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Abstract: We introduce a new BSP tree construction method for set of
segments in the plane. Our algorithm is able to create BSP tree of linear size
in the time O(n log3 n) for set of segments with low directional density (i.e. it
holds for arbitrary segment si from such set, that a line created as extension
of this segment doesn’t intersect too many other segments from the set in a
near neighbourhood of si) and a directional constant δ belonging to this set.
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1 Introduction

Most of computer graphics and computer geometry problems concern
processing of object sets in two and three dimensional space. Such tasks
can be usually solved successfully and effectively, if a scene is simplified by
suitable recursive partitioning of the space into subspaces.

A global scene can be divided in many ways. We have to decide which
information will be important for us and that’s why we will require its main-
tenance or highlighting. A natural way to perform the partitioning is to
make a linear cut of the space with a hyperplane which splits the space (and
possibly some of the objects) into two parts.

Informally: Binary Space Partition, or BSP (initially introduced by Schu-
macker [Schum69]) is a recursive partitioning of the space with objects by
suitable hyperplane. The partitioning process is repeated for new arising
subspaces until only one fragment of any object occurs in detached subspace.
We suppose objects do not intersect each other because otherwise we would
not be able to ensure finishing of the splitting.

1Support was provided by the grant 201/98/K041
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The BSP for a set of objects can be naturally expressed as a tree structure.
The splitting hyperplanes and objects contained within them are stored in
nodes of BSP tree. Each node of BSP tree is associated with a convex region
which is a part of the original space. This convex region is created by splitting
the space by hyperplanes associated with ancestors of given node. We can
observe that convex regions associated with nodes of the same level generate
a resolution of the original space.

The BSP trees have a wide usage in many areas of computer science. They
are used, for example, in hidden surface removal using painters algorithm
[Fuchs80], visibility solution [Telle92], shadow generation [Chin89], objects
modelling [Naylo90, Thiba87], surface approximation [Agarw94], or robot
motion planing [Balli93].

When we split the space by some hyperplane then some objects can be
unwillingly divided into two or more parts. In such way, the original scene can
be divided into a lot of fragments. (An example of two alternative BSPs for a
set of segments is displayed on figure 1. It provides quite different outcomes.)
However, the efficiency of algorithms benefitting from BSP depends on the
size of consequential BSP. This is the reason for necessity to select the split
hyperplanes carefully.

l1

a) b)

l2l2
l1

l3

Figure 1: BSP of set of segments in the plane

In the past, a lot of attention was dedicated to the development of algo-
rithms which construct BSP trees of a small size. Initially, several heuristic
methods were developed (for example [Airey90, Fuchs80, Fuchs83, Telle92,
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Thiba87]), which however can create an excessive size tree for unpropitious
cases (Ω(n2) in the plane and Ω(n3) in the space). The first provable bounds
were obtained by Paterson and Yao [Pater90a, Pater90b]. They showed
[Pater90a], that the optimal size of BSP in the space in the worst case is Θ(n2)
and in the plane is O(n logn). The next result of these authors [Pater90b]
was the optimal size BSP algorithm for the set of orthogonal objects in the
space in the worst case Θ(n3/2) and in the plane in the worst case Θ(n).

However, most of randomly created BSP trees have reasonable behaviour
for practical scenes. Their size are considerably smaller than the worst case
determined boundary. Modern algorithms try to use these properties to
construct nearly linear BSP trees. Pankaj K. Agarwal et al. [Agarw96]
solve the problem of a construction of BSP tree for a set of fat orthogonal
rectangles (the fat objects are intuitive objects without extremely skinny
and long parts). Their algorithm creates BSP trees of n2O(

√
log n) size for

scene of n fat rectangles and of n
√
m2O(

√
log n) size for scene of (n −m) fat

rectangles. The running time is linear to output BSP tree size. In the next
paper [Agarw97] they compared implementation of this algorithm with other
BSP algorithms. It was shown that theirs algorithm is really suitable in
practice.

