
be used to compare and contrast these approaches.

9.1 Running Example

This chapter will use a simplified packet-routing algo-
rithm to demonstrate the value of these approaches and
to allow them to be compared. Routing algorithms are
used in operating-system kernels to deliver each outgo-
ing TCP/IP packets to the appropriate network interface.
This particular algorithm is a simplified version of the
classic 1980s packet-train-optimized algorithm used in
BSD UNIX [Jac88], consisting of a simple linked list.!
Modern routing algorithms use more complex data struc-
tures, however, as in Chapter 5, a simple algorithm will

! Tn other words, this is not OpenBSD, NetBSD, or even FreeBSD,
but none other than Pre-BSD.

115

route_list

!

->addr=42

->iface=1

->addr=56

->iface=3

->addr=17

->iface=7

Figure 9.1: Pre-BSD Packet Routing List

help highlight issues specific to parallelism in an easy-to-
understand setting.

We further simplify the algorithm by reducing the
search key from a quadruple consisting of source and
destination IP addresses and ports all the way down to a
simple integer. The value looked up and returned will also
be a simple integer, so that the data structure is as shown
in Figure 9.1, which directs packets with address 42 to
interface 1, address 56 to interface 3, and address 17 to
interface 7. Assuming that external packet network is
stable, this list will be searched frequently and updated
rarely. In Chapter 3 we learned that the best ways to evade
inconvenient laws of physics, such as the finite speed of
light and the atomic nature of matter, is to either partition
the data or to rely on read-mostly sharing. In this chapter,
we will use this Pre-BSD packet routing list to evaluate a
number of read-mostly synchronization techniques.

Figure 9.2 shows a simple single-threaded implemen-
tation corresponding to Figure 9.1. Lines 1-5 define a
route_entry structure and line 6 defines the route_
list header. Lines 8-21 define route_lookup (),
which sequentially searches route_11ist, returning the
corresponding —>1iface, or ULONG_MAX if there is no
such route entry. Lines 23-35 define route_add (),

116

1 struct route_entry {

2 struct cds_list_head re_next;
3 unsigned long addr;

4 unsigned long iface;

5 };

6 CDS_LIST_HEAD (route_list);

8 unsigned long route_lookup (unsigned long addr)
9 {

10 struct route_entry xrep;

11 unsigned long ret;

12

13 cds_list_for_each_entry (rep,

14 &route_list, re_next) {
15 if (rep->addr == addr) {

16 ret = rep->iface;

17 return ret;

18 }

19 }

20 return ULONG_MAX;

21 }

22

23 int route_add(unsigned long addr,
24 unsigned long interface)
25 {

26 struct route_entry *rep;

27

28 rep = malloc (sizeof (xrep));

29 if (!rep)

30 return -ENOMEM;

31 rep->addr = addr;

32 rep->iface = interface;

33 cds_list_add(&rep->re_next, &route_list);
34 return 0;

35 }

36

37 int route_del (unsigned long addr)
38 {

39 struct route_entry xrep;

40

41 cds_list_for_each_entry (rep,

42 &route_list, re_next) {
43 if (rep->addr == addr) {

44 cds_list_del (&rep->re_next);
45 free(rep);

46 return 0;

47 }

48 }

49 return -ENOENT;

50 }

Figure 9.2: Sequential Pre-BSD Routing Table

which allocates a route_entry structure, initializes
it, and adds it to the list, returning ~-ENOMEM in case
of memory-allocation failure. Finally, lines 37-50 de-
fine route_del (), which removes and frees the spec-
ified route_entry structure if it exists, or returns
—ENOENT otherwise.

This single-threaded implementation serves as a proto-
type for the various concurrent implementations in this
chapter, and also as an estimate of ideal scalability and
performance.

CHAPTER 9. DEFERRED PROCESSING

struct route_entry { /x BUGGY!!! x/
atomic_t re_refcnt;
struct route_entry =*re_next;
unsigned long addr;
unsigned long iface;
int re_freed;

}i

struct route_entry route_list;

9 DEFINE_SPINLOCK (routelock);

@ J o0 WN

11 static void re_free(struct route_entry xrep)
12 {

13 ACCESS_ONCE (rep—>re_freed) = 1;

14 free(rep);

15 }

16

17 unsigned long route_lookup (unsigned long addr)
18 {

19 int old;

20 int new;

21 struct route_entry xrep;

22 struct route_entry x*repp;

23 unsigned long ret;

24

25 retry:

26 repp = &route_list.re_next;

27 rep = NULL;

28 do {

29 if (rep &&

30 atomic_dec_and_test (&§rep->re_refcnt))
31 re_free(rep);

32 rep = ACCESS_ONCE (*repp) ;

33 if (rep == NULL)

34 return ULONG_MAX;

35 do {

36 if (ACCESS_ONCE (rep->re_freed))

37 abort () ;

38 old = atomic_read (&rep->re_refcnt);

39 if (old <= 0)

40 goto retry;

41 new = old + 1;

42 } while (atomic_cmpxchg(&rep->re_refcnt,
43 old, new) != old);
44 repp = &rep->re_next;

45 } while (rep->addr != addr);

46 ret = rep->iface;

47 if (atomic_dec_and_test (&rep->re_refcnt))
48 re_free(rep);

49 return ret;

50 }

Figure 9.3: Reference-Counted Pre-BSD Routing Table
Lookup (BUGGY!!!)

9.2 Reference Counting

Reference counting tracks the number of references
to a given object in order to prevent that object from
being prematurely freed. As such, it has a long and hon-
orable history of use dating back to at least the early
1960s [Wei63].2 Reference counting is thus an excellent

2 Weizenbaum discusses reference counting as if it was already
well-known, so it likely dates back to the 1950s and perhaps even to the
1940s. And perhaps even further. People repairing and maintaining large
machines have long used a mechanical reference-counting technique,
where each worker had a padlock.

9.2. REFERENCE COUNTING

1 int route_add(unsigned long addr, /% BUGGY!!! x/
2 unsigned long interface)
3 {
4 struct route_entry x*rep;
5
6 rep = malloc(sizeof (xrep));
7 if ('rep)
8 return -ENOMEM;
9 atomic_set (&rep->re_refcnt, 1);
10 rep->addr = addr;
11 rep->iface = interface;
12 spin_lock (&routelock) ;
13 rep->re_next = route_list.re_next;
14 rep->re_freed = 0;
15 route_list.re_next = rep;
16 spin_unlock (&routelock) ;
17 return 0;
18 }
19
20 int route_del (unsigned long addr)
21 {
22 struct route_entry xrep;
23 struct route_entry xxrepp;
24
25 spin_lock (&routelock) ;
26 repp = &route_list.re_next;
27 for (;;) {
28 rep = xrepp;
29 if (rep == NULL)
30 break;
31 if (rep->addr == addr) {
32 *repp = rep->re_next;
33 spin_unlock (&routelock) ;
34 if (atomic_dec_and_test (&rep->re_refcnt))
35 re_free(rep);
36 return 0;
37 }
38 repp = &rep->re_next;
39 }

40 spin_unlock (&routelock) ;
41 return -ENOENT;
42 '}

Figure 9.4: Reference-Counted Pre-BSD Routing Table
Add/Delete (BUGGY!!!)

117

450000 T T T T 1
400000
350000
300000
250000
200000
150000
100000

50000 |-
OD’”{?‘*m»--mw.m..m

1 2 3 4 5 6 7 8
Number of CPUs (Threads)

Lookups per Millisecond

refent
—--f3---d

Figure 9.5: Pre-BSD Routing Table Protected by Refer-
ence Counting

candidate for a concurrent implementation of Pre-BSD
routing.

To that end, Figure 9.3 shows data structures and the
route_lookup () function and Figure 9.4 shows the
route_add () and route_del () functions (all at
route_refcnt.c). Since these algorithms are quite
similar to the sequential algorithm shown in Figure 9.2,
only the differences will be discussed.

Starting with Figure 9.3, line 2 adds the actual reference
counter, line 6 adds a —>re_ freed use-after-free check
field, line 9 adds the routelock that will be used to
synchronize concurrent updates, and lines 11-15 add re_
free (), which sets ->re_freed, enabling route_
lookup () to check for use-after-free bugs. In route_
lookup () itself, lines 29-31 release the reference count
of the prior element and free it if the count becomes zero,
and lines 35-43 acquire a reference on the new element,
with lines 36 and 37 performing the use-after-free check.

Quick Quiz 9.1: Why bother with a use-after-free
check? l

In Figure 9.4, lines 12, 16, 25, 33, and 40 introduce
locking to synchronize concurrent updates. Line 14 ini-
tializes the —>re_ freed use-after-free-check field, and
finally lines 34-35 invoke re_free () if the new value
of the reference count is zero.

Quick Quiz 9.2: Why doesn’t route_del () in Fig-
ure 9.4 use reference counts to protect the traversal to the
element to be freed? M

Figure 9.5 shows the performance and scalability of
reference counting on a read-only workload with a ten-
element list running on a single-socket four-core hyper-
threaded 2.5GHz x86 system. The “ideal” trace was gen-

118

erated by running the sequential code shown in Figure 9.2,
which works only because this is a read-only workload.
The reference-counting performance is abysmal and its
scalability even more so, with the “refcnt” trace drop-
ping down onto the x-axis. This should be no surprise
in view of Chapter 3: The reference-count acquisitions
and releases have added frequent shared-memory writes
to an otherwise read-only workload, thus incurring severe
retribution from the laws of physics. As well it should,
given that all the wishful thinking in the world is not go-
ing to increase the speed of light or decrease the size of
the atoms used in modern digital electronics.

Quick Quiz 9.3: Why the stairsteps in the “ideal” line
in Figure 9.5? Shouldn’t it be a straight line? l

Quick Quiz 9.4: Why, in these modern times, does
Figure 9.5 only go up to 8 CPUs??? H

But it gets worse.

Running multiple updater threads repeatedly invok-
ing route_add () and route_del () will quickly
encounter the abort () statement on line 37 of Fig-
ure 9.3, which indicates a use-after-free bug. This in
turn means that the reference counts are not only pro-
foundly degrading scalability and performance, but also
failing to provide the needed protection.

One sequence of events leading to the use-after-free
bug is as follows, given the list shown in Figure 9.1:

1. Thread A looks up address 42, reaching line 33 of
route_lookup () in Figure 9.3. In other words,
Thread A has a pointer to the first element, but has
not yet acquired a reference to it.

2. Thread B invokes route_del () in Figure 9.4
to delete the route entry for address 42. It com-
pletes successfully, and because this entry’s —>re_
refent field was equal to the value one, it invokes
re_free () tosetthe —>re_freed field and to
free the entry.

3. Thread A continues execution of route_
lookup (). Its rep pointer is non-NULL, but
line 36 sees that its —>re_ freed field is non-zero,
so line 37 invokes abort ().

The problem is that the reference count is located in
the object to be protected, but that means that there is
no protection during the instant in time when the refer-
ence count itself is being acquired! This is the reference-
counting counterpart of a locking issue noted by Gamsa
et al. [GKAS99]. One could imagine using a global
lock or reference count to protect the per-route-entry

CHAPTER 9. DEFERRED PROCESSING

reference-count acquisition, but this would result in se-
vere contention issues. Although algorithms exist that
allow safe reference-count acquisition in a concurrent
environment [Val95], they are not only extremely com-
plex and error-prone [MS95], but also provide terrible
performance and scalability [HMBWO7].

In short, concurrency has most definitely reduced the
usefulness of reference counting!

Quick Quiz 9.5: If concurrency has “most definitely
reduced the usefulness of reference counting”, why are
there so many reference counters in the Linux kernel? l

That said, sometimes it is necessary to look at a prob-
lem in an entirely different way in order to successfully
solve it. The next section describes what could be thought
of as an inside-out reference count that provides decent
performance and scalability.

9.3 Hazard Pointers

One way of avoiding problems with concurrent reference
counting is to implement the reference counters inside out,
that is, rather than incrementing an integer stored in the
data element, instead store a pointer to that data element
in per-CPU (or per-thread) lists. Each element of these
lists is called a hazard pointer [Mic04].3 The value of a
given data element’s “virtual reference counter” can then
be obtained by counting the number of hazard pointers
referencing that element. Therefore, if that element has
been rendered inaccessible to readers, and there are no
longer any hazard pointers referencing it, that element
may safely be freed.

Of course, this means that hazard-pointer acquisition
must be carried out quite carefully in order to avoid de-
structive races with concurrent deletion. One implementa-
tion is shown in Figure 9.6, which shows hp_store ()
on lines 1-13 and hp_erase () on lines 15-20. The
smp_mb () primitive will be described in detail in Sec-
tion 14.2, but may be ignored for the purposes of this brief
overview.

The hp_store () function records a hazard pointer
at hp for the data element whose pointer is referenced
by p, while checking for concurrent modifications. If a
concurrent modification occurred, hp_store () refuses
to record a hazard pointer, and returns zero to indicate
that the caller must restart its traversal from the begin-
ning. Otherwise, hp_store () returns one to indicate
that it successfully recorded a hazard pointer for the data

3 Also independently invented by others [HLMO2].

9.3. HAZARD POINTERS

int hp_store(void xxp, void *xhp)
{
void xtmp;

1
2
3
4
5 tmp = ACCESS_ONCE (*p) ;
6
7
8

ACCESS_ONCE (+hp) = tmp;
smp_mb () ;
if (tmp != ACCESS_ONCE (*p) ||
9 tmp == HAZPTR_POISON) {
10 ACCESS_ONCE (xhp) = NULL;
11 return 0;
12 }
13 return 1;
14 3}
15
16 void hp_erase (void xxhp)
17 {

18 smp_mb () ;

19 ACCESS_ONCE (xhp) = NULL;
20 hp_free (hp);

21 }

Figure 9.6: Hazard-Pointer Storage and Erasure

element.

Quick Quiz 9.6: Why does hp_store () in Fig-
ure 9.6 take a double indirection to the data element?
Why not void « instead of void *+? l

Quick Quiz 9.7: Why does hp_store ()’s caller
need to restart its traversal from the beginning in case of
failure? Isn’t that inefficient for large data structures? Ml

Quick Quiz 9.8: Given that papers on hazard point-
ers use the bottom bits of each pointer to mark deleted
elements, what is up with HAZPTR_POISON? l

Because algorithms using hazard pointers might be
restarted at any step of their traversal through the data
structure, such algorithms must typically take care to
avoid making any changes to the data structure until after
they have acquired all relevant hazard pointers.

Quick Quiz 9.9: But don’t these restrictions on hazard
pointers also apply to other forms of reference counting?
|

These restrictions result in great benefits to read-
ers, courtesy of the fact that the hazard pointers are
stored local to each CPU or thread, which in turn al-
lows traversals of the data structures themselves to be
carried out in a completely read-only fashion. Refer-
ring back to Figure 5.29 on page 58, hazard point-
ers enable the CPU caches to do resource replication,
which in turn allows weakening of the parallel-access-
control mechanism, thus boosting performance and scal-
ability. Performance comparisons with other mecha-
nisms may be found in Chapter 10 and in other publi-
cations [HMBWO07, McK13, Mic04].

The Pre-BSD routing example can use hazard pointers
as shown in Figure 9.7 for data structures and route_

119

1 struct route_entry {

2 struct hazptr_head hh;

3 struct route_entry *re_next;

4 unsigned long addr;

5 unsigned long iface;

6 int re_freed;

T)i

8 struct route_entry route_list;

9 DEFINE_SPINLOCK (routelock) ;
10 hazard_pointer __ thread smy_hazptr;
11
12 unsigned long route_lookup (unsigned long addr)
13 |
14 int offset = 0;
15 struct route_entry *rep;
16 struct route_entry x*repp;
17
18 retry:
19 repp = &route_list.re_next;
20 do {
21 rep = ACCESS_ONCE (*xrepp) ;
22 if (rep == NULL)
23 return ULONG_MAX;
24 if (rep == (struct route_entry =%)HAZPTR_POISON)
25 goto retry;
26 my_hazptr[offset].p = &rep->hh;
27 offset = l!offset;
28 smp_mb () ;
29 if (ACCESS_ONCE (*repp) != rep)
30 goto retry;
31 repp = &rep->re_next;
32 } while (rep->addr != addr);
33 if (ACCESS_ONCE (rep->re_freed)
34 abort () ;
35 return rep->iface;
36 }

Figure 9.7: Hazard-Pointer Pre-BSD Routing Table
Lookup

120
1 int route_add(unsigned long addr,
2 unsigned long interface)
3 {
4 struct route_entry *rep;
5
6 rep = malloc (sizeof (xrep));
7 if (!rep)
8 return -ENOMEM;
9 rep->addr = addr;
10 rep->iface = interface;
11 rep->re_freed = 0;
12 spin_lock (&routelock) ;
13 rep->re_next = route_list.re_next;
14 route_list.re_next = rep;
15 spin_unlock (&routelock) ;
16 return 0;
17 }
18
19 int route_del (unsigned long addr)
20 {
21 struct route_entry xrep;
22 struct route_entry x*repp;
23

24 spin_lock (&routelock) ;
25 repp = &route_list.re_next;

26 for (;;) {

27 rep = *repp;

28 if (rep == NULL)

29 break;

30 if (rep->addr == addr) {

31 *repp = rep—->re_next;

32 rep->re_next =

33 (struct route_entry =%)HAZPTR_POISON;
34 spin_unlock (&routelock) ;

35 hazptr_free_later (&rep—>hh);
36 return 0;

37 }

38 repp = &rep->re_next;

39 }

40 spin_unlock (&routelock) ;

41 return -ENOENT;

42 '}

Figure 9.8: Hazard-Pointer Pre-BSD Routing Table Ad-
d/Delete

CHAPTER 9. DEFERRED PROCESSING

450000 T T T T 1
400000
350000
300000
250000
200000
150000 [~
100000 o4

T

o
50000 b =7 hazptr refent |
---d

OE"“@“-m---m”.m..m...m
1 2 3 4 5 6 7 8
Number of CPUs (Threads)

Lookups per Millisecond

Figure 9.9: Pre-BSD Routing Table Protected by Hazard
Pointers

lookup (), and in Figure 9.8 for route_add () and
route_del () (route_hazptr.c). As with refer-
ence counting, the hazard-pointers implementation is
quite similar to the sequential algorithm shown in Fig-
ure 9.2 on page 116, so only differences will be discussed.

