The preview Package for IXTEX
Version 0.7.8

David Kastrup*

2003/01/20

1 Introduction

The main purpose of this package is the extraction of certain environments (most
notably displayed formulas) for use in different contexts. While the erstwhile
application has been the embedding of those preview fragments into Emacs source
buffers under the AUC TgX editing environment, other applications are easily
imaginable.

In particular it should be noted that producing EPS files with Dvips and its
derivatives using the -E option is not currently well-supported by ITEX. People
make do by fiddling around with \thispagestyle{empty} and hoping for the
best (namely, that the specified contents will indeed fit on single pages), and
then trying to guess the baseline of the resulting code and stuff, but this is at
best dissatisfactory. The preview package provides an easy way to ensure that
exactly one page per request gets shipped, with a well-defined baseline and no
page decorations. Thus you can safely use

dvips -E -1

and get a single EPS file with shrink-wrapped bounding box for every generated
image of a TEX run.

If your ultimate goal is to produce a set of files in a different format that
can be produced by GhostScript, take a look at the tightpage option of the
preview package. This will embed the page dimensions into the PostScript code,
obliterating the need to use the -E -i options to Dvips. You can then produce
all image files with a single run of GhostScript from a single PostScript file for all
images at once. The tightpage option requires setting the dvips option as well.

Various options exist that will pass TEX dimensions and other information
about the respective shipped out material (including descender size) into the log
file, where external applications might make use of it.

The possibility for generating a whole set of graphics with a single run of IATEX,
Dvips, and GhostScript increases both speed and robustness of applications. It is

*dakasQ@users.sourceforge.net

to be hoped that applications like BTEX2HTML will be able to make use of this
package in future.

2 Package options

The package is included with the customary
\usepackage [(options)] {preview}

You should usually load this package as the last one, since it redefines several
things that other packages may also provide.
The following options are available:

active is the most essential option. If this option is not specified, the preview
package will be inactive and the document will be typeset as if the preview
package were not loaded, except that all declarations and environments de-
fined by the package are still legal but have no effect. This allows defining
previewing characteristics in your document, and only activating them by
calling INTEX as

latex ’\PassOptionsToPackage{active}{preview}
\input{(filename)}’

noconfig Usually the file prdefault.cfg gets loaded whenever the preview pack-
age gets activated. prdefault.cfg is supposed to contain definitions that
can cater for otherwise bad results, for example, if a certain document class
would otherwise lead to trouble. It also can be used to override any settings
made in this package, since it is loaded at the very end of it. In addition,
there may be configuration files specific for certain preview options like
auctex which have more immediate needs. The noconfig option suppresses
loading of those option files, too.

psfixbb Dvips determines the bounding boxes from the material in the DVT file
it understands. Lots of PostScript specials are not part of that. Since the
TEX boxes do not make it into the DVT file, but merely characters, rules and
specials do, Dvips might include far too small areas. The option psfixbb will
include /dev/null as a graphic file in the ultimate upper left and lower right
corner of the previewed box. This will make Dvips generate an appropriate
bounding box.

dvips If this option is specified as a class option or to other packages, several
packages pass things like page size information to Dvips, or cause crop marks
or draft messages written on pages. This seriously hampers the usability of
previews. If this option is specified, the changes will be undone if possible.

displaymath will make all displayed math environments subject to preview pro-
cessing. This will typically be the most desired option.

floats will make all float objects subject to preview processing. If you want
to be more selective about what floats to pass through to a preview, you
should instead use the \PreviewSnarfEnvironment command on the floats
you want to have previewed.

textmath will make all text math subject to previews. Since math mode is used
throughly inside of IATEX even for other purposes, this works by redefining
\(, \) and $. Only occurences of these text math delimiters in later loaded
packages and in the main document will thus be affected.

graphics will subject all \includegraphics commands to a preview.
sections will subject all section headers to a preview.

delayed will delay all activations and redefinitions the preview package makes
until \begin{document}. The purpose of this is to cater for documents
which should be subjected to the preview package without having been
prepared for it. You can process such documents with

latex ’\RequirePackage[active,delayed, (options)]{preview}
\input{(filename)}’

This relaxes the requirement to be loading the preview package as last
package.

(driver) loads a special driver file pr(driver).def. The remaining options are
implemented through the use of driver files.

auctex This driver will produce fake error messages at the start and end of ev-
ery preview environment that enable the Emacs package Preview-ETEX in
connection with AUC TgEX to pinpoint the exact source location where the
previews have originated. Unfortunately, there is no other reliable means of
passing the current TEX input position ¢n a line to external programs. In
order to make the parsing more robust, this option also switches off quite a
few diagnostics that could be misinterpreted.

You should not specify this option manually, since it will only be needed
by automated runs that want to parse the pseudo error messages. Those
runs will then use \PassOptionsToPackage in order to effect the desired
behaviour. In addition, prauctex.cfg will get loaded unless inhibited by
the noconfig option. This caters for the most frequently encountered prob-
lematic commands.

showlabels During the editing process, some people like to see the label names
in their equations, figures and the like. Now if you are using Emacs for
editing, and in particular Preview-I#TEX, I'd strongly recommend that you
check out the RefTEX package which pretty much obliterates the need for
this kind of functionality. If you still want it, standard IANTEX provides it with
the showkeys package, and there is also the less encompassing showlabels
package. Unfortunately, since those go to some pain not to change the

page layout and spacing, they also don’t change preview’s idea of the TEX
dimensions of the involved boxes. So if you are using preview for determing
bounding boxes, those packages are mostly useless. The option showlabels
offers a substitute for them.

tightpage It is not uncommon to want to use the results of preview as graphic
images for some other application. One possibility is to generate a flurry of
EPS files with

dvips -E -i -Pwww -o (outputfile).000 (inputfile)

However, in case those are to be processed further into graphic image files
by GhostScript, this process is inefficient since all of those files need to be
processed one by one. In addition, it is necessary to extract the bounding
box comments from the EPS files and convert them into page dimension
parameters for GhostScript in order to avoid full-page graphics. This is not
even possible if you wanted to use GhostScript in a single run for generating
the files from a single PostScript file, since Dvips will in that case leave no
bounding box information anywhere.

The solution is to use the tightpage option together with the dvips option
so that additional PostScript code gets written into the produced file that
will set the device dimensions at the start of each output page. That way a
single command line like

gs —sDEVICE=pngl6m -dTextAlphaBits=4 -r300
-dGraphicsAlphaBits=4 -dSAFER -q -dNOPAUSE
-sOutputFile=(outputfile)%d.png (inputfile).ps

will be able to produce tight graphics from a single PostScript file generated
with Dvips without use of the options -E -1i, in a single run. If you need this
in a batch environment where you don’t want to use preview’s automatic
extraction facilities, no problem: just don’t use any of the special options,
and wrap everything to be previewed into preview environments.