Mark de Berg et al. have extensively studied the problem of BSP in
the plane [Berg94]. They showed existence of a linear size BSP for sets of
line segments where the ratio between the lengths of the longest and the
shortest segment is bounded by a constant, for sets of fat objects and for
homothetic objects, and they proposed effective algorithms to solve it (in the
time O(n log logn), O(n logn) and O(n log2 n)).

In [Berg95], Mark de Berg was engaged in moving of the problem of BSP
for sets of fat objects into higher dimensional spaces. His algorithm offers
linear BSP trees also with only a little worse running time (O(nlog2n)).
Nevertheless, it is simple and more convenient for practical implementation.

Here we propose a new BSP trees construction method for sets of seg-
ments in the plane. This quite simple method can provide BSP trees of
linear size under condition of so-called low directional density of segments.
Approximately, the principle is as follows: Let us suppose, some given seg-
ment satisfies the condition of low directional density. Now we can take an
appropriate splitting hyperplane which releases one of directions designated
by extension of the segment. After we release both directions of such seg-
ment, we can use a splitting hyperplane which contains this segment and
creates only constant number of cuts.
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Section 2 of this paper contains basic definitions. In section 3 we describe
the principles and the functions of the algorithm in detail and prove its
complexity. Section 4 contains analysis and concluding comments.

Due to lack of space we defer proofs of Lemma 1 and Lemma 2 to the full
version of this paper. You can find it at:
http://www.fi.muni.cz/˜ptx/papers/ldd bsp.ps.gz

2 Basic definitions

Definition 1: A binary space partition tree B for a set S of pairwise dis-
joint, (d − 1)-dimensional, polyhedral objects in Rd is a tree recursively de-
fined as follows2:

Each node v in B represents a convex region Rv and a set of objects
Sv = {s ∩ Rv|s ∈ S}, that intersect Rv. The region associated with the
root is Rd itself. If Sv is empty, then node v is a leaf of B. Otherwise, we
partition v′s region Rv into two convex regions by a cutting hyperplane Hv.
At v, we store {s∩Hv|s ∈ Sv}, the set of objects in Sv, that lie in Hv. If we
let H+

v be the positive halfspace and H−v the negative halfspace bounded by
Hv, the regions associated with the left and right children of v are Rv ∩H−v
and Rv ∩H+

v , respectively. The left subtree of v is a BSP for set of objects
S−v = {s ∩H−v |s ∈ S} and the right subtree of v is a BSP for set of objects
S− + v = {s ∩H− + v|s ∈ S}. The size of B is the number of nodes in B.

Denotation: Let p be a set of points (segment or line) and S be a set of
segments. In the following text we will use this (slightly incorrect) notation
for simplification: p ∩ S ≡ {p ∩ si}; si ∈ S.

Definition 2: Let S be a set of segments in the plane, si ∈ S be a segment
with endpoints si[X] a si[Y ]. Then (δ, si[X])-directional vicinity of segment
si (we will mark it Ω(δ, si[X]) is a set of points {si[X]+c~u}, where c ∈ 〈0, δ〉,
~u = si[X]−si[Y ]. δ-directional vicinity of segment si (we will mark it Ω(δ, si))
is a union Ω(δ, si[X]) ∪ Ω(δ, si[Y ]).

Definition 3: Let S be a set of segments in the plane, si ∈ S be a segment
with endpoints si[X] a si[Y ]. In additional let Ω1 = Ω(∞, si[X]), Ω2 =
Ω(∞, si[Y ]) and ε be a integer constant. We say that segment si is:

2We take up the definition of Agarwal [Agarw96]
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• free, if ∀j ∈ {1, 2} : Ωj ∩ S = ∅.