Starting with Figure 9.7, line 2 shows the —>hh field
used to queue objects pending hazard-pointer free, line 6
shows the —>re_freed field used to detect use-after-
free bugs, and lines 24-30 attempt to acquire a hazard
pointer, branching to line 18’s ret ry label on failure.

In Figure 9.8, line 11 initializes —>re_freed,
lines 32 and 33 poison the —>re_next field of the newly
removed object, and line 35 passes that object to the
hazard pointers’s hazptr_free_later () function,
which will free that object once it is safe to do so. The
spinlocks work the same as in Figure 9.4.

Figure 9.9 shows the hazard-pointers-protected Pre-
BSD routing algorithm’s performance on the same read-
only workload as for Figure 9.5. Although hazard pointers
scales much better than does reference counting, hazard
pointers still require readers to do writes to shared mem-
ory (albeit with much improved locality of reference),
and also require a full memory barrier and retry check
for each object traversed. Therefore, hazard pointers’s
performance is far short of ideal. On the other hand, haz-
ard pointers do operate correctly for workloads involving
concurrent updates.

Quick Quiz 9.10: The paper “Structured Deferral:
Synchronization via Procrastination” [McK13] shows that
hazard pointers have near-ideal performance. Whatever
happened in Figure 9.97?7 R

The next section attempts to improve on hazard point-

9.4. SEQUENCE LOCKS

Ah, | finally got
done reading!

No, you didn't!
Start over!

Figure 9.10: Reader And Uncooperative Sequence Lock

ers by using sequence locks, which avoid both read-side
writes and per-object memory barriers.

9.4 Sequence Locks

Sequence locks are used in the Linux kernel for read-
mostly data that must be seen in a consistent state by
readers. However, unlike reader-writer locking, readers
do not exclude writers. Instead, like hazard pointers,
sequence locks force readers to retry an operation if they
detect activity from a concurrent writer. As can be seen
from Figure 9.10, it is important to design code using
sequence locks so that readers very rarely need to retry.
Quick Quiz 9.11: Why isn’t this sequence-lock dis-
cussion in Chapter 7, you know, the one on locking? B
The key component of sequence locking is the se-
quence number, which has an even value in the absence
of updaters and an odd value if there is an update in
progress. Readers can then snapshot the value before
and after each access. If either snapshot has an odd

1 do {

2 seq = read_segbegin (&test_seqglock);

3 /* read-side access. x/

4 } while (read_seqretry (&test_seqglock, seq));

Figure 9.11: Sequence-Locking Reader

1 write_seqglock (&test_seqlock);
2 /+ Update =/
3 write_sequnlock (&test_seqglock);

Figure 9.12: Sequence-Locking Writer

121

1 typedef struct {

2 unsigned long seqg;

3 spinlock_t lock;

4 } seglock_t;

5

6 static void seqglock_init (seglock_t =*slp)
T |

8 slp->seq = 0;

9 spin_lock_init (&slp->lock) ;
10 1}
11

12 static unsigned long read_segbegin(seglock_t =xslp)
13 {

14 unsigned long s;

15

16 s = ACCESS_ONCE (slp->seq);

17 smp_mb () ;

18 return s & ~0x1UL;

19 1}

20

21 static int read_seqgretry(seglock_t =xslp,
22 unsigned long oldseq)
23 |

24 unsigned long s;

25

26 smp_mb () ;

27 s = ACCESS_ONCE (slp->seq);

28 return s != oldseq;

29 1}

30

31 static void write_seqlock (seqlock_t *slp)
32 |

33 spin_lock (&slp->1lock) ;
34 ++slp->seq;

35 smp_mb () ;

36}

37

38 static void write_sequnlock (seglock_t #slp)
39 {

40 smp_mb () ;

41 ++slp->seq;

42 spin_unlock (&slp->1lock) ;
43}

Figure 9.13: Sequence-Locking Implementation

value, or if the two snapshots differ, there has been a
concurrent update, and the reader must discard the re-
sults of the access and then retry it. Readers therefore
use the read_segbegin () and read_seqgretry ()
functions shown in Figure 9.11 when accessing data
protected by a sequence lock. Writers must increment
the value before and after each update, and only one
writer is permitted at a given time. Writers therefore use
the write_seqlock () and write_sequnlock ()
functions shown in Figure 9.12 when updating data pro-
tected by a sequence lock.

As a result, sequence-lock-protected data can have an
arbitrarily large number of concurrent readers, but only
one writer at a time. Sequence locking is used in the
Linux kernel to protect calibration quantities used for
timekeeping. It is also used in pathname traversal to
detect concurrent rename operations.

122

A simple implementation of sequence locks is shown
in Figure 9.13 (seqlock.h). The seglock_t data
structure is shown on lines 1-4, and contains the sequence
number along with a lock to serialize writers. Lines 6-10
show seglock_init (), which, as the name indicates,
initializes a segqlock_t.

Lines 12-19 show read_segbegin (), which be-
gins a sequence-lock read-side critical section. Line 16
takes a snapshot of the sequence counter, and line 17 or-
ders this snapshot operation before the caller’s critical
section. Finally, line 18 returns the value of the snapshot
(with the least-significant bit cleared), which the caller
will pass to a later call to read_seqretry ().

Quick Quiz 9.12: Why not have read_
segbegin () in Figure 9.13 check for the low-order
bit being set, and retry internally, rather than allowing a
doomed read to start? ll

Lines 21-29 show read_seqretry (), which re-
turns true if there were no writers present since the time of
the corresponding call to read_segbegin (). Line 26
orders the caller’s prior critical section before line 27’s
fetch of the new snapshot of the sequence counter. Finally,
line 28 checks that the sequence counter has not changed,
in other words, that there has been no writer, and returns
true if so.

Quick Quiz 9.13: Why is the smp_mb () on line 26
of Figure 9.13 needed? M

Quick Quiz 9.14: Can’t weaker memory barriers be
used in the code in Figure 9.13? W

Quick Quiz 9.15: What prevents sequence-locking
updaters from starving readers? ll

Lines 31-36 show write_seqglock (), which sim-
ply acquires the lock, increments the sequence number,
and executes a memory barrier to ensure that this in-
crement is ordered before the caller’s critical section.
Lines 38-43 show write_sequnlock (), which ex-
ecutes a memory barrier to ensure that the caller’s critical
section is ordered before the increment of the sequence
number on line 44, then releases the lock.

Quick Quiz 9.16: What if something else serializes
writers, so that the lock is not needed? ll

Quick Quiz 9.17: Why isn’t seq on line 2 of Fig-
ure 9.13 unsigned rather than unsigned long? Af-
ter all, if unsigned is good enough for the Linux kernel,
shouldn’t it be good enough for everyone?

So what happens when sequence locking is applied
to the Pre-BSD routing table? Figure 9.14 shows the
data structures and route_lookup (), and Figure 9.15
shows route_add () and route_del () (route_

CHAPTER 9. DEFERRED PROCESSING

struct route_entry {
struct route_entry =*re_next;
unsigned long addr;
unsigned long iface;
int re_freed;
bi
struct route_entry route_list;
DEFINE_SEQ_LOCK (sl) ;

W J oUW N

10 unsigned long route_lookup (unsigned long addr)
11 {

12 struct route_entry xrep;

13 struct route_entry xxrepp;
14 unsigned long ret;

15 unsigned long s;

16

17 retry:

18 s = read_segbegin (&sl);

19 repp = &route_list.re_next;
20 do {

21 rep = ACCESS_ONCE (*repp) ;
22 if (rep == NULL) {

23 if (read_seqgretry(&sl, s))
24 goto retry;

25 return ULONG_MAX;

26 }

27 repp = &rep->re_next;

28 } while (rep->addr !'= addr);
29 if (ACCESS_ONCE (rep—>re_freed))
30 abort () ;

31 ret = rep->iface;

32 if (read_seqgretry(&sl, s))
33 goto retry;

34 return ret;

35 }

Figure 9.14: Sequence-Locked Pre-BSD Routing Table
Lookup (BUGGY!!!)

9.4. SEQUENCE LOCKS

1 int route_add(unsigned long addr,

2 unsigned long interface)
3 {

4 struct route_entry =rep;
5

6

7

8

rep = malloc(sizeof (xrep));
if (!rep)
return —-ENOMEM;
9 rep—>addr = addr;
10 rep->iface = interface;
11 rep->re_freed = 0;
12 write_seqglock (&sl);

13 rep->re_next = route_list.re_next;
14 route_list.re_next = rep;
15 write_sequnlock (&sl);

16 return 0;

17 }

18

19 int route_del (unsigned long addr)
20 {

21 struct route_entry xrep;

22 struct route_entry xxrepp;
23

24 write_seqglock (&sl);

25 repp = &route_list.re_next;
26 for (i;) {

27 rep = xrepp;

28 if (rep == NULL)

29 break;

30 if (rep->addr == addr) {
31 *repp = rep->re_next;
32 write_sequnlock (&sl);
33 smp_mb () ;

34 rep->re_freed = 1;

35 free(rep);

36 return 0;

37 }

38 repp = &rep—->re_next;

39 }

40 write_sequnlock (&sl);
41 return -ENOENT;

Figure 9.15: Sequence-Locked Pre-BSD Routing Table
Add/Delete (BUGGY!!!)

123

450000 T T T T 1
400000
350000
300000
250000
200000
150000
100000
50000
0

Lookups per Millisecond

3 4 5 6 7 8
Number of CPUs (Threads)

Figure 9.16: Pre-BSD Routing Table Protected by Se-
quence Locking

seglock.c). This implementation is once again sim-
ilar to its counterparts in earlier sections, so only the
differences will be highlighted.

In Figure 9.14, line 5 adds —>re_freed, which is
checked on lines 29 and 30. Line 8 adds a sequence
lock, which is used by route_lookup () on lines 18,
23, and 32, with lines 24 and 33 branching back to the
retry label on line 17. The effect is to retry any lookup
that runs concurrently with an update.

In Figure 9.15, lines 12, 15, 24, and 40 acquire and
release the sequence lock, while lines 11, 33, and 44
handle ->re_ freed. This implementation is therefore
quite straightforward.

It also performs better on the read-only workload, as
can be seen in Figure 9.16, though its performance is still
far from ideal.

Unfortunately, it also suffers use-after-free failures.
The problem is that the reader might encounter a seg-
mentation violation due to accessing an already-freed
structure before it comes to the read_seqretry ().

Quick Quiz 9.18: Can this bug be fixed? In other
words, can you use sequence locks as the only synchro-
nization mechanism protecting a linked list supporting
concurrent addition, deletion, and lookup? Ml

Both the read-side and write-side critical sections of
a sequence lock can be thought of as transactions, and
sequence locking therefore can be thought of as a limited
form of transactional memory, which will be discussed
in Section 17.2. The limitations of sequence locking are:
(1) Sequence locking restricts updates and (2) sequence
locking does not permit traversal of pointers to objects
that might be freed by updaters. These limitations are of

124

course overcome by transactional memory, but can also be
overcome by combining other synchronization primitives
with sequence locking.

Sequence locks allow writers to defer readers, but not
vice versa. This can result in unfairness and even starva-
tion in writer-heavy workloads. On the other hand, in the
absence of writers, sequence-lock readers are reasonably
fast and scale linearly. It is only human to want the best of
both worlds: fast readers without the possibility of read-
side failure, let alone starvation. In addition, it would also
be nice to overcome sequence locking’s limitations with
pointers. The following section presents a synchroniza-
tion mechanism with exactly these properties.

9.5 Read-Copy Update (RCU)

This section covers RCU from a number of different per-
spectives. Section 9.5.1 provides the classic introduction
to RCU, Section 9.5.2 covers fundamental RCU concepts,
Section 9.5.3 introduces some common uses of RCU, Sec-
tion 9.5.4 presents the Linux-kernel API, Section 9.5.5
covers a sequence of “toy” implementations of user-level
RCU, and finally Section 9.5.6 provides some RCU exer-
cises.

9.5.1 Introduction to RCU

The approaches discussed in the preceding sections have
provided some scalability but decidedly non-ideal per-
formance for the Pre-BSD routing table. It would be
nice if the overhead of Pre-BSD lookups was the same
as that of a single-threaded lookup, so that the parallel
lookups would execute the same sequence of assembly
language instructions as would a single-threaded lookup.
Although this is a nice goal, it does raise some serious
implementability questions. But let’s see what happens if
we try, treating insertion and deletion separately.

A classic approach for insertion is shown in Figure 9.17.
The first row shows the default state, with gpt r equal to
NULL. In the second row, we have allocated a structure
which is uninitialized, as indicated by the question marks.
In the third row, we have initialized the structure. Next,
we assign gpt r to reference this new element.* On mod-
ern general-purpose systems, this assignment is atomic in
the sense that concurrent readers will see either a NULL
pointer or a pointer to the new structure p, but not some

4 On many computer systems, simple assignment is insufficient due
to interference from both the compiler and the CPU. These issues will
be covered in Section 9.5.2.

CHAPTER 9. DEFERRED PROCESSING

(1) gptr

-/p
-/p

->addr=42 /

->iface=1

(2) gptr

4) gptr

Figure 9.17: Insertion With Concurrent Readers

mash-up containing bits from both values. Each reader
is therefore guaranteed to either get the default value of
NULL or to get the newly installed non-default values,
but either way each reader will see a consistent result.
Even better, readers need not use any expensive synchro-
nization primitives, so this approach is quite suitable for
real-time use.’

But sooner or later, it will be necessary to remove data
that is being referenced by concurrent readers. Let us
move to a more complex example where we are removing
an element from a linked list, as shown in Figure 9.18.
This list initially contains elements A, B, and C, and we
need to remove element B. First, we use 1ist_del ()
to carry out the removal,® at which point all new readers
will see element B as having been deleted from the list.
However, there might be old readers still referencing this

5 Again, on many computer systems, additional work is required
to prevent interference from the compiler, and, on DEC Alpha systems,
the CPU as well. This will be covered in Section 9.5.2.

6 And yet again, this approximates reality, which will be expanded
on in Section 9.5.2.

9.5. READ-COPY UPDATE (RCU)

/ Readers?
(1) A B C 1 Version
list_del() /*almost*/
Readers?
) A B C 2 Versions

Relders?

@ | A B C

W

(4) A o]

1 Versions

1 Versions

Figure 9.18: Deletion From Linked List With Concurrent
Readers

element. Once all these old readers have finished, we can
safely free element B, resulting in the situation shown at
the bottom of the figure.

But how can we tell when the readers are finished?

It is tempting to consider a reference-counting scheme,
but Figure 5.3 in Chapter 5 shows that this can also re-
sult in long delays, just as can the locking and sequence-
locking approaches that we already rejected.

Let’s consider the logical extreme where the readers
do absolutely nothing to announce their presence. This
approach clearly allows optimal performance for readers
(after all, free is a very good price), but leaves open the
question of how the updater can possibly determine when
all the old readers are done. We clearly need some addi-
tional constraints if we are to provide a reasonable answer
to this question.

One constraint that fits well with some operating-
system kernels is to consider the case where threads are
not subject to preemption. In such non-preemptible envi-
ronments, each thread runs until it explicitly and voluntar-
ily blocks. This means that an infinite loop without block-
ing will render a CPU useless for any other purpose from

125

the start of the infinite loop onwards.” Non-preemptibility
also requires that threads be prohibited from blocking
while holding spinlocks. Without this prohibition, all
CPUs might be consumed by threads spinning attempt-
ing to acquire a spinlock held by a blocked thread. The
spinning threads will not relinquish their CPUs until they
acquire the lock, but the thread holding the lock cannot
possibly release it until one of the spinning threads relin-
quishes a CPU. This is a classic deadlock situation.

Let us impose this same constraint on reader threads
traversing the linked list: such threads are not allowed
to block until after completing their traversal. Returning
to the second row of Figure 9.18, where the updater has
just completed executing 1ist_del (), imagine that
CPU 0 executes a context switch. Because readers are
not permitted to block while traversing the linked list,
we are guaranteed that all prior readers that might have
been running on CPU 0 will have completed. Extending
this line of reasoning to the other CPUs, once each CPU
has been observed executing a context switch, we are
guaranteed that all prior readers have completed, and
that there are no longer any reader threads referencing
element B. The updater can then safely free element B,
resulting in the state shown at the bottom of Figure 9.18.