If the pages under the tightpage option are just too tight, you can adjust by
setting the length \PreviewBorder to a different value by using \setlength.
The default value is 0.50001bp, which is half of a usual PostScript point,
rounded up. If you go below this value, the resulting page size may drop
below 1bp, and GhostScript does not seem to like that. If you need finer con-
trol, you can adjust the bounding box dimensions individually by changing
the macro \PreviewBbAdjust with the help of \renewcommand. Its default
value is

\newcommand \PreviewBbAdjust {-\PreviewBbAdjust
-\PreviewBbAdjust \PreviewBbAdjust \PreviewBbAdjust}

This adjusts the left, lower, right and upper borders by the given amount.
The macro must contain 4 TEX dimensions after another, and you may not

preview

nopreview

omit the units if you specify them explicitly instead of by register. PostScript
points have the unit bp.

lyx This option is for the sake of LyX developers. It will output a few diag-
nostics relevant for the sake of LyX’ preview functionality (at the time of
writing, just implemented for math insets, in the CVS version of LyX that
will eventually be released as 1.3.0).

counters This writes out diagnostics at the start and the end of previews. Only
the counters changed since the last output get written, and if no counters
changed, nothing get written at all. The list consists of counter name and
value, both enclosed in {} braces, followed by a space. The last such pair
is followed by a colon (:) if it is at the start of the preview snippet, and by
a period (.) if it is at the end. The order of different diagnostics like this
being issued depends on the order of the specification of the options when
calling the package.

Systems like Preview-IATEX use this for keeping counters accurate when
single previews are regenerated.

footnotes This makes footnotes render as previews, and only as their footnote
symbol. A convenient editing feature inside of Emacs.

The following options are just for debugging purposes of the package and similar
to the corresponding TEX commands they allude to:

tracingall causes lots of diagnostic output to appear in the log file during the
preview collecting phases of TEX’s operation. In contrast to the similarly
named TEX command, it will not switch to \errorstopmode, nor will it
change the setting of \tracingonline.

showbox This option will show the contents of the boxes shipped out to the DVI
files. It also sets \showboxbreadth and \showboxdepth to their maximum
values at the end of loading this package, but you may reset them if you
don’t like that.

3 Provided Commands

The preview environment causes its contents to be set as a single preview image.
Insertions like figures and footnotes (except those included in minipages) will typ-
ically lead to error messages or be lost. In case the preview package has not been
activated, the contents of this environment will be typeset normally.

The nopreview environment will cause its contents not to undergo any special
treatment by the preview package. When preview is active, the contents will
be discarded like all main text that does not trigger the preview hooks. When
preview is not active, the contents will be typeset just like the main text.

Note that both of these environments typeset things as usual when preview
is not active. If you need something typeset conditionally, use the \ifPreview
conditional for it.

\PreviewMacro

\PreviewMacrox*

If you want to make a macro like \includegraphics (actually, this is what is
done by the graphics option to preview) produce a preview image, you put a
declaration like

\PreviewMacro [*[[!']{\includegraphics}
or, more readable,
\PreviewMacro [{*[] [J{}}]{\includegraphics}

into your preamble. The optional argument to \PreviewMacro specifies the argu-
ments \includegraphics accepts, since this is necessary information for properly
ending the preview box. Note that if you are using the more readable form, you
have to enclose the argument in a [{ and }] pair. The inner braces are necessary
to stop any included [] pairs from prematurely ending the optional argument,
and to make a single {} denoting an optional argument not get stripped away by
TEX’s argument parsing.
The letters simply mean

* indicates an optional * modifier, as in \includegraphicsx*.

[indicates an optional argument in brackets. This syntax is somewhat baroque,
but brief.

[1 also indicates an optional argument in brackets. Be sure to have encluded
the entire optional argument specification in an additional pair of braces as
described above.

! indicates a mandatory argument.

{} indicates the same. Again, be sure to have that additional level of braces
around the whole argument specification.

?(delimiter){(true case)}{(false case)} is a conditional. The next character
is checked against being equal to (delimiter). If it is, the specification (true
case) is used for the further parsing, otherwise (false case) will be employed.
In neither case is something consumed from the input, so {{true case)} will
still have to deal with the upcoming delimiter.

@{(literal sequence)} will insert the given sequence literally into the executed
call of the command.

There is a second optional argument in brackets that can be used to declare
any default action to be taken instead. This is mostly for the sake of macros
that influence numbering: you would want to keep their effects in that respect.
The default action should use #1 for referring to the original (not the patched)
command with the parsed options appended. Not specifying a second optional
argument here is equivalent to specifying [#1].

A similar invocation \PreviewMacro* simply throws the macro and all of its
arguments declared in the manner above away. This is mostly useful for having

\PreviewEnvironment
\PreviewEnvironment*

\PreviewSnarfEnvironment

\PreviewOpen
\PreviewClose

\ifPreview

things like \footnote not do their magic on their arguments. More often than
not, you don’t want to declare any arguments to scan to \PreviewMacro* since
you would want the remaining arguments to be treated as usual text and typeset
in that manner instead of being thrown away. An exception might be, say, sort
keys for \cite.

A second optional argument in brackets can be used to declare any default
action to be taken instead. This is for the sake of macros that influence numbering:
you would want to keep their effects in that respect. The default action might
use #1 for referring to the original (not the patched) command with the parsed
options appended. Not specifying a second optional argument here is equivalent
to specifying [] since the command usually gets thrown away.

As an example for using this argument, you might want to specify

\PreviewMacro*\footnote [{[]}] [#1{}]

This will replace a footnote by an empty footnote, but taking any optional parame-
ter into account, since an optional paramter changes the numbering scheme. That
way the real argument for the footnote remains for processing by Preview-IATEX
(the actual definition is more complicated in order not to change the numbering
in case of optional arguments being present).

The macro \PreviewEnvironment works just as \PreviewMacro does, only
for environments. And the same goes for \PreviewEnvironment* as compared to
\PreviewMacrox.

This macro does not typeset the original environment inside of a preview box,
but instead typesets just the contents of the original environment inside of the
preview box, leaving nothing for the original environment. This has to be used
for figures, for example, since they would

1. produce insertion material that cannot be extracted to the preview properly,
2. complain with an error message about not being in outer par mode.

Those Macros form a matched preview pair. This is for macros that behave
similar as \begin and \end of an environment. It is essential for the operation of
\PreviewOpen that the macro treated with it will open an additional group even
when the preview falls inside of another preview or inside of a nopreview environ-
ment. Similarly, the macro treated with \reviewClose will close an environment
even when inactive.

In case you need to know whether preview is active, you can use the conditional
\ifPreview together with \else and \fi.

4 The Implementation

Here we go: the start is somewhat obtuse since we figure out version number
and date from RCS strings. This should really be done at docstrip time instead.
Takers?

1 (xstyle)

\ifPreview

\ifpr@outer

\preview@delay

\pr@advise

\pr@advise@ship

\pr@loadcfg

2 (*lactive)

3 \NeedsTeXFormat{LaTeX2e} \def\reserved@a #1#2%#3:

4 #4${\edef#1{\reserved@c #2#4 $}} \def\reserved@c #1 #2${#1}

5 \reserved@a\reserved@b $Name: rel-0-7-8 $ \ifx\reserved@b\Q@empty
6 \reserved@a\reserved@b CVS-$Revision: 1.80 $ \else \begingroup

7 \lccode‘-=‘. \def\next rel-{} \edef\next{\lowercase{\endgroup

8 \def\noexpand\reserved@b{\expandafter\next\reserved@b}}} \next \fi
9 \reserved@a\next $Date: 2003/01/20 00:09:00 $

10 \edef\next{\noexpand\ProvidesPackage{preview}y,

11 [\next\space preview-latex \reserved@b]}

12 \next

Since many parts here will not be needed as long as the package is inactive, we

will include them enclosed with <*active> and </active> guards. That way, we
can append all of this stuff at a place where it does not get loaded if not necessary.