• ε-free, if ∀j ∈ {1, 2} : |Ωj ∩ S| < ε

Definition 4: We say that a segment s has (ε, δ)-low directional density,
if the following holds:
(|Ω(δ, s[X])∩S| ≤ ε)∧ (|Ω(δ, s[Y ])∩S| ≤ ε), whereas ε is a integer constant
and δ is a real constant. We say, that a set of segments S has (ε, δ)-low
directional density, if any segment si ∈ S has (ε, δ)-low directional density.
We will call the constant δ mentioned above the directional constant.

3 The BSP construction method

3.1 Preliminary

One of generally applicable techniques for creating BSP trees are so-
called free cuts (see figure 2 ). They make use of the following idea: If
a segment is split into three or more parts, then we can bring a splitting
hyperplane containing the median segment without additional splitting of
another segment. In such way, this segment can be excluded from further
consideration.

We will use generalization of this idea into so-called ε-free cuts, (see fig-
ure 3) which can cut only constant number (ε) of other segments in our algo-
rithm. For algorithm’s intentions, we suppose that any segment has (ε,δ)-low
directional density (i.e. there is δ-directional vicinity for all segment, such
that each is crossed by at most ε of segments).

The proper algorithmwill execute a recursive splitting of a set of segments
S in the plane. In the case, there is any ε-free segments s ∈ S, we select
a line l containing this segment. Otherwise, let A = {si ∩ l|si ∈ S} and
B = {Ω(δ, si) ∩ l|si ∈ S} for an appropriate δ. We choose splitting line l in
the way, that the following holds: either A = ∅ and B 6= ∅, or A 6= ∅ and
|A|/|B| < ε where ε is a constant.

The second condition denotes the case, where we cannot apply ε-free
cuts. Hence we choose a cut bounding a sufficient number of segments,
which prepare the terms for repeated application of ε-free cuts.
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Free cut

Figure 2: Free cut

3.2 Correctness of approach

Lemma 1: Let S, B be non-empty sets of segments in the plane which
fulfil the following conditions:

1. n = |S| ≤ |B| = n+ k

2. There is such injective mapping σ : I → J ; I = {1, ..., n}, J = {1, ..., n+
k} and real constant α, that the following claim holds for all i ∈ I:
(|si| ≤ α|bσ(i)|) ∧ (si ‖ bσ(i)), where |si| means the length of segment
si ∈ S and |bσ(i)| means the length of segment bσ(i) ∈ B.

Furthermore, let v be an arbitrary non-zero vector such that ∃(si) : si ∦ u
and p be a line parallel with v. Then the following statement holds: ∃(p) :
|p ∩ S| ≤ α|p ∩B|.

Proof: We can suppose without lost of generality, that the vector v is
parallel with axis y (otherwise, we can rotate this scene into that position).
Let l be an arbitrary line perpendicular to vector v in the way, that any
segment s ∈ S or b ∈ B lie above this line (so in the halfspace l+). We project
all segments from sets S and B to v onto this line. Let us suppose, no two
endpoints of this segments project into single point on l (we will solve this
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Figure 3: Epsilon-free cut

special case later). The projected endpoints (X1, ...X4n+2k) split the line l into
4n+2k+1 fragments l1, ..., l4n+2k+1 (two halflines and 4n+2k−1 segments).
Furthermore, let lki is a line perpendicular to l and crossing the middle of
fragment li. We assign two parameters to any fragment li: lsi = |{s|s∩ lki 6=
0; s ∈ S}| and lbi = |{b|b ∩ lki 6= 0; b ∈ B}|. The parameter lsi represents
the number of segments si ∈ S, which lie upward li and the parameter lbi
represents the number of segments bi ∈ B, which lie upward li (see Fig. 4).