This approach is termed quiescent state based recla-
mation (QSBR) [HMBO06]. A QSBR schematic is shown
in Figure 9.19, with time advancing from the top of the
figure to the bottom.

Although production-quality implementations of this
approach can be quite complex, a toy implementation is
exceedingly simple:

1 for_each_online_cpu (cpu)
2 run_on (cpu) ;

The for_each_online_cpu () primitive iterates
over all CPUs, and the run_on () function causes the
current thread to execute on the specified CPU, which
forces the destination CPU to execute a context switch.
Therefore, once the for_each_online_cpu () has
completed, each CPU has executed a context switch,
which in turn guarantees that all pre-existing reader
threads have completed.

Please note that this approach is not production qual-
ity. Correct handling of a number of corner cases and
the need for a number of powerful optimizations mean
that production-quality implementations have significant

7 In contrast, an infinite loop in a preemptible environment might
be preempted. This infinite loop might still waste considerable CPU
time, but the CPU in question would nevertheless be able to do other
work.

—_
[\
@)}

CPU1 CPU2 CPU3

0

8) Context Switch

wait for readers
list_del

/

Reader

©) L
5 @) i
s :
©
5

O

N\

free()

Figure 9.19: RCU QSBR: Waiting for Pre-Existing Read-
ers

additional complexity. In addition, RCU implementations
for preemptible environments require that readers actually
do something. However, this simple non-preemptible ap-
proach is conceptually complete, and forms a good initial
basis for understanding the RCU fundamentals covered
in the following section.

9.5.2 RCU Fundamentals

Read-copy update (RCU) is a synchronization mechanism
that was added to the Linux kernel in October of 2002.
RCU achieves scalability improvements by allowing reads
to occur concurrently with updates. In contrast with con-
ventional locking primitives that ensure mutual exclusion
among concurrent threads regardless of whether they be
readers or updaters, or with reader-writer locks that al-
low concurrent reads but not in the presence of updates,
RCU supports concurrency between a single updater and
multiple readers. RCU ensures that reads are coherent
by maintaining multiple versions of objects and ensuring
that they are not freed up until all pre-existing read-side
critical sections complete. RCU defines and uses efficient
and scalable mechanisms for publishing and reading new
versions of an object, and also for deferring the collection
of old versions. These mechanisms distribute the work
among read and update paths in such a way as to make

CHAPTER 9. DEFERRED PROCESSING

struct foo {
int a;
int b;
int c;
Vi
struct foo *gp = NULL;

0 J oUW NP

/x oo x/

10 p = kmalloc(sizeof (xp), GFP_KERNEL) ;
11 p—>a 1;
12 p—>b 2;
13 p->c 3;
14 gp =

oo

Figure 9.20: Data Structure Publication (Unsafe)

read paths extremely fast, using replication and weaken-
ing optimizations in a manner similar to hazard pointers,
but without the need for read-side retries. In some cases
(non-preemptible kernels), RCU’s read-side primitives
have zero overhead.

Quick Quiz 9.19: But doesn’t Section 9.4’s seqlock
also permit readers and updaters to get work done concur-
rently? ll

This leads to the question “What exactly is RCU?”,
and perhaps also to the question “How can RCU possi-
bly work?” (or, not infrequently, the assertion that RCU
cannot possibly work). This document addresses these
questions from a fundamental viewpoint; later install-
ments look at them from usage and from API viewpoints.
This last installment also includes a list of references.

RCU is made up of three fundamental mechanisms,
the first being used for insertion, the second being used
for deletion, and the third being used to allow read-
ers to tolerate concurrent insertions and deletions. Sec-
tion 9.5.2.1 describes the publish-subscribe mechanism
used for insertion, Section 9.5.2.2 describes how waiting
for pre-existing RCU readers enabled deletion, and Sec-
tion 9.5.2.3 discusses how maintaining multiple versions
of recently updated objects permits concurrent insertions
and deletions. Finally, Section 9.5.2.4 summarizes RCU
fundamentals.

9.5.2.1 Publish-Subscribe Mechanism

One key attribute of RCU is the ability to safely scan
data, even though that data is being modified concurrently.
To provide this ability for concurrent insertion, RCU uses
what can be thought of as a publish-subscribe mechanism.
For example, consider an initially NULL global pointer
gp that is to be modified to point to a newly allocated
and initialized data structure. The code fragment shown
in Figure 9.20 (with the addition of appropriate locking)

9.5. READ-COPY UPDATE (RCU)

might be used for this purpose.

Unfortunately, there is nothing forcing the compiler
and CPU to execute the last four assignment statements
in order. If the assignment to gp happens before the ini-
tialization of p fields, then concurrent readers could see
the uninitialized values. Memory barriers are required
to keep things ordered, but memory barriers are notori-
ously difficult to use. We therefore encapsulate them into
a primitive rcu_assign_pointer () that has publi-
cation semantics. The last four lines would then be as
follows:
p->a
p—>b

p->c
rcu_assign_pointer (gp, p);

=W N e
[
N

The rcu_assign_pointer () would publish the
new structure, forcing both the compiler and the CPU to
execute the assignment to gp affer the assignments to the
fields referenced by p.

However, it is not sufficient to only enforce ordering at
the updater, as the reader must enforce proper ordering as
well. Consider for example the following code fragment:

1 p=o9gp;

2 if (p != NULL) {
3 do_something_with (p->a, p->b, p->c);
4

Although this code fragment might well seem im-
mune to misordering, unfortunately, the DEC Alpha
CPU [McKO05a, McKO05b] and value-speculation compiler
optimizations can, believe it or not, cause the values of
p—>a, p—>b, and p—>c to be fetched before the value
of p. This is perhaps easiest to see in the case of value-
speculation compiler optimizations, where the compiler
guesses the value of p fetches p->a, p—>b, and p—>
c then fetches the actual value of p in order to check
whether its guess was correct. This sort of optimization
is quite aggressive, perhaps insanely so, but does actually
occur in the context of profile-driven optimization.

Clearly, we need to prevent this sort of skulldug-
gery on the part of both the compiler and the CPU.
The rcu_dereference () primitive uses whatever
memory-barrier instructions and compiler directives are
required for this purpose:3

8 In the Linux kernel, rcu_dereference () is implemented via
a volatile cast, and, on DEC Alpha, a memory barrier instruction. In the
C11 and C++11 standards, memory_order_consume is intended to
provide longer-term support for rcu_dereference (), but no com-
pilers implement this natively yet. (They instead strengthen memory_
order_consume to memory_order_acquire, thus emitting a
needless memory-barrier instruction on weakly ordered systems.)

127

L, next »| next »| next »| next J

prev [prev [prev % prev

Figure 9.21: Linux Circular Linked List

A 3 B B C

Figure 9.22: Linux Linked List Abbreviated

rcu_read_lock();

p = rcu_dereference(gp);

if (p != NULL) {
do_something_with (p->a, p->b, p->c);

}

rcu_read_unlock () ;

oUW N

The rcu_dereference () primitive can thus be
thought of as subscribing to a given value of the spec-
ified pointer, guaranteeing that subsequent dereference
operations will see any initialization that occurred be-
fore the corresponding rcu_assign_pointer () op-
eration that published that pointer. The rcu_read_
lock () and rcu_read_unlock () calls are abso-
lutely required: they define the extent of the RCU read-
side critical section. Their purpose is explained in Sec-
tion 9.5.2.2, however, they never spin or block, nor do they
prevent the 1ist_add_rcu () from executing concur-
rently. In fact, in non-CONFIG_PREEMPT kernels, they
generate absolutely no code.

Although rcu_assign_pointer () and rcu_
dereference () can in theory be used to construct
any conceivable RCU-protected data structure, in prac-
tice it is often better to use higher-level constructs.
Therefore, the rcu_assign_pointer () and rcu_
dereference () primitives have been embedded in
special RCU variants of Linux’s list-manipulation API.
Linux has two variants of doubly linked list, the cir-
cular struct list_head and the linear struct
hlist_head/struct hlist_node pair. The for-
mer is laid out as shown in Figure 9.21, where the green
(leftmost) boxes represent the list header and the blue
(rightmost three) boxes represent the elements in the list.
This notation is cumbersome, and will therefore be ab-
breviated as shown in Figure 9.22, which shows only the
non-header (blue) elements.

Adapting the pointer-publish example for the linked
list results in the code shown in Figure 9.23.

128

struct foo {
struct list_head =xlist;
int a;
int b;
int c;
}i
LIST_HEAD (head);

@ J o0 WN

9 /x . ..o/

11 p = kmalloc(sizeof (xp), GFP_KERNEL) ;
12 p->a = 1;

13 p—>b
14 p->c
15 list_add_rcu(&p->1list, &head);

[}
58]

Figure 9.23: RCU Data Structure Publication

next »| Next »| Next

prev [prev [prev
A B C

Figure 9.24: Linux Linear Linked List

Line 15 must be protected by some synchronization
mechanism (most commonly some sort of lock) to prevent
multiple 1ist_add_rcu () instances from executing
concurrently. However, such synchronization does not
prevent this 1ist_add () instance from executing con-
currently with RCU readers.

Subscribing to an RCU-protected list is straightfor-
ward:

1 rcu_read_lock();

2 list_for_each_entry_rcu(p, head, list) {
3 do_something_with (p->a, p->b, p->c);
4}

5

rcu_read_unlock();

The 1ist_add_rcu () primitive publishes an entry,
inserting it at the head of the specified list, guarantee-
ing that the corresponding 1ist_for_each_entry_
rcu () invocation will properly subscribe to this same
entry.

Quick Quiz 9.20: What prevents the 1ist_for_
each_entry_rcu () from getting a segfault if it hap-
pens to execute at exactly the same time as the 1ist_
add_rcu()?l

Linux’s other doubly linked list, the hlist, is a linear
list, which means that it needs only one pointer for the
header rather than the two required for the circular list,
as shown in Figure 9.24. Thus, use of hlist can halve the
memory consumption for the hash-bucket arrays of large
hash tables. As before, this notation is cumbersome, so
hlists will be abbreviated in the same way lists are, as

CHAPTER 9. DEFERRED PROCESSING

struct foo {
struct hlist_node =xlist;
int a;
int b;
int c;
i
HLIST_HEAD (head);

0 J oUW NP

9 /*x . .. ox/

11 p = kmalloc(sizeof (xp), GFP_KERNEL);
12 p->a = 1;

13 p—>b
14 p->c
15 hlist_add_head_rcu(&p->1list, &head);

[
N

Figure 9.25: RCU hlist Publication

shown in Figure 9.22.

Publishing a new element to an RCU-protected hlist is
quite similar to doing so for the circular list, as shown in
Figure 9.25.

As before, line 15 must be protected by some sort of
synchronization mechanism, for example, a lock.

Subscribing to an RCU-protected hlist is also similar
to the circular list:

1 rcu_read_lock();
2 hlist_for_each_entry_rcu(p, head, list) {
3 do_something_with (p->a, p->b, p->c);
4
5

}
rcu_read_unlock () ;

The set of RCU publish and subscribe primitives are
shown in Table 9.1, along with additional primitives to
“unpublish”, or retract.

Note that the list_replace_rcu(), list_
del_rcu(), hlist_replace_rcu(), and
hlist_del_rcu() APIs add a complication. When
is it safe to free up the data element that was replaced or
removed? In particular, how can we possibly know when
all the readers have released their references to that data
element?

These questions are addressed in the following section.

9.5.2.2 Wait For Pre-Existing RCU Readers to Com-
plete

In its most basic form, RCU is a way of waiting for things
to finish. Of course, there are a great many other ways
of waiting for things to finish, including reference counts,
reader-writer locks, events, and so on. The great advan-
tage of RCU is that it can wait for each of (say) 20,000
different things without having to explicitly track each
and every one of them, and without having to worry about
the performance degradation, scalability limitations, com-
plex deadlock scenarios, and memory-leak hazards that

9.5. READ-COPY UPDATE (RCU)

Category || Publish Retract

129

| Subscribe

Pointers rcu_assign_pointer ()

rcu_assign_pointer (..., NULL)

rcu_dereference ()

Tist_add_rcu()
Lists list_add_tail_rcu()
list_replace_rcu()

list_del_rcu()

list_for_each_entry_rcul()

hlist_add_after_rcul()
hlist_add_before_rcu()

hlist_del_rcu()

hlist_for_each_entry_rcu()

Table 9.1: RCU Publish and Subscribe Primitives

Hlists hlist_add_head_rcu ()
hlist_replace_rcu()
[1
| Reader| | Reader | | Reader
[.
| Reader | | Reader| Grace Period
Extends as
| Reader | | Reader Needed
[
| Reader | Reader
Removal Reclamation

Time

Figure 9.26: Readers and RCU Grace Period

are inherent in schemes using explicit tracking.

In RCU’s case, the things waited on are called “RCU
read-side critical sections”. An RCU read-side critical
section starts with an rcu_read_lock () primitive,
and ends with a corresponding rcu_read_unlock ()
primitive. RCU read-side critical sections can be nested,
and may contain pretty much any code, as long as that
code does not explicitly block or sleep (although a special
form of RCU called SRCU [McKO06] does permit general
sleeping in SRCU read-side critical sections). If you abide
by these conventions, you can use RCU to wait for any
desired piece of code to complete.

RCU accomplishes this feat by indirectly determin-
ing when these other things have finished [McKO7{,
McKO07a].

In particular, as shown in Figure 9.26, RCU is a way of
waiting for pre-existing RCU read-side critical sections to
completely finish, including memory operations executed
by those critical sections. However, note that RCU read-
side critical sections that begin after the beginning of a
given grace period can and will extend beyond the end of
that grace period.

The following pseudocode shows the basic form of
algorithms that use RCU to wait for readers:

1. Make a change, for example, replace an element in

1 struct foo {
2 struct list_head =*list;
3 int a;
4 int b;
5 int c;

6 }i

7 LIST_HEAD (head);
8

9 /x . ..o/

11 p = search(head, key);
12 if (p == NULL) {
13 /+ Take appropriate action, unlock, & return. =/

}
15 g = kmalloc(sizeof (xp), GFP_KERNEL) ;
*q = *p;

q->b = 2;

18 g->c = 3;

19 list_replace_rcu(&p->list, &g->1list);
20 synchronize_rcul();

21 kfree(p);

Figure 9.27: Canonical RCU Replacement Example

a linked list.

2. Wait for all pre-existing RCU read-side critical
sections to completely finish (for example, by us-
ing the synchronize_rcu () primitive or its
asynchronous counterpart, call_rcu (), which in-
vokes a specified function at the end of a future grace
period). The key observation here is that subsequent
RCU read-side critical sections have no way to gain
a reference to the newly removed element.

3. Clean up, for example, free the element that was
replaced above.

The code fragment shown in Figure 9.27, adapted from
those in Section 9.5.2.1, demonstrates this process, with
field a being the search key.

Lines 19, 20, and 21 implement the three steps called
out above. Lines 16-19 gives RCU (“read-copy update”)
its name: while permitting concurrent reads, line 16
copies and lines 17-19 do an update.

As discussed in Section 9.5.1, the synchronize_
rcu () primitive can be quite simple (see Section 9.5.5
for additional “toy” RCU implementations). However,

130

production-quality implementations must deal with dif-
ficult corner cases and also incorporate powerful opti-
mizations, both of which result in significant complexity.
Although it is good to know that there is a simple concep-
tual implementation of synchronize_rcu (), other
questions remain. For example, what exactly do RCU
readers see when traversing a concurrently updated list?
This question is addressed in the following section.

9.5.2.3 Maintain Multiple Versions of Recently Up-
dated Objects

This section demonstrates how RCU maintains multiple
versions of lists to accommodate synchronization-free
readers. Two examples are presented showing how an el-
ement that might be referenced by a given reader must re-
main intact while that reader remains in its RCU read-side
critical section. The first example demonstrates deletion
of a list element, and the second example demonstrates
replacement of an element.

Example 1: Maintaining Multiple Versions During
Deletion We can now revisit the deletion example from
Section 9.5.1, but now with the benefit of a firm under-
standing of the fundamental concepts underlying RCU.
To begin this new version of the deletion example, we
will modify lines 11-21 in Figure 9.27 to read as follows:
p = search (head, key);
if (p != NULL) {

list_del_rcu(&p->list);

synchronize_rcu();

kfree(p);
}

o Ul WN

This code will update the list as shown in Figure 9.28.
The triples in each element represent the values of fields a,
b, and c, respectively. The red-shaded elements indicate
that RCU readers might be holding references to them, so
in the initial state at the top of the diagram, all elements
are shaded red. Please note that we have omitted the
backwards pointers and the link from the tail of the list to
the head for clarity.