Setting the \ifPreview command should not be done by the user, so we don’t use
\newif here. As a consequence, there are no \Previewtrue and \Previewfalse
commands.

13 \let\ifPreview\iffalse
14 (/lactive)

We don’t allow previews inside of previews. The macro \ifpr@outer can be used
for checking whether we are outside of any preview code.

15 (*active)

16 \newif\ifpr@outer

17 \pr@outertrue

18 (/active)

The usual meaning of \preview@delay is to just echo its argument in normal
preview operation. If preview is inactive, it swallows its argument. If the delayed
option is active, the contents will be passed to the \AtBeginDocument hook.

The core macro for modifying commands is \pr@advise. You pass it the original
command name as first argument and what should be executed before the saved
original command as second argument.

The most often used macro for modifying commands is \pr@advise@ship. It
receives three arguments. The first is the macro to modify, the second specifies
some actions to be done inside of a box to be created before the original macro
gets executed, the third one specifies actions after the original macro got executed.

The macro \pr@loadcfg is used for loading in configuration files, unless disabled
by the noconfig option.

19 (xlactive)

20 \let\preview@delay=\@gobble

21 \let\pr@advise=\@gobbletwo

22 \def\pr@advise@ship#1#2#3{}

23 \def\pr@loadcfg#1{\InputIfFileExists{#1.cfgH}IH}}

24 \DeclareOption{noconfig}{\let\pr@loadcfg=\@gobble}

\pr@addto@front

\pr@adviseii

\ifprefixbb

This adds code globally to the front of a macro.
25 \def\pr@addto@front#1#2{},

26 \toks@{#2}\toks@\expandafter{\the\expandafter\toks0#1}},
27 \xdef#1{\the\toks@}}

These commands get more interesting when preview is active:

28 \DeclareOption{active}{}

29 \let\ifPreview\iftrue

30 \def\pr@advise#1{}

31 \expandafter\pr@adviseii\csname pr@\string#1\endcsname#1}),

32 \def\pr@advise@ship#1#2#3{\pr@advise#1{\pr@protect@ship{#2}{#3}}}/
33 \let\preview@delay\@firstofone}

Now \pr@advise needs its helper macro. In order to avoid recursive definitions,
we advise only macros that are not yet advised. Or, more exactly, we throw away
the old advice and only take the new one.

34 \def\pr@adviseii#1#2#3{\preview@delay{/

35 \ifx#l\relax \let#1#2\fi

36 \toks@{#3#1}\edef#2{\the\toks@}}}

The delayed option is easy to implement: this is not done with \let since
at the course of document processing, INTEX redefines \AtBeginDocument and we
want to follow that redefinition.

37 \DeclareOption{delayed}{J
38 \ifPreview \def\preview@delay{\AtBeginDocument}\fi
39 }

Another conditional. \ifpr@fixbb tells us whether we want to surround the
typeset materials with invisible rules so that Dvips gets the bounding boxes right
for, say, pure PostScript inclusions.

If you are installing this on an operating system different from the one preview
has been developed on, you might want to redefine \pr@markerbox in your
prdefault.cfg file to use a file known to be empty, like /dev/null is under Unix.
Make this redefinition depend on \ifpr@fixbb since only then \pr@markerbox will
be defined.

40 \newif\ifpr@fixbb

41 \pr@fixbbfalse

42 \DeclareOption{psfixbb}{\ifPreviewy,

43 \pr@fixbbtrue

44 \newbox\pr@markerbox

45 \setbox\pr@markerbox\hbox{\special{psfile=/dev/null}\fi}}
46 }

The dvips option redefines the bop-hook to reset the page size.

47 \DeclareOption{dvips}{}

48 \preview@delay{\AtBeginDvi{}

49 \special{!userdict begin/bop-hook{/isls false def},
50 /vsize 792 def/hsize 612 def}def end}}}}

51 (/lactive)

\pr@snippet

\pr@protect

\pr@protect@ship

\pr@insert

\pr@box
\pr@startbox

4.1 The internals

Those are only needed if preview is active.

52 (*active)

\pr@snippet is the current snippet number. We need a separate counter to
\c@page since several other commands might fiddle with the page number.

53 \newcount \pr@snippet
54 \global\pr@snippet=1

This macro gets one argument which is unpacked and executed in typesetting
situations where we are not yet inside of a preview.

55 \def \pr@protect{\ifx\protect\@typeset@protect

56 \ifpr@outer \expandafter\expandafter\expandafter

57 \@secondoftwo\fi\fi\@gobble}

Now for the above mentioned \pr@protect@ship. This gets three arguments. The
first is what to do at the beginning of the preview, the second what to do at the
end, the third is the macro where we stored the original definition.

In case we are not in a typesetting situation, \pr@protect@ship leaves the
stored macro to fend for its own. No better or worse protection than the original.
And we only do anything different when \ifpr@outer turns out to be true.

58 \def\pr@protect@ship{\pr@protect{\@firstoftwo\pr@startbox},
59 \@gobbletwo}

We don’t want insertions to end up on our lists. So we disable them right now by
replacing them with the following:

60 \def\pr@insert{\afterassignment\pr@insertii\count@}
61 \def\pr@insertii{\setbox\pr@box\vbox}

Previews will be stored in \box\pr@box. \pr@startbox gets two arguments: code
to execute immediately before the following stuff, code to execute afterwards. You
have to cater for \pr@endbox being called at the right time yourself. We will use
a \vsplit on the box later in order to remove any leading glues, penalties and
similar stuff. For this reason we start off the box with an optimal break point.

62 \newbox\pr@box

63 \def \pr@startbox#1#2{},

64 \ifpr@outer

65 \toks@{#2}7,

66 \edef \pr@cleanup{\the\toks@})

67 \setbox\pr@box\vbox\bgroup

68 \break

69 \pr@outerfalse\@arrayparboxrestore
70 \let\insert\pr@insert

71 \expandafter\expandafter\expandafter
72 \pr@ship@start

73 \expandafter\@firstofone

74 \else

10

75 \expandafter \@gobble
76 \fi{#1}}

\pr@endbox Cleaning up also is straightforward. If we have to watch the bounding TEX box,
we want to remove spurious skips. We also want to unwrap a possible single line
paragraph, so that the box is not full line length. We use \vsplit to clean up
leading glue and stuff, and we make some attempt of removing trailing ones. After
that, we wrap up the box including possible material from \AtBeginDvi. If the
psfixbb option is active, we adorn the upper left and lower right corners with
copies of \pr@markerbox. The first few lines cater for ITEX hiding things like
like the code for \paragraph in \everypar.