Let us assume, there is not any line p parallel to v so, that |p(v) ∩ S| ≤
α|p(v) ∩B|. Then it holds for all segments li, that lsi > αlbi ⇒ lsi |li| > αlbi |li|
and it shows

4n+2k−1∑
i=1

lsi |li| > α

4n+2k−1∑
i=1

lbi |li| (1)

Now, we have to be aware of the fact that any segment li is a part of projection
of lsi segments from the set S and of lbi segments from the set B. Hence, the
sum

∑4n+2k−1
i=1 lsi |li| is sum of lengths of all projected segments from the set
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Figure 4: Projection

S onto line l

4n+2k−1∑
i=1

lsi |li| =
n∑
i=1

|Pr(si)| (2)

and the sum
∑4n+2k−1

i=1 lbi |li| is sum of lengths of all projected segments from
set B onto line l.

4n+2k−1∑
i=1

lbi |li| =
n+k∑
i=1

|Pr(b)| ≥
n∑
i=1

|Pr(bσ(i))| (3)

Hereafter, assumption of parallelism suggests, that the ratio between the
length of any pair of segments si and bσ(i) remains constant after projection.
Thus β|si| = |Pr(si)| and β|bσ(i)| = |Pr(bσ(i))|, β ∈ 〈0, 1〉. Because of
|si| ≤ α|bσ(i)|, it holds that

|Pr(si)| ≤ α|Pr(bσ(i))|

n∑
i=1

|Pr(si)| ≤ α

n∑
i=1

|Pr(bσ(i))|
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and in fine from 2 a 3

4n+2k−1∑
i=1

lsi |li| ≤ α

4n+2k−1∑
i=1

lbi |li|

But this is a contradiction to 1.
Now we return to the case of several distinguish points projected into the

same place on l. The Lemma assumption ∃(si)|si ∦ u ensures, that there is
at least one segment si ∈ S with the property |Pr(si)| 6= 0. The rest can be
solved simply by lexicographic ordering. Because of zero distance between
such points, no change occurs. 2

Note: In the whole following text, we will consider the condition of Lemma
1 ∃(si)|si ∦ u to be automatically true. In the opposite case this is the
question of a set of parallel segments and we can create the BSP tree (subtree)
by an arbitrary auto-partition3 in linear time.

In the next Lemma we will show the existence of linear BSP trees for
sets of segments with (ε, δ)-low directional density. We will split the plane
by appropriate lines, which will go through δ-directional vicinity of segments
si ∈ S. Thus we will keep under control the number of cuts of segments
from the set S. In this way, we will convert the segments si ∈ S into ε-free
segments and these will be eliminated by constant number of cuts.

Lemma 2: Let S be a set of segments with (ε, δ)-low directional density.
Then there is a BSP tree of linear size for this set.

Proof: At first, we build up an auxiliary set of segments B in the following
way: we create two segments bi1 ∈ B; bi1 = Ω(δ, si[X]) and bi2 ∈ B. bi2 =
Ω(δ, si[Y ]) to each segment si ∈ S. By the pre-condition of Lemma2, the
set S has (ε, δ)-low directional density and since it holds, that ∀bij ∈ B :
|si| ≤ 1/δ|bij | where 1/δ is a constant. It follows from the definition, that
n = |S| ≤ |B| = 2n and si ‖ bij . The assumptions of Lemma 1 are satisfied
for the sets S and B and thus we can find such line p, that |p∩S| ≤ 1/δ|p∩B|.

The BSP construction algorithm proceeds with loops consisting of two
sections. In the first section we process all ε-free segments and dispose the

3i.e. any partition line contains a segment (fragment of segment) from S

9



one from S. In the second section we split the set S into two portions by a
line p according to Lemma 1, provided that S is not empty.

Section 1:
while There are any ε-free segment in S do

begin
Pick an arbitrary s ∈ S ε-free segment up;
Destinate the line p containing s;
Eliminate all segments b ∈ B|b ∩ p 6= ∅ from the set B;
Use p as the splitting line for the set S ∪B;

end;

Section 2:
if The set S is not empty then
begin

Select a line p according Lemma 1;
Eliminate all segments b ∈ B|b ∩ p 6= ∅ from the set B;
Use p as the splitting line for the set S ∪B;

end;

Now we must certify, that the assumptions of Lemma 1 are satisfied when
entering the section 2 of the algorithm.