Afterthe 1ist_del_rcu () online 3 has completed,
the 5, 6, 7 element has been removed from the list, as
shown in the second row of Figure 9.28. Since readers
do not synchronize directly with updaters, readers might
be concurrently scanning this list. These concurrent read-
ers might or might not see the newly removed element,
depending on timing. However, readers that were de-
layed (e.g., due to interrupts, ECC memory errors, or, in
CONFIG_PREEMPT_RT kernels, preemption) just after

CHAPTER 9. DEFERRED PROCESSING

1,2,3 - 5,6,7 = 1148
list_del_rcu()
1,2,3 5,6,7 ™ 11,48

synchronize_rcu()

Y

1,2,3 5,6,7 11,4,8

kfree()

1,2,3 » 11,48

Figure 9.28: RCU Deletion From Linked List

fetching a pointer to the newly removed element might
see the old version of the list for quite some time after
the removal. Therefore, we now have two versions of
the list, one with element 5, 6, 7 and one without. The
5, 6, 7 element in the second row of the figure is now
shaded yellow, indicating that old readers might still be
referencing it, but that new readers cannot obtain a refer-
ence to it.

Please note that readers are not permitted to maintain
references to element 5, 6, 7 after exiting from their
RCU read-side critical sections. Therefore, once the
synchronize_rcu () on line 4 completes, so that all
pre-existing readers are guaranteed to have completed,
there can be no more readers referencing this element,
as indicated by its green shading on the third row of Fig-
ure 9.28. We are thus back to a single version of the
list.

At this point, the 5, 6, 7 element may safely be freed,
as shown on the final row of Figure 9.28. At this point,
we have completed the deletion of element 5, 6, 7. The
following example covers replacement.

Example 2: Maintaining Multiple Versions During
Replacement To start the replacement example, here
are the last few lines of the example shown in Figure 9.27:

9.5. READ-COPY UPDATE (RCU)

g = kmalloc(sizeof (xp), GFP_KERNEL) ;
*q = *pj

g->b = 2;

g->c = 3;

list_replace_rcu(&p->1list, &g->1list);
synchronize_rcu();

kfree (p);

oUW N

The initial state of the list, including the pointer p, is
the same as for the deletion example, as shown on the first
row of Figure 9.29.

As before, the triples in each element represent the
values of fields a, b, and c, respectively. The red-shaded
elements might be referenced by readers, and because
readers do not synchronize directly with updaters, read-
ers might run concurrently with this entire replacement
process. Please note that we again omit the backwards
pointers and the link from the tail of the list to the head
for clarity.

The following text describes how to replace the 5, 6, 7
element with 5, 2, 3 in such a way that any given reader
sees one of these two values.

Line 1 kmalloc ()s a replacement element, as fol-
lows, resulting in the state as shown in the second row
of Figure 9.29. At this point, no reader can hold a refer-
ence to the newly allocated element (as indicated by its
green shading), and it is uninitialized (as indicated by the
question marks).

Line 2 copies the old element to the new one, resulting
in the state as shown in the third row of Figure 9.29. The
newly allocated element still cannot be referenced by
readers, but it is now initialized.

Line 3 updates g—>b to the value “2”, and line 4 up-
dates g—>c to the value “3”, as shown on the fourth row
of Figure 9.29.

Now, line 5 does the replacement, so that the new el-
ement is finally visible to readers, and hence is shaded
red, as shown on the fifth row of Figure 9.29. At this
point, as shown below, we have two versions of the list.
Pre-existing readers might see the 5, 6, 7 element (which
is therefore now shaded yellow), but new readers will in-
stead see the 5, 2, 3 element. But any given reader is
guaranteed to see some well-defined list.

After the synchronize_rcu () on line 6 returns,
a grace period will have elapsed, and so all reads that
started before the 1ist_replace_rcu () will have
completed. In particular, any readers that might have been
holding references to the 5, 6, 7 element are guaranteed
to have exited their RCU read-side critical sections, and
are thus prohibited from continuing to hold a reference.
Therefore, there can no longer be any readers holding ref-
erences to the old element, as indicated its green shading

Allocate %

S e s—

list_replace_rcu()

5,6,7

synchronize_rcu()

kfree()

Figure 9.29: RCU Replacement in Linked List

131

132

in the sixth row of Figure 9.29. As far as the readers are
concerned, we are back to having a single version of the
list, but with the new element in place of the old.

After the kfree () on line 7 completes, the list will
appear as shown on the final row of Figure 9.29.

Despite the fact that RCU was named after the replace-
ment case, the vast majority of RCU usage within the
Linux kernel relies on the simple deletion case shown in
Section 9.5.2.3.

Discussion These examples assumed that a mutex was
held across the entire update operation, which would
mean that there could be at most two versions of the
list active at a given time.

Quick Quiz 9.21: How would you modify the deletion
example to permit more than two versions of the list to be
active? i

Quick Quiz 9.22: How many RCU versions of a given
list can be active at any given time? ll

This sequence of events shows how RCU updates use
multiple versions to safely carry out changes in presence
of concurrent readers. Of course, some algorithms cannot
gracefully handle multiple versions. There are techniques
for adapting such algorithms to RCU [McK04], but these
are beyond the scope of this section.

9.5.2.4 Summary of RCU Fundamentals

This section has described the three fundamental compo-
nents of RCU-based algorithms:

1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to
finish, and

3. adiscipline of maintaining multiple versions to per-
mit change without harming or unduly delaying con-
current RCU readers.

Quick Quiz 9.23: How can RCU updaters possibly
delay RCU readers, given that the rcu_read_lock ()
and rcu_read_unlock () primitives neither spin nor
block? H

These three RCU components allow data to be updated
in face of concurrent readers, and can be combined in
different ways to implement a surprising variety of differ-
ent types of RCU-based algorithms, some of which are
described in the following section.

CHAPTER 9. DEFERRED PROCESSING

Mechanism RCU Replaces

Reader-writer locking

Restricted reference-counting mechanism
Bulk reference-counting mechanism
Poor man’s garbage collector

Existence Guarantees

Type-Safe Memory

Wait for things to finish

| Section

Section 9.5.3.2
Section 9.5.3.3
Section 9.5.3.4
Section 9.5.3.5
Section 9.5.3.6
Section 9.5.3.7
Section 9.5.3.8

Table 9.2: RCU Usage

struct route_entry {
struct rcu_head rh;
struct cds_list_head re_next;
unsigned long addr;
unsigned long iface;
int re_freed;
}i
CDS_LIST_HEAD (route_list);
9 DEFINE_SPINLOCK (routelock) ;

W J oUW N

11 unsigned long route_lookup (unsigned long addr)
12 {
13 struct route_entry =xrep;

14 unsigned long ret;

15

16 rcu_read_lock();

17 cds_list_for_each_entry_rcu(rep, &route_list,
18 re_next) {
19 if (rep->addr == addr) {

20 ret = rep->iface;

21 if (ACCESS_ONCE (rep->re_freed))

22 abort () ;

23 rcu_read_unlock () ;

24 return ret;

25 }

26 }

27 rcu_read_unlock () ;

28 return ULONG_MAX;

29 }

Figure 9.30: RCU Pre-BSD Routing Table Lookup

9.5.3 RCU Usage

This section answers the question “What is RCU?” from
the viewpoint of the uses to which RCU can be put. Be-
cause RCU is most frequently used to replace some ex-
isting mechanism, we look at it primarily in terms of its
relationship to such mechanisms, as listed in Table 9.2.
Following the sections listed in this table, Section 9.5.3.9
provides a summary.

9.5.3.1 RCU for Pre-BSD Routing

Figures 9.30 and 9.31 show code for an RCU-protected
Pre-BSD routing table (route_rcu.c). The former
shows data structures and route_lookup (), and the
latter shows route_add () and route_del ().

In Figure 9.30, line 2 adds the —>rh field used by
RCU reclamation, line 6 adds the —>re_freed use-
after-free-check field, lines 16, 17, 23, and 27 add RCU

9.5. READ-COPY UPDATE (RCU)

int route_add(unsigned long addr,
unsigned long interface)

struct route_entry *rep;

rep = malloc (sizeof (xrep));
if (!rep)
return -ENOMEM;
9 rep->addr = addr;
10 rep->iface = interface;
11 rep->re_freed = 0;
12 spin_lock (&routelock) ;

W oUW N

13 cds_list_add_rcu(&rep->re_next, &route_list);
14 spin_unlock (&routelock) ;

15 return 0;

16 }

17

18 static void route_cb(struct rcu_head x*rhp)
19 {

20 struct route_entry xrep;

21

22 rep = container_of (rhp, struct route_entry, rh);
23 ACCESS_ONCE (rep->re_freed) = 1;

24 free(rep);

25 }

26

27 int route_del (unsigned long addr)

28 {

29 struct route_entry xrep;

30

31 spin_lock (&routelock) ;

32 cds_list_for_each_entry(rep, &route_list,
33 re_next) {
34 if (rep->addr == addr) {

35 cds_list_del_rcu(&rep->re_next);
36 spin_unlock (&routelock) ;

37 call_rcu(&rep->rh, route_cb);

38 return 0;

39 }

40 }

41 spin_unlock (&routelock) ;

42 return —-ENOENT;

43 '}

Figure 9.31: RCU Pre-BSD Routing Table Add/Delete

133

450000 T T T T 1
400000
350000
300000
250000
200000
150000
100000

4
A2
50000 | -
=8
2

Lookups per Millisecond

0
3 4 5 6 7 8

Number of CPUs (Threads)

Figure 9.32: Pre-BSD Routing Table Protected by RCU

read-side protection, and lines 21 and 22 add the use-
after-free check. In Figure 9.31, lines 12, 14, 31, 36,
and 41 add update-side locking, lines 13 and 35 add RCU
update-side protection, line 37 causes route_cb () to
be invoked after a grace period elapses, and lines 18-25
define route_cb (). This is minimal added code for a
working concurrent implementation.

Figure 9.32 shows the performance on the read-only
workload. RCU scales quite well, and offers nearly
ideal performance. However, this data was generated us-
ing the RCU_SIGNAL flavor of userspace RCU [Des09,
MDJ13c], for which rcu_read_lock () and rcu_
read_unlock () generate a small amount of code.
What happens for the QSBR flavor of RCU, which gener-
ates no code at all for rcu_read_lock () and rcu_
read_unlock () ? (See Section 9.5.1, and especially
Figure 9.19, for a discussion of RCU QSBR.)

The answer to this shown in Figure 9.33, which shows
the RCU QSBR results as the trace between the RCU and
the ideal traces. RCU QSBR’s performance and scala-
bility is very nearly that of an ideal synchronization-free
workload, as desired.

Quick Quiz 9.24: Why doesn’t RCU QSBR give ex-
actly ideal results? H

Quick Quiz 9.25: Given RCU QSBR’s read-side per-
formance, why bother with any other flavor of userspace
RCU?H

9.5.3.2 RCU is a Reader-Writer Lock Replacement

Perhaps the most common use of RCU within the Linux
kernel is as a replacement for reader-writer locking in
read-intensive situations. Nevertheless, this use of RCU

134

450000 T T T T 1
400000
350000
300000
250000
200000
150000
100000

I P

50000 F , -5-
=80
1 2 3

Lookups per Millisecond

4 5 6 7 8
Number of CPUs (Threads)

Figure 9.33: Pre-BSD Routing Table Protected by RCU
QSBR

was not immediately apparent to me at the outset, in
fact, I chose to implement a lightweight reader-writer
lock [HW92]° before implementing a general-purpose
RCU implementation back in the early 1990s. Each and
every one of the uses I envisioned for the lightweight
reader-writer lock was instead implemented using RCU.
In fact, it was more than three years before the lightweight
reader-writer lock saw its first use. Boy, did I feel foolish!

The key similarity between RCU and reader-writer
locking is that both have read-side critical sections that
can execute in parallel. In fact, in some cases, it is possible
to mechanically substitute RCU API members for the
corresponding reader-writer lock API members. But first,
why bother?

Advantages of RCU include performance, deadlock
immunity, and realtime latency. There are, of course,
limitations to RCU, including the fact that readers and
updaters run concurrently, that low-priority RCU readers
can block high-priority threads waiting for a grace period
to elapse, and that grace-period latencies can extend for
many milliseconds. These advantages and limitations are
discussed in the following sections.

Performance The read-side performance advantages of
RCU over reader-writer locking are shown in Figure 9.34.

Quick Quiz 9.26: WTF? How the heck do you expect
me to believe that RCU has a 100-femtosecond overhead
when the clock period at 3GHz is more than 300 picosec-
onds? A

9 Similar to brlock in the 2.4 Linux kernel and to 1glock in
more recent Linux kernels.

CHAPTER 9. DEFERRED PROCESSING

10000
1000
100
10

1

0.1
0.01
0.001
1e-04
1e-05

T T T T 1
¢ 3 3K X
XXXXX ¢ 2 HX T oK

X

Overhead (nanoseconds)
I5)
{e

dodod ool sl e e vy aal e al a

K

]]]]
4 6 8 10 12 14 16
Number of CPUs

o
\S]

Figure 9.34: Performance Advantage of RCU Over
Reader-Writer Locking

10000

E [I T I : — _

3 e pe X KKK
. : .]
g X
c 1000 k- y _=
Q 3 |
3 E |
8 ;
o - | -
c
g 100 s _é
he] E |
m |]
(0]
; :]
2 10 k&]
le) E 1

1] | I | | | |
0 2 4 6 8 10 12 14 16

Number of CPUs

Figure 9.35: Performance Advantage of Preemptible RCU
Over Reader-Writer Locking

Note that reader-writer locking is orders of magnitude
slower than RCU on a single CPU, and is almost two
additional orders of magnitude slower on 16 CPUs. In
contrast, RCU scales quite well. In both cases, the error
bars span a single standard deviation in either direction.

A more moderate view may be obtained from a
CONFIG_PREEMPT kernel, though RCU still beats
reader-writer locking by between one and three orders
of magnitude, as shown in Figure 9.35. Note the high
variability of reader-writer locking at larger numbers of
CPUs. The error bars span a single standard deviation in
either direction.

Of course, the low performance of reader-writer lock-
ing in Figure 9.35 is exaggerated by the unrealistic zero-

9.5. READ-COPY UPDATE (RCU)

12000 | : | |
— 10000 - ¥
g .
2 .
5
o |) i
2 8000 | rwlock o
o
S R L) SR A 5
§ pooo b KR KK i
©
®
< 4000]
[
>
© 2000 rcu N

0 1] | |

0 2 4 6 8 10
Critical-Section Duration (microseconds)

Figure 9.36: Comparison of RCU to Reader-Writer Lock-
ing as Function of Critical-Section Duration

length critical sections. The performance advantages of
RCU become less significant as the overhead of the crit-
ical section increases, as shown in Figure 9.36 for a 16-
CPU system, in which the y-axis represents the sum of
the overhead of the read-side primitives and that of the
critical section.

Quick Quiz 9.27: Why does both the variability and
overhead of rwlock decrease as the critical-section over-
head increases?

However, this observation must be tempered by the
fact that a number of system calls (and thus any RCU
read-side critical sections that they contain) can complete
within a few microseconds.

In addition, as is discussed in the next section,
RCU read-side primitives are almost entirely deadlock-
immune.

Deadlock Immunity Although RCU offers significant
performance advantages for read-mostly workloads, one
of the primary reasons for creating RCU in the first place
was in fact its immunity to read-side deadlocks. This im-
munity stems from the fact that RCU read-side primitives
do not block, spin, or even do backwards branches, so
that their execution time is deterministic. It is therefore
impossible for them to participate in a deadlock cycle.

Quick Quiz 9.28: Is there an exception to this dead-
lock immunity, and if so, what sequence of events could
lead to deadlock? M

An interesting consequence of RCU’s read-side dead-
lock immunity is that it is possible to unconditionally
upgrade an RCU reader to an RCU updater. Attempting

135

to do such an upgrade with reader-writer locking results
in deadlock. A sample code fragment that does an RCU
read-to-update upgrade follows:

1 rcu_read_lock () ;

2 list_for_each_entry_rcu(p, &head, list_field) {
3 do_something_with (p);

4 if (need_update(p)) {

5 spin_lock (my_lock);

6 do_update (p) ;

7 spin_unlock (&my_lock) ;

8 }

9}

0

10 rcu_read_unlock();

Note that do_update () is executed under the pro-
tection of the lock and under RCU read-side protection.

Another interesting consequence of RCU’s deadlock
immunity is its immunity to a large class of priority inver-
sion problems. For example, low-priority RCU readers
cannot prevent a high-priority RCU updater from acquir-
ing the update-side lock. Similarly, a low-priority RCU
updater cannot prevent high-priority RCU readers from
entering an RCU read-side critical section.

Quick Quiz 9.29: Immunity to both deadlock and pri-
ority inversion??? Sounds too good to be true. Why
should I believe that this is even possible?

Realtime Latency Because RCU read-side primitives
neither spin nor block, they offer excellent realtime laten-
cies. In addition, as noted earlier, this means that they are
immune to priority inversion involving the RCU read-side
primitives and locks.

However, RCU is susceptible to more subtle priority-
inversion scenarios, for example, a high-priority process
blocked waiting for an RCU grace period to elapse can be
blocked by low-priority RCU readers in -rt kernels. This
can be solved by using RCU priority boosting [McKO07c,
GMTWO08].

RCU Readers and Updaters Run Concurrently Be-
cause RCU readers never spin nor block, and because
updaters are not subject to any sort of rollback or abort se-
mantics, RCU readers and updaters must necessarily run
concurrently. This means that RCU readers might access
stale data, and might even see inconsistencies, either of
which can render conversion from reader-writer locking
to RCU non-trivial.