77 \def \pr@endbox{}

78 \let\reserved@a\relax

79 \ifvmode \edef\reserved@a{\the\everypar}}

80 \ifx\reserved@a\@empty\else

81 \dimen@\prevdepth

82 \noindent\par

83 \setbox\z@\lastbox\unskip\unpenalty

84 \prevdepth\dimen®@

85 \setbox\z@\hbox\bgroup\penalty-\maxdimen\unhbox\z@
86 \ifnum\lastpenalty=-\maxdimen\egroup
87 \else\egroup\box\z@ \fi\fi\fi

88 \ifhmode \par\unskip\setbox\z@\lastbox

89 \nointerlineskip\hbox{\unhbox\z@\/}}

90 \else \unskip\unpenalty\unskip \fi
91 \egroup
92 \setbox\pr@box\vbox{},

93 \baselineskip\z@skip \lineskip\z@skip \lineskiplimit\z@
94 \@begindvi
95 \nointerlineskip
96 \splittopskip\z@skip\setbox\z@\vsplit\pr@box to\z@
97 \unvbox\z@
98 \nointerlineskip
99 %\color@setgroup
100 \box\pre@box
101 %\color@endgroup
102 M

\pr@ship@end At this point, \pr@ship@end gets called. You must not under any circumstances
change \box\pr@box in any way that would add typeset material at the front of it,
except for PostScript header specials, since the front of \box\pr@box may contains
stuff from \AtBeginDvi. \pr@ship@end contains two types of code additions: stuff
that adds to \box\pr@box, like the labels option does, and stuff that measures
out things or otherwise takes a look at the finished \box\pr@box, like the auctex
or showbox option do. The former should use \r@addto@front for adding to this
hook, the latter use \@addto@macro for adding at the end of this hook.

Note that we shift the output box up by its height via \voffset. This has three
reasons: first we make sure that no package-inflicted non-zero value of \voffset

11

\shipout

\pr@parseit
\pr@endparse
\pr@callafter

or \hoffset will have any influence on the positioning of our box. Second we shift
the box such that its basepoint will exactly be at the (lin,1in) mark defined by
TEX. That way we can properly take ascenders into account. And the third reason
is that TEX treats a \hbox and a \vbox differently with regard to the treating of
its depth.

103 \pr@ship@end

104 {\let\protect\noexpand
105 \voffset=-\ht\pr@box
106 \hoffset=\z0@

107 \c@page=\pr@snippet

108 \pr@shipout

109 \ifpr@fixbb\hbox{}

110 \dimen@\wd\pr@box

111 \@tempdima\ht\pr@box

112 \@tempdimb\dp\pr@box

113 \box \pr@box

114 \1lap{\raise\@tempdima\copy\pr@markerbox\kern\dimen@}},
115 \lower\@tempdimb\copy\pr@markerbox}},

116 \else \box\pr@box \fi}}

117 \global\advance\pr@snippet\@ne
118 \pr@cleanup

119 }

Oh, and we kill off the usual meaning of \shipout in case somebody makes a
special output routine. The following is rather ugly, but should do the trick most
of the time since \shipout is most often called in a local group by \output.

120 \let\pr@shipout=\shipout
121 \def\shipout{\deadcycles\z@\setbox\z@\box\voidb@x\setbox\z@}

4.2 Parsing commands

The following stuff is for parsing the arguments of commands we want to somehow
surround with stuff. Usage is

\pr@callafter(aftertoken)(parsestring)\pr@endparse
(macro) {parameters)

(aftertoken) is stored away and gets executed once parsing completes, with its first
argument being the parsed material. (parsestring) would be, for example for the
\includegraphics macro, *[[!, an optional * argument followed by two optional
arguments enclosed in [], followed by one mandatory argument.

For the sake of a somewhat more intuitive syntax, we now support also the
syntax {*[1{}} in the optional argument. Since TEX strips redundant braces, we
have to write [{{}}] in this syntax for a single mandatory argument. Hard to
avoid. We use an unusual character for ending the parsing. The implementation
is rather trivial.

12

\pr@parsex*

\pr@parse[
\pr@brace

\pr@parse]

\pr@parse
\pr@parse!

\pr@parse?
\pr@parsecond

\pr@parse@

122 \def\pr@parseit#1{\csname pr@parse#1\endcsname}

123 \let\pr@endparse=\@percentchar

124 \def \next#1{},

125 \def\pr@callafter{),

126 \afterassignment\pr@parseit

127 \let#1= }}

128 \expandafter\next\csname pr@parse\pr@endparse\endcsname

Straightforward, same mechanism KTEX itself employs.
129 \expandafter\def\csname pr@parsex*\endcsname#1\pr@endparse#2{},

130 \@ifstar{\pr@parseit#1\pr@endparse{#2*}}},
131 {\pr@parseit#1\pr@endparse{#2}}}

Copies optional parameters in brackets if present. The additional level of braces
is necessary to ensure that braces the user might have put to hide a] bracket in
an optional argument don’t get lost. There will be no harm if such braces were
not there at the start.

132 \expandafter\def\csname pr@parse[\endcsname#1\pr@endparse#2{},

133 \@ifnextchar[{\pr@bracket#1\pr@endparse{#2}}},

134 {\pr@parseit#1\pr@endparse{#2}}}

135 \def\pr@bracket#1\pr@endparse#2 [#3]{\prOparseit#1\pr@endparse{#2[{#3}]1}}

This is basically a do-nothing, so that we may use the syntax {*x[]1[]!} in the
optional argument instead of the more concise but ugly *[[! which confuses the
brace matchers of editors.

136 \expandafter\let\csname pr@parse]\endcsname=\pr@parseit

Mandatory arguments are perhaps easiest to parse.
137 \def\pr@parse#1\pr@endparse#2#3{),

138 \pr@parseit#1\pr@endparse{#2{#3}}}
139 \expandafter\let\csname pr@parse!\endcsname=\pr@parse

This does an explicit call of \@ifnextchar and forks into the given two alternatives
as a result.

140 \expandafter\def\csname pr@parse?\endcsname#1#2\pr@endparse#3{},
141 \begingroup\toks@{#2\pr@endparse{#3}}

142 \@ifnextchar#1{\pr@parsecond\@firstoftwol}

143 {\pr@parsecond\@secondoftwo}}

144 \def \pr@parsecond#1{\edef \next{},

145 \endgroup\noexpand\expandafter

146 \noexpand\pr@parseit\noexpand#1\the\toks@}\next}

This makes it possible to insert literal material into the argument list.

147 \def\pr@parse@#1#2\pr@endparse#3{},
148 \prG@parseit #2\pr@endparse{#3#1}}
149 (/active)

13

4.3 Selection options

The displaymath option. The equation environments in AMSIKTEX already do
too much before our hook gets to interfere, so we hook earlier. Some juggling is
involved to ensure we get the original \everydisplay tokens only once and where
appropriate.

The incredible hack with \dt@ptrue is necessary for working around bug ‘am-
slatex/3425’.