However, in a surprisingly large number of situations,
inconsistencies and stale data are not problems. The clas-
sic example is the networking routing table. Because rout-
ing updates can take considerable time to reach a given
system (seconds or even minutes), the system will have

136
’ rwlock reader | spin rwlock reader
‘ rwlock reader | spin rwlock reader
| rwlock reader | spin rwlock reader
| spin [rwlock writer
|
RCU reader	RCU reader	/RCU reader
RCUreader [RCU reader	RCU reader	
RCUreader; [RCU reader	RCU reader	

| RCU updater]
d

/ !

Update Received

Time

Figure 9.37: Response Time of RCU vs. Reader-Writer
Locking

been sending packets the wrong way for quite some time
when the update arrives. It is usually not a problem to con-
tinue sending updates the wrong way for a few additional
milliseconds. Furthermore, because RCU updaters can
make changes without waiting for RCU readers to finish,
the RCU readers might well see the change more quickly
than would batch-fair reader-writer-locking readers, as
shown in Figure 9.37.

Once the update is received, the rwlock writer cannot
proceed until the last reader completes, and subsequent
readers cannot proceed until the writer completes. How-
ever, these subsequent readers are guaranteed to see the
new value, as indicated by the green shading of the right-
most boxes. In contrast, RCU readers and updaters do not
block each other, which permits the RCU readers to see
the updated values sooner. Of course, because their exe-
cution overlaps that of the RCU updater, all of the RCU
readers might well see updated values, including the three
readers that started before the update. Nevertheless only
the green-shaded rightmost RCU readers are guaranteed
to see the updated values.

Reader-writer locking and RCU simply provide differ-
ent guarantees. With reader-writer locking, any reader
that begins after the writer begins is guaranteed to see
new values, and any reader that attempts to begin while
the writer is spinning might or might not see new values,
depending on the reader/writer preference of the rwlock
implementation in question. In contrast, with RCU, any
reader that begins after the updater completes is guar-
anteed to see new values, and any reader that completes
after the updater begins might or might not see new values,
depending on timing.

CHAPTER 9. DEFERRED PROCESSING

The key point here is that, although reader-writer lock-
ing does indeed guarantee consistency within the confines
of the computer system, there are situations where this
consistency comes at the price of increased inconsistency
with the outside world. In other words, reader-writer lock-
ing obtains internal consistency at the price of silently
stale data with respect to the outside world.

Nevertheless, there are situations where inconsistency
and stale data within the confines of the system can-
not be tolerated. Fortunately, there are a number of ap-
proaches that avoid inconsistency and stale data [McK04,
ACMSO03], and some methods based on reference count-
ing are discussed in Section 9.2.

Low-Priority RCU Readers Can Block High-
Priority Reclaimers In Realtime RCU [GMTWO08],
SRCU [McKO06], or QRCU [McKO07e] (see Sec-
tion 12.1.4), a preempted reader will prevent a grace
period from completing, even if a high-priority task
is blocked waiting for that grace period to complete.
Realtime RCU can avoid this problem by substituting
call_rcu() for synchronize_rcu () or by using
RCU priority boosting [McK07¢c, GMTWO0S], which is
still in experimental status as of early 2008. It might
become necessary to augment SRCU and QRCU with
priority boosting, but not before a clear real-world need
is demonstrated.

RCU Grace Periods Extend for Many Milliseconds
With the exception of QRCU and several of the “toy”
RCU implementations described in Section 9.5.5, RCU
grace periods extend for multiple milliseconds. Although
there are a number of techniques to render such long
delays harmless, including use of the asynchronous inter-
faces where available (call_rcu () and call_rcu_
bh ()), this situation is a major reason for the rule of
thumb that RCU be used in read-mostly situations.

Comparison of Reader-Writer Locking and RCU
Code In the best case, the conversion from reader-writer
locking to RCU is quite simple, as shown in Figures 9.38,
9.39, and 9.40, all taken from Wikipedia [MPA06].

More-elaborate cases of replacing reader-writer locking
with RCU are beyond the scope of this document.

9.5. READ-COPY UPDATE (RCU)

1
2
3
4
5
6
7
8
9

struct el {
struct list_head 1lp;
long key;
spinlock_t mutex;
int data;
/* Other data fields */
bi
DEFINE_RWLOCK (listmutex) ;
LIST_HEAD (head) ;

OO JoU s WN

struct el {

bi

struct list_head 1lp;
long key;

spinlock_t mutex;

int data;

/* Other data fields =/

DEFINE_SPINLOCK (listmutex) ;
LIST_HEAD (head) ;

Figure 9.38: Converting Reader-Writer Locking to RCU: Data

int search(long key, int xresult)

{

struct el xp;

read_lock (&listmutex) ;
list_for_each_entry(p,
if (p—>key == key) {
«*result = p->data;
read_unlock (&listmutex);
return 1;
}
}
read_unlock (&listmutex) ;
return 0;

&head,

1p)

W J oUW N

int search(long key, int xresult)
{

struct el xp;

rcu_read_lock () ;
list_for_each_entry_rcul(p,
if (p—->key == key) {
*result = p->data;
rcu_read_unlock () ;
return 1;

&head, 1lp)

}
}
rcu_read_unlock () ;
return 0;

Figure 9.39: Converting Reader-Writer Locking to RCU: Search

int delete(long key)
{

struct el xp;

write_lock (&listmutex);
list_for_each_entry (p,
if (p->key == key) {
list_del (&p—>1p);

write_unlock (&listmutex);

&head,

kfree(p);
return 1;
}
}
write_unlock (&listmutex);
return 0;

1p)

{

int delete(long key)
{

}

struct el xp;

spin_lock (&listmutex) ;
list_for_each_entry (p,
if (p->key == key) {
list_del_rcu(&p—>1p);
spin_unlock (&listmutex) ;
synchronize_rcu();
kfree(p);
return 1;

&head, 1lp) {

}
}
spin_unlock (&listmutex) ;
return 0;

Figure 9.40: Converting Reader-Writer Locking to RCU: Deletion

137

138

9.5.3.3 RCU is a Restricted Reference-Counting
Mechanism

Because grace periods are not allowed to complete while
there is an RCU read-side critical section in progress,
the RCU read-side primitives may be used as a restricted
reference-counting mechanism. For example, consider
the following code fragment:

1 rcu_read_lock(); /* acquire reference. */

2 p = rcu_dereference (head);

3 /* do something with p. =/

4 rcu_read_unlock(); /* release reference. */

The rcu_read_lock () primitive can be thought of
as acquiring a reference to p, because a grace period start-
ing after the rcu_dereference () assigns to p can-
not possibly end until after we reach the matching rcu__
read_unlock (). This reference-counting scheme is
restricted in that we are not allowed to block in RCU read-
side critical sections, nor are we permitted to hand off an
RCU read-side critical section from one task to another.

Regardless of these restrictions, the following code can
safely delete p:
spin_lock (&mylock);

p = head;

rcu_assign_pointer (head, NULL);

spin_unlock (&mylock) ;

/* Wait for all references to be released. =/

synchronize_rcu();
kfree (p);

oUW N

The assignment to head prevents any future refer-
ences to p from being acquired, and the synchronize_
rcu () waits for any previously acquired references to
be released.

Quick Quiz 9.30: But wait! This is exactly the same
code that might be used when thinking of RCU as a re-
placement for reader-writer locking! What gives? ll

Of course, RCU can also be combined with traditional
reference counting, as discussed in Section 13.2.

But why bother? Again, part of the answer is perfor-
mance, as shown in Figure 9.41, again showing data taken
on a 16-CPU 3GHz Intel x86 system.

Quick Quiz 9.31: Why the dip in refcnt overhead near
6 CPUs? H

And, as with reader-writer locking, the performance ad-
vantages of RCU are most pronounced for short-duration
critical sections, as shown Figure 9.42 for a 16-CPU sys-
tem. In addition, as with reader-writer locking, many
system calls (and thus any RCU read-side critical sections
that they contain) complete in a few microseconds.

However, the restrictions that go with RCU can be quite
onerous. For example, in many cases, the prohibition

CHAPTER 9. DEFERRED PROCESSING

10000 f———————
: K ’ XX x refcnt
2 1000 E }S"XXXXX]
3 E E
@ E X :
3 K
o ! -
3 B
8 100 p _
m - -
(0]
E ! -
2 10 & B
° R R o 1

1] | | | | | |
0 2 4 6 8 10 12 14 16

Number of CPUs

Figure 9.41: Performance of RCU vs. Reference Count-
ing

12000 T T T T

T
X

10000

8000

6000

4000 I refent

ko>
2000 rcu -

Overhead (nanoseconds)

0 1 1 1 1
0 2 4 6 8 10

Critical-Section Duration (microseconds)

Figure 9.42: Response Time of RCU vs. Reference Count-
ing

against sleeping while in an RCU read-side critical section
would defeat the entire purpose. The next section looks
at ways of addressing this problem, while also reducing
the complexity of traditional reference counting, at least
in some cases.

9.5.34 RCU is a Bulk Reference-Counting Mecha-
nism

As noted in the preceding section, traditional reference
counters are usually associated with a specific data struc-
ture, or perhaps a specific group of data structures. How-
ever, maintaining a single global reference counter for a
large variety of data structures typically results in bounc-
ing the cache line containing the reference count. Such

9.5. READ-COPY UPDATE (RCU)

cache-line bouncing can severely degrade performance.

In contrast, RCU’s light-weight read-side primitives
permit extremely frequent read-side usage with negligible
performance degradation, permitting RCU to be used
as a “bulk reference-counting” mechanism with little or
no performance penalty. Situations where a reference
must be held by a single task across a section of code
that blocks may be accommodated with Sleepable RCU
(SRCU) [McKO06]. This fails to cover the not-uncommon
situation where a reference is “passed” from one task
to another, for example, when a reference is acquired
when starting an I/O and released in the corresponding
completion interrupt handler. (In principle, this could be
handled by the SRCU implementation, but in practice, it
is not yet clear whether this is a good tradeoff.)

Of course, SRCU brings restrictions of its own,
namely that the return value from srcu_read_
lock () be passed into the corresponding srcu_read_
unlock (), and that no SRCU primitives be invoked
from hardware interrupt handlers or from non-maskable
interrupt (NMI) handlers. The jury is still out as to how
much of a problem is presented by these restrictions, and
as to how they can best be handled.

9.5.3.5 RCU is a Poor Man’s Garbage Collector

A not-uncommon exclamation made by people first learn-
ing about RCU is “RCU is sort of like a garbage collector!”
This exclamation has a large grain of truth, but it can also
be misleading.

Perhaps the best way to think of the relationship be-
tween RCU and automatic garbage collectors (GCs) is
that RCU resembles a GC in that the timing of collection
is automatically determined, but that RCU differs from a
GC in that: (1) the programmer must manually indicate
when a given data structure is eligible to be collected, and
(2) the programmer must manually mark the RCU read-
side critical sections where references might legitimately
be held.

Despite these differences, the resemblance does go
quite deep, and has appeared in at least one theoretical
analysis of RCU. Furthermore, the first RCU-like mecha-
nism [am aware of used a garbage collector to handle the
grace periods. Nevertheless, a better way of thinking of
RCU is described in the following section.

139

int delete (int key)
{

struct element *p;
int b;

b = hashfunction (key);
rcu_read_lock () ;

p = rcu_dereference (hashtable[b]);
9 if (p == NULL || p->key != key) {

10 rcu_read_unlock();

11 return 0;

12 }

13 spin_lock (&p—>1lock) ;

14 if (hashtable[b] == p && p->key == key) {
15 rcu_read_unlock () ;

16 rcu_assign_pointer (hashtable[b], NULL);
17 spin_unlock (&p->1lock) ;

18 synchronize_rcu();

19 kfree(p);

20 return 1;

21 }

22 spin_unlock (&p->1lock) ;

23 rcu_read_unlock () ;

24 return 0;

25 }

Figure 9.43: Existence Guarantees Enable Per-Element
Locking

9.5.3.6 RCU is a Way of Providing Existence Guar-
antees

Gamsa et al. [GKAS99] discuss existence guarantees and
describe how a mechanism resembling RCU can be used
to provide these existence guarantees (see section 5 on
page 7 of the PDF), and Section 7.4 discusses how to
guarantee existence via locking, along with the ensuing
disadvantages of doing so. The effect is that if any RCU-
protected data element is accessed within an RCU read-
side critical section, that data element is guaranteed to
remain in existence for the duration of that RCU read-side
critical section.

Figure 9.43 demonstrates how RCU-based existence
guarantees can enable per-element locking via a function
that deletes an element from a hash table. Line 6 computes
a hash function, and line 7 enters an RCU read-side criti-
cal section. If line 9 finds that the corresponding bucket
of the hash table is empty or that the element present is
not the one we wish to delete, then line 10 exits the RCU
read-side critical section and line 11 indicates failure.

Quick Quiz 9.32: What if the element we need to
delete is not the first element of the list on line 9 of Fig-
ure 9.437 1

Otherwise, line 13 acquires the update-side spinlock,
and line 14 then checks that the element is still the one
that we want. If so, line 15 leaves the RCU read-side
critical section, line 16 removes it from the table, line 17
releases the lock, line 18 waits for all pre-existing RCU

140

read-side critical sections to complete, line 19 frees the
newly removed element, and line 20 indicates success. If
the element is no longer the one we want, line 22 releases
the lock, line 23 leaves the RCU read-side critical section,
and line 24 indicates failure to delete the specified key.

Quick Quiz 9.33: Why is it OK to exit the RCU read-
side critical section on line 15 of Figure 9.43 before re-
leasing the lock on line 17?7 B

Quick Quiz 9.34: Why not exit the RCU read-side
critical section on line 23 of Figure 9.43 before releasing
the lock on line 227 W

Alert readers will recognize this as only a slight varia-
tion on the original “RCU is a way of waiting for things
to finish” theme, which is addressed in Section 9.5.3.8.
They might also note the deadlock-immunity advantages
over the lock-based existence guarantees discussed in
Section 7.4.

9.5.3.7 RCU is a Way of Providing Type-Safe Mem-
ory

A number of lockless algorithms do not require that a
given data element keep the same identity through a given
RCU read-side critical section referencing it—but only if
that data element retains the same type. In other words,
these lockless algorithms can tolerate a given data element
being freed and reallocated as the same type of structure
while they are referencing it, but must prohibit a change
in type. This guarantee, called “type-safe memory” in
academic literature [GC96], is weaker than the existence
guarantees in the previous section, and is therefore quite
a bit harder to work with. Type-safe memory algorithms
in the Linux kernel make use of slab caches, specially
marking these caches with SLAB_DESTROY_BY_RCU
so that RCU is used when returning a freed-up slab to
system memory. This use of RCU guarantees that any
in-use element of such a slab will remain in that slab,
thus retaining its type, for the duration of any pre-existing
RCU read-side critical sections.

Quick Quiz 9.35: But what if there is an arbitrarily
long series of RCU read-side critical sections in multi-
ple threads, so that at any point in time there is at least
one thread in the system executing in an RCU read-side
critical section? Wouldn’t that prevent any data from a
SLAB_DESTROY_BY_RCU slab ever being returned to
the system, possibly resulting in OOM events? ll

These algorithms typically use a validation step that
checks to make sure that the newly referenced data struc-
ture really is the one that was requested [LS86, Section
2.5]. These validation checks require that portions of the

CHAPTER 9. DEFERRED PROCESSING

data structure remain untouched by the free-reallocate
process. Such validation checks are usually very hard to
get right, and can hide subtle and difficult bugs.
Therefore, although type-safety-based lockless algo-
rithms can be extremely helpful in a very few difficult
situations, you should instead use existence guarantees
where possible. Simpler is after all almost always better!

9.5.3.8 RCU is a Way of Waiting for Things to Fin-
ish

As noted in Section 9.5.2 an important component of
RCU is a way of waiting for RCU readers to finish. One
of RCU’s great strengths is that it allows you to wait for
each of thousands of different things to finish without
having to explicitly track each and every one of them, and
without having to worry about the performance degrada-
tion, scalability limitations, complex deadlock scenarios,
and memory-leak hazards that are inherent in schemes
that use explicit tracking.

In this section, we will show how synchronize_
sched () ’s read-side counterparts (which include any-
thing that disables preemption, along with hardware oper-
ations and primitives that disable interrupts) permit you
to implement interactions with non-maskable interrupt
(NMI) handlers that would be quite difficult if using lock-
ing. This approach has been called “Pure RCU” [McKO04],
and it is used in a number of places in the Linux kernel.

The basic form of such “Pure RCU” designs is as fol-
lows:

1. Make a change, for example, to the way that the OS
reacts to an NMI.

2. Wait for all pre-existing read-side critical sections
to completely finish (for example, by using the
synchronize_sched () primitive). The key ob-
servation here is that subsequent RCU read-side crit-
ical sections are guaranteed to see whatever change
was made.

3. Clean up, for example, return status indicating that
the change was successfully made.

The remainder of this section presents example
code adapted from the Linux kernel. In this exam-
ple, the timer_stop function uses synchronize_
sched () to ensure that all in-flight NMI notifications
have completed before freeing the associated resources.
A simplified version of this code is shown Figure 9.44.

9.5. READ-COPY UPDATE (RCU)

1 struct profile_buffer {

2 long size;

3 atomic_t entry[0];

4 1

5 static struct profile_buffer xbuf = NULL;

6

7 void nmi_profile (unsigned long pcvalue)

8 {

9 struct profile_buffer *p = rcu_dereference (buf);

11 if (p == NULL)

12 return;

13 if (pcvalue >= p->size)

14 return;

15 atomic_inc (&p->entry[pcvalue]);
16 }

18 void nmi_stop (void)

19 {

20 struct profile_buffer *p = buf;
21

22 if (p == NULL)

23 return;

24 rcu_assign_pointer (buf, NULL);
25 synchronize_sched();

26 kfree(p);

27 }

Figure 9.44: Using RCU to Wait for NMlIs to Finish

Lines 1-4 define a profile_buffer structure, con-
taining a size and an indefinite array of entries. Line 5
defines a pointer to a profile buffer, which is presumably
initialized elsewhere to point to a dynamically allocated
region of memory.

Lines 7-16 define the nmi_profile () function,
which is called from within an NMI handler. As such,
it cannot be preempted, nor can it be interrupted by a
normal interrupts handler, however, it is still subject to de-
lays due to cache misses, ECC errors, and cycle stealing
by other hardware threads within the same core. Line 9
gets a local pointer to the profile buffer using the rcu__
dereference () primitive to ensure memory ordering
on DEC Alpha, and lines 11 and 12 exit from this func-
tion if there is no profile buffer currently allocated, while
lines 13 and 14 exit from this function if the pcvalue ar-
gument is out of range. Otherwise, line 15 increments the
profile-buffer entry indexed by the pcvalue argument.
Note that storing the size with the buffer guarantees that
the range check matches the buffer, even if a large buffer
is suddenly replaced by a smaller one.

Lines 18-27 define the nmi_stop () function, where
the caller is responsible for mutual exclusion (for example,
holding the correct lock). Line 20 fetches a pointer to the
profile buffer, and lines 22 and 23 exit the function if there
is no buffer. Otherwise, line 24 NULLs out the profile-
buffer pointer (using the rcu_assign_pointer ()
primitive to maintain memory ordering on weakly or-

141

dered machines), and line 25 waits for an RCU Sched
grace period to elapse, in particular, waiting for all non-
preemptible regions of code, including NMI handlers, to
complete. Once execution continues at line 26, we are
guaranteed that any instance of nmi_profile () that
obtained a pointer to the old buffer has returned. It is
therefore safe to free the buffer, in this case using the
kfree () primitive.

Quick Quiz 9.36: Suppose that the nmi_
profile () function was preemptible. What would
need to change to make this example work correctly? ll

In short, RCU makes it easy to dynamically switch
among profile buffers (you just try doing this efficiently
with atomic operations, or at all with locking!). However,
RCU is normally used at a higher level of abstraction, as
was shown in the previous sections.

9.5.3.9 RCU Usage Summary

At its core, RCU is nothing more nor less than an API
that provides:

1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to
finish, and

3. adiscipline of maintaining multiple versions to per-
mit change without harming or unduly delaying con-
current RCU readers.

That said, it is possible to build higher-level con-
structs on top of RCU, including the reader-writer-locking,
reference-counting, and existence-guarantee constructs
listed in the earlier sections. Furthermore, I have no doubt
that the Linux community will continue to find interesting
new uses for RCU, as well as for any of a number of other
synchronization primitives.

In the meantime, Figure 9.45 shows some rough rules
of thumb on where RCU is most helpful.

As shown in the blue box at the top of the figure, RCU
works best if you have read-mostly data where stale and
inconsistent data is permissible (but see below for more
information on stale and inconsistent data). The canonical
example of this case in the Linux kernel is routing tables.
Because it may have taken many seconds or even minutes
for the routing updates to propagate across Internet, the
system has been sending packets the wrong way for quite
some time. Having some small probability of continuing
to send some of them the wrong way for a few more
milliseconds is almost never a problem.

142

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Read-Mostly, Need Consistent Data
(RCU Works Well)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Update-Mostly, Need Consistent Data
(RCU is Very Unlikely to be the Right Tool For The Job, But it Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms
(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Figure 9.45: RCU Areas of Applicability

If you have a read-mostly workload where consistent
data is required, RCU works well, as shown by the green
“read-mostly, need consistent data” box. One example of
this case is the Linux kernel’s mapping from user-level
System-V semaphore IDs to the corresponding in-kernel
data structures. Semaphores tend to be used far more
frequently than they are created and destroyed, so this
mapping is read-mostly. However, it would be erroneous
to perform a semaphore operation on a semaphore that
has already been deleted. This need for consistency is
handled by using the lock in the in-kernel semaphore data
structure, along with a “deleted” flag that is set when
deleting a semaphore. If a user ID maps to an in-kernel
data structure with the “deleted” flag set, the data structure
is ignored, so that the user ID is flagged as invalid.

Although this requires that the readers acquire a lock
for the data structure representing the semaphore itself, it
allows them to dispense with locking for the mapping data
structure. The readers therefore locklessly traverse the
tree used to map from ID to data structure, which in turn
greatly improves performance, scalability, and real-time
response.

As indicated by the yellow “read-write” box, RCU can
also be useful for read-write workloads where consistent
data is required, although usually in conjunction with a
number of other synchronization primitives. For example,
the directory-entry cache in recent Linux kernels uses
RCU in conjunction with sequence locks, per-CPU locks,
and per-data-structure locks to allow lockless traversal of
pathnames in the common case. Although RCU can be
very beneficial in this read-write case, such use is often
more complex than that of the read-mostly cases.

Finally, as indicated by the red box at the bottom
of the figure, update-mostly workloads requiring con-
sistent data are rarely good places to use RCU, though

CHAPTER 9. DEFERRED PROCESSING

there are some exceptions [DMS*12]. In addition, as
noted in Section 9.5.3.7, within the Linux kernel, the
SLAB_DESTROY_BY_RCU slab-allocator flag provides
type-safe memory to RCU readers, which can greatly
simplify non-blocking synchronization and other lockless
algorithms.

In short, RCU is an API that includes a publish-
subscribe mechanism for adding new data, a way of wait-
ing for pre-existing RCU readers to finish, and a disci-
pline of maintaining multiple versions to allow updates
to avoid harming or unduly delaying concurrent RCU
readers. This RCU API is best suited for read-mostly
situations, especially if stale and inconsistent data can be
tolerated by the application.

9.5.4 RCU Linux-Kernel API

This section looks at RCU from the viewpoint of its
Linux-kernel API. Section 9.5.4.1 presents RCU’s wait-to-
finish APIs, and Section 9.5.4.2 presents RCU’s publish-
subscribe and version-maintenance APIs. Finally, Sec-
tion 9.5.4.4 presents concluding remarks.

9.54.1 RCU has a Family of Wait-to-Finish APIs

The most straightforward answer to “what is RCU” is
that RCU is an API used in the Linux kernel, as sum-
marized by Table 9.3, which shows the wait-for-RCU-
readers portions of the non-sleepable and sleepable APIs,
respectively, and by Table 9.4, which shows the publish-
subscribe portions of the APIL.

If you are new to RCU, you might consider focusing
on just one of the columns in Table 9.3, each of which
summarizes one member of the Linux kernel’s RCU API
family. For example, if you are primarily interested in un-
derstanding how RCU is used in the Linux kernel, “RCU
Classic” would be the place to start, as it is used most
frequently. On the other hand, if you want to understand
RCU for its own sake, “SRCU” has the simplest API. You
can always come back for the other columns later.

If you are already familiar with RCU, these tables can
serve as a useful reference.

Quick Quiz 9.37: Why do some of the cells in Ta-
ble 9.3 have exclamation marks (“!”)? H

The “RCU Classic” column corresponds to the
original RCU implementation, in which RCU read-
side critical sections are delimited by rcu_read_
lock () and rcu_read_unlock (), which may be
nested. The corresponding synchronous update-side prim-
itives, synchronize_rcu (), along with its synonym

143

9.5. READ-COPY UPDATE (RCU)

SIdV USTULI-03-1eM NDY 1€°6 2IqBL

SNdO uonejuawaydur

jate): NOY dwnesy [[® UO 9[NPIYI§ pIdIoq NDY dWnesy N2 21qndwsaig I¥ LdWHEYd
uoneuswadwr

jate): N2 21qndwioaig OISSe[D N0 Hd N0 OISSE[D N0 1Y LdWIEId-UON

SPUOJISI[[TUL JO SO T

SPUOJSSIJ[TWI JO SO T

SPUOJSSI|[TW JO SO

SPUOJISI[[TUIL JO SO T

SPUOJISI[[TUL JO SO T

Kouaye] porrad-aoeln

VIN

PUOOISOII-qNS

PUOOISOIDTUI-qNS

PUOOISOIOTW-qNS

PUOISOIOTWI-qNS

PeAYIOAO
opIs-orepdn snouoIyouAsy

SIoTLIEq
KIowow ‘d[qeud/d[qesip
ydwoaid ‘suononnsur ojdwrg

d[qeud/d[qesip
buar ‘suononnsur oduwirg

(LdINEH¥Yd-uou uo
901J) o[qeud/[qesip 1dwodrd

21qeus/21qesIp HY

(LdINEH¥d-uou uo
Q01) o[qeud/o[qesip 1dwoard

PEAYIOAO OPIS PBAY

10NI21ST NOIS dwes ynm
() OIS~ ©ZTUOIYDUAS

uonisiboe

Surqeud

ON 3001 pue uondwoard AuQ 3unyoo[q oN (Hg) Jrey-wonoq oN 3un[oolq ON SJUTRIISUOD IPIS PRIY
NO¥ X X0¥ISHAA dVTS NoY_Ad”AOMISHEA €VIS Krowau opes-adAy,
(syoeq[ed 10)

V/N () IeTaaeq NOI ()peayos™ asTIIRq NOI ()ygq xsTIxxeq ndoIx () IeTaaeq NOI J1eM) muZﬁEEﬁ_ wEm-EwﬁmD

()noxs~ TTED

()nox~TTED

()peyds nox TT1ed

()yaq mox TTED

j ()nox TTeD

(O[oeq[[EI/SNOUOIYOUASE)
saantuid oprs-oyepd)

() NDIST ©9ZTUOIYDUAS

() 39U” ©2ZTUOIYDUAS
() NOI 9ZTUOIYDUAS

() peyOSs 2z TUOIYDOUAS

O uq
TNOoI °ZTUOIYDUAS

() 39U ©ZTUOIYDUAS
() DI~ ©ZTUOIYDUAS

(SNOUOIYOUAS)
saantwind oprs-oyepd)

() yooTun pesI NoIs
() ¥ooT peSI Nois

() yooTun pesI nox
() 30017 peSI Nox

(SspuaLyy pue)
() oaTqeus 3dweaxd
()oTgestp adwesad

() Ug ooTUN pPESI NI
() Uq 00T peSI NoI

i ()3ooTuUn peSsI NoI
i ()3o0T peSI Nox

soAntwrd oprs-peay]

619C 979C 19T 69T €V’ ST Aipiqereay

SIIAN 29 ‘sbaiprey ‘suor3ar
s1opear Surded[g asuodsar swneay o1qesip-1dwoaid 10§ Jrepn syoeNEe SO JUdAIG reursuQ asoding
nous nO¥ ownEay | payps NOA | HE NDY | assed DA | anquiy

144

synchronize_net (), wait for any currently execut-
ing RCU read-side critical sections to complete. The
length of this wait is known as a “grace period”. The asyn-
chronous update-side primitive, call_rcu (), invokes
a specified function with a specified argument after a sub-
sequent grace period. For example, call_rcu (p, f) ;
will result in the “RCU callback™ £ (p) being invoked
after a subsequent grace period. There are situations,
such as when unloading a Linux-kernel module that uses
call_rcu(), when it is necessary to wait for all out-
standing RCU callbacks to complete [McK07d]. The
rcu_barrier () primitive does this job. Note that the
more recent hierarchical RCU [McKO08a] implementation
also adheres to “RCU Classic” semantics.

Finally, RCU may be used to provide type-safe mem-
ory [GC96], as described in Section 9.5.3.7. In the con-
text of RCU, type-safe memory guarantees that a given
data element will not change type during any RCU read-
side critical section that accesses it. To make use of
RCU-based type-safe memory, pass SLAB_DESTROY__
BY_RCU to kmem_cache_create (). Itis important
to note that SLAB_DESTROY_BY_RCU will in no way
prevent kmem_cache_alloc () from immediately re-
allocating memory that was just now freed via kmem_
cache_free()! In fact, the SLAB_DESTROY_BY_ _
RCU-protected data structure just returned by rcu_
dereference might be freed and reallocated an ar-
bitrarily large number of times, even when under the
protection of rcu_read_lock (). Instead, SLAB_
DESTROY_BY_RCU operates by preventing kmem_
cache_free () from returning a completely freed-up
slab of data structures to the system until after an RCU
grace period elapses. In short, although the data element
might be freed and reallocated arbitrarily often, at least
its type will remain the same.

Quick Quiz 9.38: How do you prevent a huge num-
ber of RCU read-side critical sections from indefinitely
blocking a synchronize_rcu () invocation? H

Quick Quiz 9.39: The synchronize_rcu () API
waits for all pre-existing interrupt handlers to complete,
right? l

In the “RCU BH” column, rcu_read_lock_bh ()
and rcu_read_unlock_bh () delimit RCU read-side
critical sections, synchronize_rcu_bh () waits for
a grace period, and call_rcu_bh () invokes the speci-
fied function and argument after a later grace period.

Quick Quiz 9.40: What happens if you mix and
match? For example, suppose you use rcu_read_
lock () and rcu_read_unlock () to delimit RCU

CHAPTER 9. DEFERRED PROCESSING

read-side critical sections, but then use call_rcu_
bh () to post an RCU callback? l

Quick Quiz 9.41: Hardware interrupt handlers can be
thought of as being under the protection of an implicit
rcu_read_lock_bh (), right? l

In the “RCU Sched” column, anything that dis-
ables preemption acts as an RCU read-side critical
section, and synchronize_sched () waits for the
corresponding RCU grace period. This RCU API
family was added in the 2.6.12 kernel, which split
the old synchronize_kernel () API into the cur-
rent synchronize_rcu() (for RCU Classic) and
synchronize_sched () (for RCU Sched). Note that
RCU Sched did not originally have an asynchronous
call rcu_sched () interface, but one was added in
2.6.26. In accordance with the quasi-minimalist philos-
ophy of the Linux community, APIs are added on an
as-needed basis.

Quick Quiz 9.42: What happens if you mix and match
RCU Classic and RCU Sched? B

Quick Quiz 9.43: In general, you cannot rely on
synchronize_sched () to wait for all pre-existing
interrupt handlers, right? ll

The “Realtime RCU” column has the same API as does
RCU Classic, the only difference being that RCU read-
side critical sections may be preempted and may block
while acquiring spinlocks. The design of Realtime RCU
is described elsewhere [McKO07a].

The “SRCU” column in Table 9.3 displays a special-
ized RCU API that permits general sleeping in RCU
read-side critical sections [McKO06]. Of course, use of
synchronize_srcu () in an SRCU read-side crit-
ical section can result in self-deadlock, so should be
avoided. SRCU differs from earlier RCU implemen-
tations in that the caller allocates an srcu_struct
for each distinct SRCU usage. This approach prevents
SRCU read-side critical sections from blocking unrelated
synchronize_srcu () invocations. In addition, in
this variant of RCU, srcu_read_lock () returns a
value that must be passed into the corresponding srcu__
read_unlock ().

Quick Quiz 9.44: Why should you be careful with
call_srcu()?7ll

Quick Quiz 9.45: Under what conditions can
synchronize_srcu() be safely used within an
SRCU read-side critical section? Hl

The Linux kernel currently has a surprising number
of RCU APIs and implementations. There is some hope
of reducing this number, evidenced by the fact that a

9.5. READ-COPY UPDATE (RCU)

given build of the Linux kernel currently has at most
four implementations behind three APIs (given that RCU
Classic and Realtime RCU share the same API). However,
careful inspection and analysis will be required, just as
would be required in order to eliminate one of the many
locking APIs.

The various RCU APIs are distinguished by the
forward-progress guarantees that their RCU read-side
critical sections must provide, and also by their scope, as
follows:

1. RCU BH: read-side critical sections must guarantee
forward progress against everything except for NMI
and interrupt handlers, but not including software-
interrupt (softirqg) handlers. RCU BH is global
in scope.

2. RCU Sched: read-side critical sections must guaran-
tee forward progress against everything except for
NMI and irq handlers, including soft i rq handlers.
RCU Sched is global in scope.

3. RCU (both classic and real-time): read-side critical
sections must guarantee forward progress against
everything except for NMI handlers, irq handlers,
softirqg handlers, and (in the real-time case)
higher-priority real-time tasks. RCU is global in
scope.

4. SRCU: read-side critical sections need not guar-
antee forward progress unless some other task is
waiting for the corresponding grace period to com-
plete, in which case these read-side critical sections
should complete in no more than a few seconds (and
preferably much more quickly).! SRCU’s scope
is defined by the use of the corresponding srcu__
struct.