150 (*lactive)

151 \begingroup

152 \catcode ‘*=11

153 \@firstofone{\endgroup

154 \DeclareOption{displaymath}{}
155 \preview@delay{\toks@{}

156 \pr@startbox{\noindent$$/

157 \aftergroup\pr@endbox\@gobbletwo}{$$}\efirstofone}y
158 \everydisplay\expandafter{\the\expandafter\toks@

159 \expandafter{\the\everydisplay}}}}

160 \pr@advise@ship\equation{\begingroup\aftergroup\pr@endbox
161 \def\dt@ptrue{\m@ne=\m@ne}\noindent}

162 {\endgroup}/

163 \pr@advise@ship\equation*{\begingroup\aftergroup\pr@endbox
164 \def\dt@ptrue{\m@ne=\m@ne}\noindent}

165 {\endgroup}/

166 \PreviewOpen[] [\def\dt@ptrue{\m@ne=\m@ne}\noindent#1]\ [/,
167 \PreviewClose\]/,

168 \PreviewEnvironment [] [\noindent#1]{eqnarray}y,

169 \PreviewEnvironment[] [\noindent#1]{eqnarray*}7,

170 \PreviewEnvironment{displaymath}y,

171 }+

The textmath option. Some folderol in order to define the active $ math mode
delimiter. \pr@textmathcheck is used for checking whether we have a single $ or
double $$. In the latter case, we enter display math (this sort of display math
is not allowed inside of I#TEX because of inconsistent spacing, but surprisingly
many people use it nevertheless). Strictly speaking, this is incorrect, since not
every 3 actually means display math. For example, \hbox{$$} will because of
restricted horizontal mode rather yield an empty text math formula. Since our
implementation moved the sequence inside of a \vbox, the interpretation will
change. People should just not enter rubbish like that.

172 \begingroup

173 \def \next#1#2{}

174 \endgroup

175 \DeclareOption{textmath}{7

176 \preview@delay{\ifx#1\Qundefined \let#1=$/$

177 \fi\catcode ‘\$=\activel}l/,

178 \pr@advise@ship\ (\pr@endaftergroup{}s \)

179 \pr@advise@ship#1{\@firstoftwo{\let#1=#2}

180 \futurelet\reserved@a\pr@textmathcheck}}{}}/

14

\pr@endaftergroup

\PreviewMacro

\pr@macro
\pr@domacro
\pr@macroii

\pr@endmacro

181 \def\pr@textmathcheck{\expandafter\pr@endaftergroup

182 \ifx\reserved@a#1{#2#2}\expandafter\@gobbletwo\fi#2}}
183 \lccode ‘\"=‘\§

184 \lowercase{\expandafter\next\expandafter~}J,

185 \csname pr@\string$\endcsname

186 (/lactive)

This justs ends the box after the group opened by #1 is closed again.
187 (*xactive)

188 \def\pr@endaftergroup#1{#1\aftergroup\pr@endbox}

189 (/active)

The graphics option.
190 (xlactive)
191 \DeclareOption{graphics}{}
192 \PreviewMacro[*[[!]{\includegraphics}}]]
193 }

The floats option.

194 \DeclareOption{floats}{},

195 \PreviewSnarfEnvironment[![]{@float}},]

196 \PreviewSnarfEnvironment[![]{@dblfloat}/}]
197 }

The sections option.

198 \DeclareOption{sections}{/

199 \PreviewMacro[!!!!!!x[!]{\@startsection}/]

200 }

We now interpret any further options as driver files we load. Note that these driver
files are loaded even when preview is not active. The reason is that they might
define commands (like \PreviewCommand) that should be available even in case
of an inactive package. Large parts of the preview package will not have been
loaded in this case: you have to cater for that.

201 \DeclareOption*

202 {\InputIfFileExists{pr\CurrentOption.def}{}{\OptionNotUsed}}

4.4 Preview attaching commands

As explained above. Detect possible * and call appropriate macro.
203 \def\PreviewMacro{\@ifstar\pr@starmacro\pr@macro}

The version without * is now rather straightforward.

204 \def \pr@domacro#1#2{},

205 \def\next##1{#2}%

206 \pr@callafter\next#1\pr@endparse}
207 \newcommand*\pr@macro[1] [1{},

208 \def \next [##1]##2{),

15

209 \pr@advise@ship{##2}{\pr@domacro{#1}{##1\pr@endbox}}{}}J
210 \@ifnextchar[\next\pr@macroii}

211 \def\pr@macroii{\next [##1]}

212 \def\pr@endmacro#1{#1\pr@endbox}

PreviewMacro* The version with * has to parse the arguments, then throw them away. Some
\pr@protect@omacro internal macros first, then the interface call.
\pr@starmacro o3 \def\pr@protect@domacro#1#2{\pr@protect{}
214 \def \next##1{#2}}],
215 \pr@callafter\next#1\pr@endparse}}
216 \newcommand*\pr@starmacro[1] []{\def\next [##1]##2{),
217 \pre@advise##2{\pr@protect@domacro{#1}{##1}}}],
218 \@ifnextchar[\next{\next []}}

\PreviewOpen As explained above. Detect possible * and call appropriate macro.
219 \def\PreviewOpen{\@ifstar\pr@starmacro\pr@open}

The version without * is now rather straightforward.

\pr@open

220 \newcommand*\pr@open[1] [1{},
221 \def\next [##1]##2{),
222 \pr@advise##2{\begingroup

223 \pr@protect@ship{\pr@domacro{#1}{\begingroup\aftergroup\pr@endbox##1}}}
224 {\endgroup}}}/

225 \@ifnextchar [\next\pr@macroiil}

\PreviewClose As explained above. Detect possible * and call appropriate macro.
226 \def \PreviewClose{\@ifstar\pr@starmacro\pr@close}

The version without * is now rather straightforward.

\pr@close

227 \newcommand*\pr@close[1] [1{

228 \def\next [##1]##2{),

229 \pr@advise{##2}{\pr@domacro{#1}{##1\endgroup}}}/
230 \@ifnextchar[\next\pr@macroii}

\PreviewEnvironment Actually, this ignores any syntax argument. But don’t tell anybody. But for
the * form, it respects (actually ignores) any argument! Of course, we’ll need to
deactivate \end{(environment)} as well.

231 \def\PreviewEnvironment{\@ifstar\pr@starenv\pr@env}

232 \newcommand*\pr@starenv[1] []{\def\next##1##2{\pr@starmacro [{#1}] [{##2}]##1}},
233 \begingroup\pr@starenvii}

234 \newcommand*\pr@starenvii[2] []{\endgroup

235 \expandafter\next\csname#2\endcsname{#1}},

236 \expandafter\pr@starmacro\csname end#2\endcsname}

237 \newcommand*\pr@env[1] [1{},

238 \def\next [##1]##2{,

239 \expandafter\pr@advise@ship\csname##2\endcsname{\pr@domacro{#1}},

16

\PreviewSnarfEnvironment

\pr@snarfafter
\pr@startsnarf

\pr@ship@start
\pr@ship@end

preview
nopreview

240 {\begingroup\aftergroup\pr@endbox##1}}{\endgroup}}/
241 \@ifnextchar[\next\pr@macroii /]
242 }

This is a nuisance since we have to advise both the environment and its end.
243 \newcommand*{\PreviewSnarfEnvironment}[2] [1{},

244 \expandafter\pr@advise

245 \csname #2\endcsname{\pr@snarfafter#1\pr@endparse}y,

246 \expandafter\pr@advise

247 \csname end#2\endcsname{\endgroup}}

248 (/lactive)

Ok, this looks complicated, but we have to start a group in order to be able to
hook \pr@endbox into the game only when \ifpr@outer has triggered the start.
And we need to get our start messages out before parsing the arguments.