In other words, SRCU compensate for their extremely
weak forward-progress guarantees by permitting the de-
veloper to restrict their scope.

9.54.2 RCU has Publish-Subscribe and Version-
Maintenance APIs

Fortunately, the RCU publish-subscribe and version-
maintenance primitives shown in the following table ap-
ply to all of the variants of RCU discussed above. This
commonality can in some cases allow more code to be

10 Thanks to James Bottomley for urging me to this formulation, as
opposed to simply saying that there are no forward-progress guarantees.

145

shared, which certainly reduces the API proliferation that
would otherwise occur. The original purpose of the RCU
publish-subscribe APIs was to bury memory barriers into
these APIs, so that Linux kernel programmers could use
RCU without needing to become expert on the memory-
ordering models of each of the 20+ CPU families that
Linux supports [SprO1].

The first pair of categories operate on Linux st ruct
list_head lists, which are circular, doubly-linked
lists. The 1list_for_each_entry_rcu() primi-
tive traverses an RCU-protected list in a type-safe man-
ner, while also enforcing memory ordering for situations
where a new list element is inserted into the list con-
currently with traversal. On non-Alpha platforms, this
primitive incurs little or no performance penalty com-
pared to list_for_each_entry (). The list_
add_rcu(), list_add_tail_rcu(),and list__
replace_rcu () primitives are analogous to their non-
RCU counterparts, but incur the overhead of an addi-
tional memory barrier on weakly-ordered machines. The
list_del_rcu() primitive is also analogous to its
non-RCU counterpart, but oddly enough is very slightly
faster due to the fact that it poisons only the prev pointer
rather than both the prev and next pointers as 1ist_
del () must do. Finally, the 1ist_splice_init_
rcu () primitive is similar to its non-RCU counterpart,
but incurs a full grace-period latency. The purpose of this
grace period is to allow RCU readers to finish their traver-
sal of the source list before completely disconnecting it
from the list header—failure to do this could prevent such
readers from ever terminating their traversal.

Quick Quiz 9.46: Why doesn’t 1ist_del_rcu()
poison both the next and prev pointers? l

The second pair of categories operate on Linux’s
struct hlist_head, which is a linear linked
list. One advantage of struct hlist_head over
struct list_head is that the former requires only a
single-pointer list header, which can save significant mem-
ory in large hash tables. The struct hlist_head
primitives in the table relate to their non-RCU counter-
parts in much the same way as do the struct list_
head primitives.

The final pair of categories operate directly on point-
ers, and are useful for creating RCU-protected non-list
data structures, such as RCU-protected arrays and trees.
The rcu_assign_pointer () primitive ensures that
any prior initialization remains ordered before the assign-
ment to the pointer on weakly ordered machines. Simi-
larly, the rcu_dereference () primitive ensures that

146

CHAPTER 9. DEFERRED PROCESSING

Category | Primitives | Availability | Overhead

List traversal list_for_each_entry_ 2.5.59 Simple instructions (memory
rcu () barrier on Alpha)

List update list_add_rcu() 2.5.44 Memory barrier
list_add_tail_rcul() 2.5.44 Memory barrier
list_del_rcu() 2.5.44 Simple instructions
list_replace_rcu/() 2.6.9 Memory barrier
list_splice_init_ 2.6.21 Grace-period latency
rcu ()

Hlist traversal hlist_for_each_entry_ 2.6.8 Simple instructions (memory
rcu () barrier on Alpha)
hlist_add_after_rcu() 2.6.14 Memory barrier
hlist_add_before_ 2.6.14 Memory barrier
rcu ()
hlist_add_head_rcu() 2.5.64 Memory barrier
hlist_del_rcu() 2.5.64 Simple instructions
hlist_replace_rcu() 2.6.15 Memory barrier

Pointer traversal rcu_dereference () 2.6.9 Simple instructions (memory

barrier on Alpha)

Pointer update rcu_assign_pointer () 2.6.10 Memory barrier

Table 9.4: RCU Publish-Subscribe and Version Maintenance APIs

subsequent code dereferencing the pointer will see the
effects of initialization code prior to the corresponding
rcu_assign_pointer () on Alpha CPUs. On non-
Alpha CPUs, rcu_dereference () documents which
pointer dereferences are protected by RCU.

Quick Quiz 9.47: Normally, any pointer subject to
rcu_dereference () must always be updated using
rcu_assign_pointer (). What is an exception to
this rule? W

Quick Quiz 9.48: Are there any downsides to the fact
that these traversal and update primitives can be used with
any of the RCU API family members? ll

9.5.4.3 Where Can RCU’s APIs Be Used?

Figure 9.46 shows which APIs may be used in which
in-kernel environments. The RCU read-side primitives
may be used in any environment, including NMI, the
RCU mutation and asynchronous grace-period primitives
may be used in any environment other than NMI, and, fi-
nally, the RCU synchronous grace-period primitives may
be used only in process context. The RCU list-traversal
primitives include 1ist_for_each_entry_rcu(),
hlist_for_each_entry_rcu(), etc. Similarly,
the RCU list-mutation primitives include 1ist_add_
rcu(),hlist_del_rcu/(), etc.

Note that primitives from other families of RCU may
be substituted, for example, srcu_read_lock () may
be used in any context in which rcu_read_lock ()
may be used.

NMI
557
X685
OQC>
Scom <o
<28 | o
IRQ GO O+ £l S
0@ g2 =8
1o 53
S _1D 0=
©330 &5
SQI U'):(D
‘» © O
®°o ,
Process w O synchronize_rcu()
al
; |

Figure 9.46: RCU API Usage Constraints

9.5.4.4 So, What is RCU Really?

At its core, RCU is nothing more nor less than an API
that supports publication and subscription for insertions,
waiting for all RCU readers to complete, and mainte-
nance of multiple versions. That said, it is possible to
build higher-level constructs on top of RCU, including the
reader-writer-locking, reference-counting, and existence-
guarantee constructs listed in Section 9.5.3. Furthermore,
I have no doubt that the Linux community will continue
to find interesting new uses for RCU, just as they do for
any of a number of synchronization primitives throughout
the kernel.

Of course, a more-complete view of RCU would also

9.5. READ-COPY UPDATE (RCU)

include all of the things you can do with these APIs.
However, for many people, a complete view of RCU
must include sample RCU implementations. The next
section therefore presents a series of “toy” RCU imple-
mentations of increasing complexity and capability.

9.5.5

The toy RCU implementations in this section are designed
not for high performance, practicality, or any kind of
production use,'! but rather for clarity. Nevertheless,
you will need a thorough understanding of Chapters 2, 3,
4, and 6, as well as the previous portions of Chapter 9
for even these toy RCU implementations to be easily
understandable.

This section provides a series of RCU implementa-
tions in order of increasing sophistication, from the view-
point of solving the existence-guarantee problem. Sec-
tion 9.5.5.1 presents a rudimentary RCU implementation
based on simple locking, while Sections 9.5.5.2 through
9.5.5.9 present a series of simple RCU implementations
based on locking, reference counters, and free-running
counters. Finally, Section 9.5.5.10 provides a summary
and a list of desirable RCU properties.

“Toy” RCU Implementations

9.5.5.1 Lock-Based RCU

Perhaps the simplest RCU implementation leverages
locking, as shown in Figure 9.47 (rcu_lock.h and
rcu_lock.c). In this implementation, rcu_read_
lock () acquires a global spinlock, rcu_read_
unlock () releasesit, and synchronize_rcu () ac-
quires it then immediately releases it.

static void rcu_read_lock (void)

{
spin_lock (&rcu_gp_lock) ;

1

2

3
4}
5

6 static void rcu_read_unlock (void)
7

8 spin_unlock (&rcu_gp_lock) ;

9 }

11 void synchronize_rcu(void)
12 {

13 spin_lock (&rcu_gp_lock) ;
14 spin_unlock (&rcu_gp_lock) ;
15 }

Figure 9.47: Lock-Based RCU Implementation

T However, production-quality user-level RCU implementations are
available [Des09].

147

Because synchronize_rcu () does not return un-
til it has acquired (and released) the lock, it cannot return
until all prior RCU read-side critical sections have com-
pleted, thus faithfully implementing RCU semantics. Of
course, only one RCU reader may be in its read-side
critical section at a time, which almost entirely defeats
the purpose of RCU. In addition, the lock operations in
rcu_read_lock () and rcu_read_unlock () are
extremely heavyweight, with read-side overhead rang-
ing from about 100 nanoseconds on a single Power5
CPU up to more than 17 microseconds on a 64-CPU
system. Worse yet, these same lock operations permit
rcu_read_lock () to participate in deadlock cycles.
Furthermore, in absence of recursive locks, RCU read-
side critical sections cannot be nested, and, finally, al-
though concurrent RCU updates could in principle be
satisfied by a common grace period, this implementation
serializes grace periods, preventing grace-period sharing.

Quick Quiz 9.49: Why wouldn’t any deadlock in the
RCU implementation in Figure 9.47 also be a deadlock
in any other RCU implementation? H

Quick Quiz 9.50: Why not simply use reader-writer
locks in the RCU implementation in Figure 9.47 in order
to allow RCU readers to proceed in parallel? l

It is hard to imagine this implementation being useful
in a production setting, though it does have the virtue of
being implementable in almost any user-level application.
Furthermore, similar implementations having one lock
per CPU or using reader-writer locks have been used in
production in the 2.4 Linux kernel.

A modified version of this one-lock-per-CPU approach,
but instead using one lock per thread, is described in the
next section.

9.5.5.2 Per-Thread Lock-Based RCU

Figure 9.48 (rcu_lock_percpu.h and rcu_
lock_percpu.c) shows an implementation based
on one lock per thread. The rcu_read_lock ()
and rcu_read_unlock () functions acquire and re-
lease, respectively, the current thread’s lock. The
synchronize_rcu () function acquires and releases
each thread’s lock in turn. Therefore, all RCU read-side
critical sections running when synchronize_xrcu ()
starts must have completed before synchronize_
rcu () can return.

This implementation does have the virtue of permitting
concurrent RCU readers, and does avoid the deadlock
condition that can arise with a single global lock. Further-
more, the read-side overhead, though high at roughly 140

148

static void rcu_read_lock (void)

{
spin_lock (&__get_thread_var (rcu_gp_lock));

1

2

3
4}
5

6 static void rcu_read_unlock (void)

7

8 spin_unlock (&__get_thread_var (rcu_gp_lock));
9}

11 void synchronize_rcu(void)
12 {

13 int t;

14

15 for_each_running_thread(t) {

16 spin_lock (&per_thread(rcu_gp_lock, t));
17 spin_unlock (&per_thread(rcu_gp_lock, t));
18 }

19 }

Figure 9.48: Per-Thread Lock-Based RCU Implementa-
tion

nanoseconds, remains at about 140 nanoseconds regard-
less of the number of CPUs. However, the update-side
overhead ranges from about 600 nanoseconds on a single
Power5 CPU up to more than 100 microseconds on 64
CPUs.

Quick Quiz 9.51: Wouldn’t it be cleaner to acquire
all the locks, and then release them all in the loop from
lines 15-18 of Figure 9.48? After all, with this change,
there would be a point in time when there were no readers,
simplifying things greatly. l

Quick Quiz 9.52: Is the implementation shown in Fig-
ure 9.48 free from deadlocks? Why or why not? il

Quick Quiz 9.53: Isn’t one advantage of the RCU
algorithm shown in Figure 9.48 that it uses only primi-
tives that are widely available, for example, in POSIX
pthreads?

This approach could be useful in some situations, given
that a similar approach was used in the Linux 2.4 ker-
nel [MMOO].

The counter-based RCU implementation described next
overcomes some of the shortcomings of the lock-based
implementation.

9.5.5.3 Simple Counter-Based RCU

A slightly more sophisticated RCU implementation is
shown in Figure 9.49 (rcu_rcg.h and rcu_rcg.c).
This implementation makes use of a global reference
counter rcu_refcnt defined on line 1. The rcu_
read_lock () primitive atomically increments this
counter, then executes a memory barrier to ensure that
the RCU read-side critical section is ordered after the
atomic increment. Similarly, rcu_read_unlock ()

CHAPTER 9. DEFERRED PROCESSING

atomic_t rcu_refcent;

1

2

3 static void rcu_read_lock (void)
4 {

5 atomic_inc (&rcu_refcnt);

6 smp_mb () ;

7}

8

9 static void rcu_read_unlock (void)
10 {
11 smp_mb () ;
12 atomic_dec (&rcu_refcnt);
13}

15 void synchronize_rcu(void)

16 {

17 smp_mb () ;

18 while (atomic_read(&rcu_refcnt) != 0) {
19 poll (NULL, 0, 10);

20 }

21 smp_mb () ;

22}

Figure 9.49: RCU Implementation Using Single Global
Reference Counter

executes a memory barrier to confine the RCU read-side
critical section, then atomically decrements the counter.
The synchronize_rcu () primitive spins waiting for
the reference counter to reach zero, surrounded by mem-
ory barriers. The pol1l () on line 19 merely provides
pure delay, and from a pure RCU-semantics point of view
could be omitted. Again, once synchronize_rcu ()
returns, all prior RCU read-side critical sections are guar-
anteed to have completed.

In happy contrast to the lock-based implementation
shown in Section 9.5.5.1, this implementation allows par-
allel execution of RCU read-side critical sections. In
happy contrast to the per-thread lock-based implementa-
tion shown in Section 9.5.5.2, it also allows them to be
nested. In addition, the rcu_read_lock () primitive
cannot possibly participate in deadlock cycles, as it never
spins nor blocks.

Quick Quiz 9.54: But what if you hold a lock across
acall to synchronize_rcu (), and then acquire that
same lock within an RCU read-side critical section? Hl

However, this implementations still has some seri-
ous shortcomings. First, the atomic operations in rcu_
read_lock () and rcu_read_unlock () are still
quite heavyweight, with read-side overhead ranging from
about 100 nanoseconds on a single Power5 CPU up to al-
most 40 microseconds on a 64-CPU system. This means
that the RCU read-side critical sections have to be ex-
tremely long in order to get any real read-side parallelism.
On the other hand, in the absence of readers, grace periods
elapse in about 40 nanoseconds, many orders of magni-

9.5. READ-COPY UPDATE (RCU)

DEFINE_SPINLOCK (rcu_gp_lock);
atomic_t rcu_refcnt[2];

atomic_t rcu_idx;

DEFINE_PER_THREAD (int, rcu_nesting);
DEFINE_PER_THREAD (int, rcu_read_idx);

g W N

Figure 9.50: RCU Global Reference-Count Pair Data

tude faster than production-quality implementations in
the Linux kernel.

Quick Quiz 9.55: How can the grace period possibly
elapse in 40 nanoseconds when synchronize_rcu()
contains a 10-millisecond delay?

Second, if there are many concurrent rcu_read_
lock () and rcu_read_unlock () operations, there
will be extreme memory contention on rcu_refcnt,
resulting in expensive cache misses. Both of these first
two shortcomings largely defeat a major purpose of RCU,
namely to provide low-overhead read-side synchroniza-
tion primitives.

Finally, a large number of RCU readers with long read-
side critical sections could prevent synchronize_
rcu () from ever completing, as the global counter might
never reach zero. This could result in starvation of RCU
updates, which is of course unacceptable in production
settings.

Quick Quiz 9.56: Why not simply make rcu_read_
lock () wait when a concurrent synchronize_
rcu () has been waiting too long in the RCU im-
plementation in Figure 9.49? Wouldn’t that prevent
synchronize_rcu () from starving? B

Therefore, it is still hard to imagine this implementa-
tion being useful in a production setting, though it has
a bit more potential than the lock-based mechanism, for
example, as an RCU implementation suitable for a high-
stress debugging environment. The next section describes
a variation on the reference-counting scheme that is more
favorable to writers.

9.5.5.4 Starvation-Free Counter-Based RCU

Figure 9.51 (rcu_rcgp. h) shows the read-side prim-
itives of an RCU implementation that uses a pair of refer-
ence counters (rcu_refcnt []), along with a global in-
dex that selects one counter out of the pair (rcu_idx), a
per-thread nesting counter rcu_nesting, a per-thread
snapshot of the global index (rcu_read_idx), and
a global lock (rcu_gp_1lock), which are themselves
shown in Figure 9.50.

149

1 static void rcu_read_lock (void)

2 {

3 int 1i;

4 int n;

5

6 n = __get_thread_var(rcu_nesting);

7 if (n == 0) {

8 i = atomic_read (&rcu_idx) ;

9 __get_thread_var (rcu_read_idx) = i;
10 atomic_inc (&rcu_refcnt[i]);
11 }
12 __get_thread_var (rcu_nesting) = n + 1;

13 smp_mb () ;

16 static void rcu_read_unlock (void)
17 |

18 int 1i;

19 int n;

20

21 smp_mb () ;

22 n = __get_thread_var (rcu_nesting);

23 if (n == 1) {

24 i = _ _get_thread_var (rcu_read_idx);
25 atomic_dec (&rcu_refcnt[i]);

26 }

27 __get_thread_var (rcu_nesting) = n - 1;
28 }

Figure 9.51: RCU Read-Side Using Global Reference-
Count Pair

Design It is the two-element rcu_refcnt [] array
that provides the freedom from starvation. The key point
is that synchronize_rcu () is only required to wait
for pre-existing readers. If a new reader starts after a
given instance of synchronize_rcu () has already
begun execution, then that instance of synchronize_
rcu () need not wait on that new reader. At any given
time, when a given reader enters its RCU read-side crit-
ical section via rcu_read_lock (), it increments the
element of the rcu_refcnt [] array indicated by the
rcu_idx variable. When that same reader exits its RCU
read-side critical section via rcu_read_unlock (), it
decrements whichever element it incremented, ignoring
any possible subsequent changes to the rcu_idx value.

This arrangement means that synchronize_rcu ()
can avoid starvation by complementing the value of rcu__
idx,asin rcu_idx = !rcu_idx. Suppose that the
old value of rcu_idx was zero, so that the new value
is one. New readers that arrive after the complement
operation will increment rcu_1idx [1], while the old
readers that previously incremented rcu_idx [0] will
decrement rcu_1idx [0] when they exit their RCU read-
side critical sections. This means that the value of rcu__
idx [0] will no longer be incremented, and thus will
be monotonically decreasing.!? This means that all that

12 There is a race condition that this “monotonically decreasing”

150

synchronize_rcu () need do is wait for the value of
rcu_refcnt [0] to reach zero.

With the background, we are ready to look at the im-
plementation of the actual primitives.

Implementation The rcu_read_lock () primitive
atomically increments the member of the rcu_
refcnt [] pairindexed by rcu_idx, and keeps a snap-
shot of this index in the per-thread variable rcu_read_
idx. The rcu_read_unlock () primitive then atom-
ically decrements whichever counter of the pair that the
corresponding rcu_read_lock () incremented. How-
ever, because only one value of rcu__idx is remembered
per thread, additional measures must be taken to permit
nesting. These additional measures use the per-thread
rcu_nesting variable to track nesting.

To make all this work, line 6 of rcu_read_lock ()
in Figure 9.51 picks up the current thread’s instance of
rcu_nesting, and if line 7 finds that this is the out-
ermost rcu_read_lock (), then lines 8-10 pick up
the current value of rcu_idx, save it in this thread’s
instance of rcu_read_1idx, and atomically increment
the selected element of rcu_refcnt. Regardless of the
value of rcu_nesting, line 12 increments it. Line 13
executes a memory barrier to ensure that the RCU read-
side critical section does not bleed out before the rcu_
read_lock () code.

Similarly, the rcu_read_unlock () function ex-
ecutes a memory barrier at line 21 to ensure that the
RCU read-side critical section does not bleed out af-
ter the rcu_read_unlock () code. Line 22 picks up
this thread’s instance of rcu_nesting, and if line 23
finds that this is the outermost rcu_read_unlock (),
then lines 24 and 25 pick up this thread’s instance of
rcu_read_idx (saved by the outermost rcu_read_
lock ())and atomically decrements the selected element
of rcu_refent. Regardless of the nesting level, line 27
decrements this thread’s instance of rcu_nesting.

Figure 9.52 (rcu_rcpg. c) shows the corresponding
synchronize_rcu () implementation. Lines 6 and
19 acquire and release rcu_gp__lock in order to prevent
more than one concurrent instance of synchronize_
rcu (). Lines 7-8 pick up the value of rcu_idx and
complement it, respectively, so that subsequent instances
of rcu_read_lock () will use a different element of
rcu_idx that did preceding instances. Lines 10-12 then

statement ignores. This race condition will be dealt with by the code
for synchronize_rcu (). In the meantime, I suggest suspending
disbelief.

CHAPTER 9. DEFERRED PROCESSING

void synchronize_rcu(void)
{

int 1i;

1

2

3

4

5 smp_mb () ;
6 spin_lock (&rcu_gp_lock);
7

8

i = atomic_read (&rcu_idx) ;

atomic_set (&rcu_idx, !1);
9 smp_mb () ;
10 while (atomic_read(&rcu_refcnt[i]) != 0) {
11 poll (NULL, 0, 10);

12 }
13 smp_mb () ;

14 atomic_set (&rcu_idx, 1i);

15 smp_mb () ;

16 while (atomic_read(&rcu_refcnt[!i]) != 0) {
17 poll (NULL, 0, 10);

18 }
19 spin_unlock (&rcu_gp_lock) ;
20 smp_mb () ;

Figure 9.52: RCU Update Using Global Reference-Count
Pair

wait for the prior element of rcu_idx to reach zero, with
the memory barrier on line 9 ensuring that the check of
rcu_idx is not reordered to precede the complementing
of rcu_idx. Lines 13-18 repeat this process, and line 20
ensures that any subsequent reclamation operations are
not reordered to precede the checking of rcu_refcnt.

Quick Quiz 9.57: Why the memory barrier on line 5 of
synchronize_rcu () in Figure 9.52 given that there
is a spin-lock acquisition immediately after?

Quick Quiz 9.58: Why is the counter flipped twice in
Figure 9.52? Shouldn’t a single flip-and-wait cycle be
sufficient? ll

This implementation avoids the update-starvation is-
sues that could occur in the single-counter implementation
shown in Figure 9.49.

Discussion There are still some serious shortcomings.
First, the atomic operations in rcu_read_lock () and
rcu_read_unlock () are still quite heavyweight. In
fact, they are more complex than those of the single-
counter variant shown in Figure 9.49, with the read-side
primitives consuming about 150 nanoseconds on a sin-
gle Power5 CPU and almost 40 microseconds on a 64-
CPU system. The update-side synchronize_rcu ()
primitive is more costly as well, ranging from about
200 nanoseconds on a single Power5 CPU to more than
40 microseconds on a 64-CPU system. This means that
the RCU read-side critical sections have to be extremely
long in order to get any real read-side parallelism.
Second, if there are many concurrent rcu_read_
lock () and rcu_read_unlock () operations, there

9.5. READ-COPY UPDATE (RCU)

DEFINE_SPINLOCK (rcu_gp_lock);
DEFINE_PER_THREAD (int [2], rcu_refcnt);
atomic_t rcu_idx;
DEFINE_PER_THREAD (int, rcu_nesting);
DEFINE_PER_THREAD (int, rcu_read_idx);

g W N e

Figure 9.53: RCU Per-Thread Reference-Count Pair Data

will be extreme memory contention on the rcu_refcnt
elements, resulting in expensive cache misses. This fur-
ther extends the RCU read-side critical-section duration
required to provide parallel read-side access. These first
two shortcomings defeat the purpose of RCU in most
situations.

Third, the need to flip rcu_idx twice imposes sub-
stantial overhead on updates, especially if there are large
numbers of threads.

Finally, despite the fact that concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.

Quick Quiz 9.59: Given that atomic increment and
decrement are so expensive, why not just use non-atomic
increment on line 10 and a non-atomic decrement on
line 25 of Figure 9.517

Despite these shortcomings, one could imagine this
variant of RCU being used on small tightly coupled multi-
processors, perhaps as a memory-conserving implementa-
tion that maintains API compatibility with more complex
implementations. However, it would not likely scale well
beyond a few CPUs.

The next section describes yet another variation on the
reference-counting scheme that provides greatly improved
read-side performance and scalability.

9.5.5.5 Scalable Counter-Based RCU

Figure 9.54 (rcu_rcpl . h) shows the read-side prim-
itives of an RCU implementation that uses per-thread
pairs of reference counters. This implementation is quite
similar to that shown in Figure 9.51, the only difference
being that rcu_refcnt is now a per-thread array (as
shown in Figure 9.53). As with the algorithm in the previ-
ous section, use of this two-element array prevents readers
from starving updaters. One benefit of per-thread rcu_
refcnt [] array is that the rcu_read_lock () and
rcu_read_unlock () primitives no longer perform
atomic operations.

Quick Quiz 9.60: Come off it! We can
see the atomic_read () primitive in rcu_read_
lock () !!! So why are you trying to pretend that rcu_

151

1 static void rcu_read_lock (void)

2 {

3 int 1i;

4 int n;

5

6 n = __get_thread_var(rcu_nesting);

7 if (n == 0) {

8 i = atomic_read(&rcu_idx);

9 __get_thread_var (rcu_read_idx) = i;
10 __get_thread_var (rcu_refcnt) [1]++;
11 }

12 __get_thread_var (rcu_nesting) = n + 1;

13 smp_mb () ;
14 }

16 static void rcu_read_unlock (void)
17 |

18 int 1i;
19 int n;
20
21 smp_mb () ;
22 n = __get_thread_var (rcu_nesting);
23 if (n == 1) {
24 i = _ _get_thread_var (rcu_read_idx);
25 __get_thread_var (rcu_refcnt) [1]-—;
26 }
27 __get_thread_var (rcu_nesting) = n - 1;
28 }
Figure 9.54: RCU Read-Side Using Per-Thread

Reference-Count Pair

read_lock () contains no atomic operations??? ll

Figure 9.55 (rcu_rcpl.c) shows the implementa-
tion of synchronize_rcu (), along with a helper
function named f1lip_counter_and_wait (). The
synchronize_rcu () function resembles that shown
in Figure 9.52, except that the repeated counter flip is
replaced by a pair of calls on lines 22 and 23 to the new
helper function.

The new flip_counter_and_wait () function
updates the rcu__idx variable on line 5, executes a mem-
ory barrier on line 6, then lines 7-11 spin on each thread’s
prior rcu_refcnt element, waiting for it to go to zero.
Once all such elements have gone to zero, it executes
another memory barrier on line 12 and returns.

This RCU implementation imposes important new re-
quirements on its software environment, namely, (1) that
it be possible to declare per-thread variables, (2) that these
per-thread variables be accessible from other threads, and
(3) that it is possible to enumerate all threads. These
requirements can be met in almost all software environ-
ments, but often result in fixed upper bounds on the num-
ber of threads. More-complex implementations might
avoid such bounds, for example, by using expandable
hash tables. Such implementations might dynamically
track threads, for example, by adding them on their first

152

1 static void flip_counter_and_wait (int i)
2 {

3 int t;

4

5 atomic_set (&rcu_idx, !'i);

6 smp_mb () ;

7 for_each_thread(t) {

8 while (per_thread(rcu_refecnt, t)[i] != 0) {
9 poll (NULL, 0, 10);
10 }
11 }
12 smp_mb () ;
13}

15 void synchronize_rcu(void)
16 {
17 int 1i;

19 smp_mb () ;
20 spin_lock (&rcu_gp_lock) ;

21 i = atomic_read (&rcu_idx) ;
22 flip_counter_and_wait (i) ;
23 flip_counter_and_wait (!1i);

24 spin_unlock (&rcu_gp_lock) ;
25 smp_mb () ;

Figure 9.55: RCU Update Using Per-Thread Reference-
Count Pair

call to rcu_read_lock ().

Quick Quiz 9.61: Great, if we have N threads, we
can have 2N ten-millisecond waits (one set per £1ip_
counter_and_wait () invocation, and even that as-
sumes that we wait only once for each thread. Don’t we
need the grace period to complete much more quickly? ll

This implementation still has several shortcomings.
First, the need to flip rcu__idx twice imposes substantial
overhead on updates, especially if there are large numbers
of threads.

Second, synchronize_rcu () must now examine
a number of variables that increases linearly with the
number of threads, imposing substantial overhead on ap-
plications with large numbers of threads.

Third, as before, although concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.

Finally, as noted in the text, the need for per-thread
variables and for enumerating threads may be problematic
in some software environments.

That said, the read-side primitives scale very nicely,
requiring about 115 nanoseconds regardless of whether
running on a single-CPU or a 64-CPU Power5 system. As
noted above, the synchronize_rcu () primitive does
not scale, ranging in overhead from almost a microsecond
on a single Power5 CPU up to almost 200 microseconds
on a 64-CPU system. This implementation could con-

CHAPTER 9. DEFERRED PROCESSING

DEFINE_SPINLOCK (rcu_gp_lock);
DEFINE_PER_THREAD (int [2], rcu_refcnt);
long rcu_idx;

DEFINE_PER_THREAD (int, rcu_nesting);
DEFINE_PER_THREAD (int, rcu_read_idx);

g W N

Figure 9.56: RCU Read-Side Using Per-Thread
Reference-Count Pair and Shared Update Data

1 static void rcu_read_lock (void)

2 A

3 int 1i;

4 int n;

5

6 n = __get_thread_var (rcu_nesting);

7 if (n == 0) {

8 i = ACCESS_ONCE (rcu_idx) & 0x1;

9 __get_thread_var (rcu_read_idx) = i;
10 __get_thread_var (rcu_refcnt) [1]++;
11 }

12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb () ;
14 }
15
16 static void rcu_read_unlock (void)
17 {
18 int 1i;
19 int n;
20
21 smp_mb () ;
22 n = __get_thread_var (rcu_nesting);
23 if (n == 1) {
24 i = _ _get_thread_var (rcu_read_idx);
25 __get_thread_var (rcu_refent) [1]-—;
26 }
27 __get_thread_var (rcu_nesting) = n - 1;
28 }
Figure 9.57: RCU Read-Side Using Per-Thread

Reference-Count Pair and Shared Update

ceivably form the basis for a production-quality user-level
RCU implementation.

The next section describes an algorithm permitting
more efficient concurrent RCU updates.

9.5.5.6 Scalable Counter-Based RCU With Shared
Grace Periods

Figure 9.57 (rcu_rcpls.h) shows the read-side
primitives for an RCU implementation using per-thread
reference count pairs, as before, but permitting updates
to share grace periods. The main difference from the
earlier implementation shown in Figure 9.54 is that rcu_
idx is now a long that counts freely, so that line 8 of
Figure 9.57 must mask off the low-order bit. We also
switched from using atomic_read() and atomic_
set () to using ACCESS_ONCE (). The data is also
quite similar, as shown in Figure 9.56, with rcu_idx
now being a long instead of an atomic_t.

Figure 9.58 (rcu_rcpls.c) shows the implemen-

9.5. READ-COPY UPDATE (RCU)

1 static void flip_counter_and _wait (int ctr)
2

3 int 1i;

4 int t;

5

6 ACCESS_ONCE (rcu_idx) = ctr + 1;

7 i = ctr & 0x1;

8 smp_mb () ;

9 for_each_thread(t) {
10 while (per_thread(rcu_refecnt, t)[i] != 0) {
11 poll (NULL, 0, 10);
12 }
13 }
14 smp_mb () ;
15 }
16
17 void synchronize_rcu(void)
18 {

19 int ctr;
20 int oldctr;

22 smp_mb () ;
23 oldctr =
24 smp_mb () ;
25 spin_lock (&rcu_gp_lock) ;
26 ctr = ACCESS_ONCE (rcu_idx) ;
27 if (ctr - oldctr >= 3) {

ACCESS_ONCE (rcu_idx) ;

28 spin_unlock (&rcu_gp_lock);

29 smp_mb () ;

30 return;

31 }

32 flip_counter_and_wait (ctr);

33 if (ctr - oldctr < 2)

34 flip_counter_and_wait (ctr + 1);

35 spin_unlock (&rcu_gp_lock) ;
36 smp_mb () ;
37 }

Figure 9.58: RCU Shared Update Using Per-Thread
Reference-Count Pair

153

tation of synchronize_rcu () and its helper func-
tion flip_counter_and_wait (). These are simi-
lar to those in Figure 9.55. The differences in f1ip_
counter_and_wait () include:

ACCESS_ONCE () instead of
and increments rather than

1. Line 6 uses
atomic_set (),
complementing.

2. A new line 7 masks the counter down to its bottom
bit.

The changes to synchronize_rcu () are more per-
vasive:

1. There is a new oldctr local variable that cap-
tures the pre-lock-acquisition value of rcu_idx
on line 23.

2. Line 26 uses ACCESS_ONCE () instead of

atomic_read().

3. Lines 27-30 check to see if at least three counter flips
were performed by other threads while the lock was
being acquired, and, if so, releases the lock, does a
memory barrier, and returns. In this case, there were
two full waits for the counters to go to zero, so those
other threads already did all the required work.

4. At lines 33-34, flip_counter_and_wait ()
is only invoked a second time if there were fewer
than two counter flips while the lock was being ac-
quired. On the other hand, if there were two counter
flips, some other thread did one full wait for all the
counters to go to zero, so only one more is required.

With this approach, if an arbitrarily large number
of threads invoke synchronize_rcu () concurrently,
with one CPU for each thread, there will be a total of only
three waits for counters to go to zero.

Despite the improvements, this implementation of RCU
still has a few shortcomings. First, as before, the need
to flip rcu_idx twice imposes substantial overhead on
updates, especially if there are large numbers of threads.

Second, each updater still acquires rcu_gp_lock,
even if there is no work to be done. This can result in a
severe scalability limitation if there are large numbers of
concurrent updates. There are ways of avoiding this, as
was done in a production-quality real-time implementa-
tion of RCU for the Linux kernel [McK07a].

Third, this implementation requires per-thread vari-
ables and the ability to enumerate threads, which again
can be problematic in some software environments.

154

DEFINE_SPINLOCK (rcu_gp_lock) ;

long rcu_gp_ctr = 0;

DEFINE_