249 (*active)
250 \def \pr@snarfafter{\ifpr@outer

251 \pr@ship@start
252 \let\pr@ship@start\Qempty
253 \fi

254 \pr@callafter\pr@startsnarf}

255 \def \pr@startsnarf#1{#1\begingroup

256 \pr@startbox{\begingroup\aftergroup\pr@endbox}{\endgroup}’
257 \ignorespaces}

258 (/active)

The hooks \pr@ship@start and \pr@ship@end can be added to by option
files by the help of the \g@addto@macro command from KETEX, and by the
\pr@addto@front command from preview.sty itself. They are called just be-
fore starting to process some preview, and just after it. Here is the policy for
adding to them: \pr@ship@start is called inside of the vbox \pr@box before
typeset material gets produced. It is, however, preceded by a break command
that is intended for usage in \vsplit, so that any following glue might disappear.
In case you want to add any material on the list, you have to precede it with
\unpenalty and have to follow it with \break. You have make sure that under
no circumstances any other legal breakpoints appear before that, and your mate-
rial should contribute no nonzero dimensions to the page. For the policies of the
\pr@ship@end hook, see the description on page 11.

259 (xlactive)

260 \let\pr@ship@start\@empty

261 \let\pr@ship@end\Qempty

First we write the definitions of these environments when preview is inactive. We
will redefine them if preview gets activated.

262 \newenvironment{preview}{\ignorespaces}{\ifhmode\unskip\fi}
263 \newenvironment{nopreview}{\ignorespaces}{\ifhmode\unskip\fi}

We now process the options and finish in case we are not active.

17

\pr@typeinfos

264 \ProcessOptions\relax
265 \ifPreview\else\expandafter\endinput\fi
266 (/lactive)

Now for the redefinition of the preview and endpreview environments:

267 (xactive)
268 \renewenvironment{preview}{\begingroup
269 \pr@startbox{\begingroup\aftergroup\pr@endbox}y,

270 {\endgroup}/
271 \ignorespaces}’,

272 {\ifhmode\unskip\fi\endgroup}
273 \renewenvironment{nopreview}{\pr@outerfalse\ignorespaces}y
274 {\ifhmode\unskip\fi}

Try to keep BTEX from overwriting its information files:
275 \nofiles

Let the output routine throw everything gathered regularly away. Start with all
float boxes, continue with output box, pack everything afloat from \@currlist
back into \@freelist.

276 \output{\def\@elt#1{\global\setbox#1=\box\voidb@x}7},

277 \@currlist

278 \@elt{255})

279 \let\@elt\relax

280 \xdef\@freelist{\@currlist\@freelist}),

281 \global\let\@currlist\@empty

282 \deadcycles\z@}

Then we have some document info that style files might want to output.

283 \def\pr@typeinfos{\typeout{Preview: Fontsize \f@size pt}}

284 \ifnum\mag=\@nm\else\typeout{Preview: Magnification \number\mag}\fi}
285 \AtBeginDocument{\pr@typeinfos}

And at the end we load the default configuration file, so that it may override
settings from this package:

286 \pr@loadcfg{prdefault}

287 (/active)

288 (/style)

5 The option files

5.1 The auctex option

The AUC TgX option will cause error messages to spew. We want them on
the terminal, but we don’t want IATEX to stop its automated run. We delay
\nonstopmode in case the user has any pseudo-interactive folderol like reading in
of file names in his preamble. Because we are so good-hearted, we will not break
this as long as the document has not started, but after that we need the error
message mechanism operative.

18

So here is the contents of the prauctex.def file:

289 (auctex)\ifPreview\else\expandafter\endinput\fi
290 (auctex)\preview@delay{\nonstopmode}

Ok, here comes creative error message formatting. It turns out a sizable portion
of the runtime is spent in I/O. Making the error messages short is an advantage.
It is not possible to convince TEX to make shorter error messages than this: TEX
always wants to include context. This is about the shortest aesthetic one we can
muster.

291 (auctex)\begingroup

292 (auctex)\lccode ‘\"=‘\-

293 (auctex)\lccode ‘\{=‘\<

294 (auctex)\lccode ‘\}=\>

295 (auctex)\lowercase{\endgroup

296 (auctex) \def\pr@msgi{{~}}}

297 (auctex)\def\pr@msgii{Preview:

298 (auctex) Snippet \number\pr@snippet\space}

299 (auctex)\begingroup

300 (auctex)\catcode‘\-=13

301 (auctex)\catcode ‘\<=13

302 (auctex)\@firstofone{\endgroup

303 (auctex)\def\pr@msg#1{{%
()
()
()
()
()
()

304 (auctex \let<\pr@msgi

305 (auctex \def-{\prémsgii#1}/,

306 (auctex \errhelp{Not a real error.}
307 (auctex \errmessage<}}}

308 (auctex)\g@addto@macro\pr@ship@start{\pr@msg{started}}
309 (auctex)\g@addto®macro\pr@ship@end{\pr@msg{ended.’,
310 (auctex) (\number\ht\pr@box+\number\dp\pr@box x\number\wd\pr@box)}}

This looks pretty baffling, but it produces something short and semi-graphical,
namely <-><->. That is a macro < that expands into <->, where < and > are the
braces around an \errmessage argument and - is a macro expanding to the full
text of the error message. Cough cough. You did not really want to know, did
you?

Since over/underfull boxes are about the messiest things to parse, we dis-
able them by setting the appropriate badness limits and making the variables
point to junk. We also disable other stuff. While we set \showboxbreadth and
\showboxdepth to indicate as little diagnostic output as possible, we keep them
operative, so that the user retains the option of debugging using this stuff. The
other variables concerning the generation of warnings and daignostics, however,
are more often set by commonly employed packages and macros such as \sloppy.
So we kill them off for good.

311
312
313
314
315
316

auctex)\hbadness=\maxdimen
auctex)\newcount\hbadness
auctex)\vbadness=\maxdimen
auctex)\let\vbadness=\hbadness
auctex)\hfuzz=\maxdimen
auctex)\newdimen\hfuzz

P G

19

317 (auctex)\vfuzz=\maxdimen
318 (auctex)\let\vfuzz=\hfuzz
319 (auctex)\showboxdepth=-1
320 (auctex)\showboxbreadth=-1

Ok, now we load a possible configuration file.
321 (auctex)\pr@loadcfg{prauctex}
And here we cater for several frequently used commands in prauctex.cfg:

322 (auccfg)\PreviewMacro* [? [{@{[]1}}{}] [#1{}]\footnote
323 (auccfg)\PreviewMacro* [? [{@{[1}}{}]\item
324 (auccfg)\PreviewMacro*\emph

325 (auccfg)\PreviewMacro*\textrm
326 (auccfg)\PreviewMacro*\textit
327 (auccfg)\PreviewMacro*\textsc
328 (auccfg)\PreviewMacro*\textsf
329 (auccfg)\PreviewMacro*\textsl
330 (auccfg)\PreviewMacro*\texttt
331 (auccfg)\PreviewMacro*\textcolor
332 (auccfg)\PreviewMacro*\mbox

333 (auccfg)\PreviewMacro* [] [#1{}]\author

334 (auccfg)\PreviewMacro*[] [#1{}]\title

335 (auccfg)\PreviewMacro*\and

336 (auccfg)\PreviewMacro*\thanks

337 (auccfg)\PreviewMacro* [] [#1{}]\caption

338 (auccfg)\preview@delay{\@ifundefined{pr@\string\@startsection}{%
339 (auccfg)
340 (auccfg)\PreviewMacro*\index

5.2 The 1lyx option

The following is the option providing LyX with info for its preview implementation.

341 (lyx)\ifPreview\else\expandafter\endinput\fi

342 (lyx)\pr@loadcfg{prlyx}

343 (lyx)\g@addto@macro\pr@ship@end{\typeout{Preview:

344 (lyx) Snippet \number\pr@snippet\space

345 (lyx) \number\ht\pr@box\space \number\dp\pr@box \space\number\wd\pr@box}}

ROPNQO RGN

5.3 The counters option

This outputs a checkpoint. We do this by saving all counter registers in backup
macros starting with \pr@c@ in their name. A checkpoint first writes out all
changed counters (previously unchecked counters are not written out unless dif-
ferent from zero), then saves all involved counter values. IWTEX tracks its counters
in the global variable \cl@ckpt.

346 (counters)\ifPreview\else\expandafter\endinput\fi

347 (counters)\def\pr@eltprint#1{\expandafter\@gobble\ifnum\value{#1}=0%

348 (counters) \csname pr@c@#1\endcsname\else\relax

349 (counters) \space{#1}{\arabic{#1}}\fi}

20

350 (counters)\def\pr@eltdef#1{\expandafter\xdef

351 (counters) \csname pr@c@#1\endcsname{\arabic{#1}}}

352 (counters)\def\pr@ckpt#1{{\let\Q@elt\pr@eltprint\edef\next{\cl@ckpt}%
353 (counters) \ifx\next\@empty\else\typeout{Preview: Counters\next#1}%
354 (counters) \let\@elt\pr@eltdef\cl@@ckpt\fi}}

355 (counters)\g@addto@macro\pr@ship@start{\preckpt:}

356 (counters)\g@addto@macro\pr@ship@end{\pr@ckpt.}

5.4 Debugging options

Those are for debugging the operation of preview, and thus are mostly of interest
for people that want to use preview for their own purposes. Since debugging
output is potentially confusing to the error message parsing from AUC TgX, you
should not turn on \tracingonline or switch from \nonstopmode unless you are
certain your package will never be used with Preview-KTEX.

The showbox option will generate diagnostic output for every produced box.
It does not delay the resetting of the \showboxbreadth and \showboxdepth pa-
rameters so that you can still change them after the loading of the package. It
does, however, move them to the end of the package loading, so that they will not
be affected by the auctex option.

357 (showbox)\ifPreview\else\expandafter\endinput\fi

358 (showbox)\AtEndOfPackage{/

359 (showbox) \showboxbreadth\maxdimen

360 (showbox) \showboxdepth\maxdimen}

361 (showbox)\g@addto@macro\pr@ship@end{\showbox\pr@box}

The tracingall option is for the really heavy diagnostic stuff. For the reasons
mentioned above, we do not want to change the setting of the interaction mode,
nor of the tracingonline flag. If the user wants them different, he should set
them outside of the preview boxes.

362 (tracingall)\ifPreview\else\expandafter\endinput\fi

363 (tracingall)\pr@addto@front\pr@ship@start{\let\tracingonline\count®@

364 (tracingall) \let\errorstopmode\@empty\tracingall}

5.5 Supporting conversions

It is not uncommon to want to use the results of preview as images. One possibility
is to generate a flurry of EPS files with

dvips -E -i -Ppdf -o (outputfile).000 (inputfile)

However, in case those are to be processed further into graphic image files by
GhostScript, this process is inefficient. One cannot use GhostScript in a single
run for generating the files, however, since one needs to set the page size (or full
size pages will be produced). The tightpage option will set the page dimensions
at the start of each PostScript page so that the output will be sized appropriately.

21

\PreviewBorder
\PreviewBbAdjust

That way, a single pass of Dvips followed by a single pass of GhostScript will be
sufficient for generating all images.

You need to use to use the dvips option along with this option, or you’ll get
PostScript errors.

We start this off with the user tunable parameters which get defined even in the
case of an inactive package, so that redefinitions and assignments to them will
always work:

365 (tightpage)\newdimen\PreviewBorder

366 (tightpage)\PreviewBorder=0.50001bp

367 (tightpage)\def\PreviewBbAdjust{-\PreviewBorder -\PreviewBorder

368 (tightpage) \PreviewBorder \PreviewBorder}

Here is stuff used for parsing this:
369 (tightpage)\ifPreview\else\expandafter\endinput\fi
370 (tightpage)\def\pr@nextbb{\edef\next{\next\space\number\dimen@}%
371 (tightpage) \advance\count@\m@ne\ifnum\count@>\z@
372 (tightpage) \afterassignment\pr@nextbb\dimen@\fi}

And here is the stuff that we fudge into our hook. Of course, we have to do it in a
box, and we start this box off with our special. There is one small consideration
here: it might come before any \AtBeginDvi stuff containing header specials. It
turns out Dvips rearranges this amicably: header code specials get transferred to
the appropriate header section, anyhow, so this ensures that we come right after
the bop section. We insert the 7 numbers here: the 4 bounding box adjustments,
and the 3 TEX box dimensions. In case the box adjustments have changed since
the last time, we write them out to the console.

373 (tightpage)\global\let\pr@bbadjust\Qempty

374 (tightpage)\pr@addto@front\pr@ship@end{\begingroup
375 (tightpage) \let\next\@gobble

376 (tightpage) \count@4\afterassignment\pr@nextbb
377 (tightpage) \dimen@\PreviewBbAdjust

378 (tightpage) \ifx\pr@bbadjust\next

379 (tightpage) \else \global\let\pr@bbadjust\next

380 (tightpage
381 (tightpage

\typeout{Preview: Tightpage \pr@bbadjustl}’
\fi\endgroup}

382 (tightpage)\g@addto@macro\pr@ship@end{\setbox\pr@box\hbox{%

383 (tightpage) \special{ps::\pr@bbadjust\space\number\ht\pr@box\space
384 (tightpage) \number\dp\pr@box\space\number\wd\pr@box}\box\prebox}}

Ok, here comes the beef. First we fish the 7 numbers from the file with token and
convert them from TEX sp to PostScript points.

(
(
(
(
(
(
(
(
(
(

e — — — — ~— ~— ~— ~— ~

385 (tightpage)\preview@delay{\AtBeginDvi{},

386 (tightpage) \special{!userdict begin/bop-hook{/
387 (tightpage) 7{currentfile token not{stopl}if
388 (tightpage) 65781.76 div DVImag mull}repeat

Next we produce the horizontal part of the bounding box as

(1in, 1in) 4+ (min(\wd\pr@box, 0), max(\wd\prebox, 0))

22

\pr@labelbox

\pr@label

and roll it to the bottom of the stack:

389 (tightpage) 72 add 72 2 copy gt{exch}if 4 2 roll
Next is the vertical part of the bounding box. Depth counts in negatively, and we
again take min and max of possible extents in the vertical direction, limited by
0. 720 corresponds to 10in and is the famous 1in distance away from the edge of
letterpaper.

390 (tightpage) neg 2 copy lt{exch}if dup O gt{pop O exch}’
391 (tightpage) {exch dup 0 lt{pop O}if}ifelse 720 add exch 720 add
392 (tightpage) 3 1 roll

Ok, we now have the bounding box on the stack in the proper order llx, lly, urx,
ury. We add the adjustments:

393 (tightpage) 4{5 -1 roll add 4 1 roll}repeat
The page size is calculated as the appropriate differences, the page offset consists

of the coordinates of the lower left corner, with those coordinates negated that
would be reckoned positive in the device coordinate system.

394 (tightpage) <</PageSize[5 -1 roll 6 index sub 5 -1 roll 5 index subl}
395 (tightpage) /PageOffset[7 -2 roll [1 1 dtransform exchl,
396 (tightpage) {0 ge{neg}if exch}forall]>>setpagedevicel

So we now bind the old definition of bop-hook into our new definition and finish
it.
397 (tightpage) //bop-hook exec}bind def end}}}/

5.6 The showlabels option

During the editing process, some people like to see the label names in their equa-
tions, figures and the like. Now if you are using Emacs for editing, and in particular
Preview-IATEX, I'd strongly recommend that you check out the RefTEX package
which pretty much obliterates the need for this kind of functionality. If you still
want it, standard ITEX provides it with the showkeys package, and there is also
the less encompassing showlabels package. Unfortunately, since those go to some
pain not to change the page layout and spacing, they also don’t change preview’s
idea of the TEX dimensions of the involved boxes.

So those packages are mostly useless. So we present here an alternative hack
that will get the labels through.

This works by collecting them into a separate box which we then tack to the right
of the previews.

398 (showlabels)\ifPreview\else\expandafter\endinput\fi
399 (showlabels)\newbox\pr@labelbox

We follow up with our own definition of the \1label macro which will be active only
in previews. The original definition is stored in \pr@@label. \pr@lastlabel con-
tains the last typeset label in order to avoid duplication in certain environments,
and we keep the stuff in \pr@labelbox.

400 (showlabels)\def\pr@label#1{\pr@@label{#1}/,

23

\ifpr@setbox

\pr@boxlabel

\pr@maketag

Ok, now we generate the box, by placing the label below any existing stuff.
401 (showlabels) \ifpr@setbox\z@{#1}%

402 (showlabels) \global\setbox\pr@labelbox\vbox{\unvbox\pr@labelbox
403 (showlabels) \box\z@}\egroup\fi}
\ifpr@setbox receives two arguments, #1 is the box into which to set a label, #2

is the label text itself. If a label needs to be set (if it is not a duplicate in the

current box, and is nonempty, and we are in the course of typesetting and so on),

we are left in a true conditional and an open group with the preset box. If nothing

should be set, no group is opened, and we get into skipping to the closing of the

conditional. Since \ifpr@setbox is a macro, you should not place the call to it

into conditional text, since it will not pair up with \fi until being expanded.
We have some trickery involved here. \romannumerall\z®@ expands to empty,

and will also remove everything between the two of them that also expands to

empty, like a chain of \fi.

404 (showlabels)\def\ifpr@setbox#1#2{Y

405 (showlabels) \romannumeraly,

406 (showlabels) \ifx\protect\@typeset@protect\ifpr@outer\else

Ignore empty labels. ..

407 (showlabels) \z@\bgroup
408 (showlabels) \protected@edef\next{#2}\@onelevel@sanitize\next
409 (showlabels) \ifx\next\@empty\egroup\romannumerall\else

and labels equal to the last one.

410 (showlabels) ~ \ifx\next\pr@lastlabel\egroup\romannumerall\else

411 (showlabels) \globalllet\pr@lastlabel\next

412 (showlabels) \setbox#1\pr@boxlabel\pr@lastlabel

413 (showlabels) \expandafter\expandafter\romannumeral\fi\fi\fi\fi

414 (showlabels) \z@\iffalse\iftrue\fi}

Now the actual typesetting of a label box is done. We use a small typewriter font

inside of a framed box (the default frame/box separating distance is a bit large).

415 (showlabels)\def\pr@boxlabel#1{\hbox{\normalfont
416 (showlabels) \footnotesize\ttfamily\fboxsep0.4ex\relax\fbox{#1}}}

And here is a version for amsmath equations. They look better when the label is
right beside the tag, so we place it there, but augment \box\pr@labelbox with
an appropriate placeholder.

417 (showlabels)\def\premaketag#1{\preCmaketag{#1}%

418 (showlabels) \ifpr@setbox\z@{\df@labell},

419 (showlabels) \global\setbox\pr@labelbox\vbox{%
420 (showlabels) \hrule\@width\wd\z@\Cheight\z@
421 (showlabels) \unvbox\pr@labelbox}%

Set the width of the box to empty so that the label placement gets not disturbed,
then append it.

422 (showlabels) \wd\z@\z0@\box\z@ \egroup\fi}

24

\pr@lastlabel Ok, here is how we activate this: we clear out box and label info

423 (showlabels)\g@addto@macro\pr@ship@start{’,

424 (showlabels) \global\setbox\pr@labelbox\box\voidb@x

425 (showlabels) \xdef\pr@lastlabel{}/,

The definitions above are global because we might be in any amount of nesting.
We then reassign the appropriate labelling macros:

426 (showlabels) \let\pr@@labell\label \let\label\pr@label

427 (showlabels) \let\pr@@maketag\maketag@@@ \let\maketag@@@\pr@maketag

428 (showlabels)}

Now all we have to do is to add the stuff to the box in question.
429 (showlabels)\pr@addto@front\pr@ship@end{’%

430 (showlabels) \ifvoid\pr@labelbox

431 (showlabels) \else \setbox\pr@box\hbox{%

432 (showlabels) \box\pr@box\, \box\pr@labelbox}/,
433 (showlabels) \fi}

5.7 The footnotes option

This is rather simplistic right now. It overrides the default footnote action (which
is to disable footnotes altogether for better visibility).

434 (footnotes)\PreviewMacro[[!]\footnote %]

6 Various driver files

The installer, in case it is missing. If it is to be used via make, we don’t specify
an installation path, since

make install

is supposed to cater for the installation itself.

435 (installer) \input docstrip
436 (installer & make) \askforoverwritefalse
437 (installer) \generate{

(

(
438 (installer) \file{preview.drv}{\from{preview.dtx}{driver}}
439 (installer&!make) \usedir{tex/latex/preview}
440 (installer) \file{preview.sty}{\from{preview.dtx}{style}
441 (installer) \from{preview.dtx}{style,active}}
442 (installer) \file{prauctex.def}{\from{preview.dtx}{auctex}}
443 (installer) \file{prauctex.cfg}{\from{preview.dtx}{auccfg}t}
444 (installer) \file{prshowbox.def}{\from{preview.dtx}{showbox}}
445 (installer) \file{prshowlabels.def}{\from{preview.dtx}{showlabels}}
446 (installer) \file{prtracingall.def}{\from{preview.dtx}{tracingall}}
447 (installer) \file{prtightpage.def}{\from{preview.dtx}{tightpage}}
448 (installer) \file{prlyx.def}{\from{preview.dtx}{1lyx}}
449 (installer) \file{prcounters.def}{\from{preview.dtx}{counters}}
450 (installer) \file{prfootnotes.def}{\from{preview.dtx}{footnotes}}

25

451 (installer) }
452 (installer) \endbatchfile

And here comes the documentation driver.

453 (driver) \documentclass{ltxdoc}

454 (driver) \newcommand\previewlatex{Preview-\LaTeX}
455 (driver) \begin{document}

456 (driver) \DocInput{preview.dtx}

457 (driver) \end{document}

o~~~ o~

26