All ε-free segments are discarded in the section 1. We can observe, that
there are exactly two segments bij ∈ B belonging to segment si ∈ S at the
start of this algorithm. Any segment b ∈ B is discarded in both sections of
the algorithm only in the case, when the one is crossed by (or contained in)
a BSP splitting line. The segment si becomes clearly ε-free if both segments
bij associated with si have been discarded. Nevertheless, before entering the
section 2 all ε-free segments have been discarded. Since we can associate any
segment si in the second section of the algorithm with at least one segment
bij ∈ B and thus |S| ≤ |B|. In the whole algorithm no changes of length of
any segment bij occur. Only a segment si can be split and hence shortened.
It shows, that ∀i ∈ {1, ..., n} : |si| ≤ α|bσ(i)|. The rest of assumptions of
Lemma 1 are apparently true.

It remains to prove, that given algorithm really creates a linear size BSP
tree for a set of segments S. It is clear, that the nodes of resultant BSP tree
contain only segments (or fragments of segments) from set S, because any
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segment bij is discarded whenever a common point with the splitting line p
occurs. Hereafter, there are two kinds of partition used in the algorithm:

• The partitioning in the first section of the algorithm uses the ε-free
cuts (i.e. the splitting line contains an ε-free segment s ∈ S). That cut
can cross at most 2ε other segments and can be applied only n times.
(If we split a segment s into two parts, we have to apply this cut twice.
But in this case, the cut can cross at most ε another lines).

• The partitioning in the second section of the algorithm uses the splitting
line from Lemma 1. Since, the number of crossed segments from the
set S is less or equal 1/δ times the number of crossed segments from
the set B. From here, the statement holds that the number of crossed
segments of the set S ≤ 1/δ(2n), because the number of segments in
the set B is at most 2n.

Let us denote the total number of splitting of all segments Γ. From the
previous text results:

Γ ≤ 2nε+ 2n/δ = 2n(ε+ 1/δ). (4)

Now we use the fact, that one splitting of any segment adds only one new
segment and ε and δ are constants. Hence, the number of segments in the
BSP tree is at most O(n) and the resultant BSP tree has linear size. 2

It is not quite clear now how to construct the linear BSP tree for a set
of segments with low directional density, even though the Lemma 1 provides
a proof of existence of such trees. The problem is that we don’t know the
constants ε and δ which are needed to construct the BSP tree.

The first opportunity is a direct computation of constants δ and ε. Here
we draft the computing process.

Let us denote Θ = {ε1 = 1, ..., εn = n} the set of all possible values of ε
for the set of segments S. We will compute responding δi ∈ ∆ for any εi ∈ Θ.
If we will use an arrangement (for example in [O’Rou95]), the computation
is not very complicated.

We extend any segment si ∈ S to infinite line li ∈ L. The arrangement
of L can be constructed in O(n2) time. Let δi,j denote the length of max.
δ-directional vicinity for the segment si crossed by at most j segments from
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the set S and δj = min{δi, j|i ∈ {1, ..., n}}. The set of δi,j|i, j ∈ {1, ..., n}
can be determined by going through the arrangement in quadratic time and
any δj can be computed by simple comparing the δi,j|i ∈ {1, ..., n} in linear
time. It follows from the denotation, that the number of segments crossing
the δj-directional vicinity is at most j (i.e. εj = j). Finally, we compute the
most appropriate values of ε and δ from the last equation of Lemma 2. But
the overall time complexity of this computation is unfortunately Θ(n2).

Lemma 3: Let the condition of (ε, δ)-low directional density holds for
almost all segments from any set S with the exception of constant number of
segments. Then there is a linear BSP tree for the set S.

Proof: The proof of this Lemma is similar to the proof of Lemma 2. 2

The second opportunity of computing the BSP tree for any set of segments
is to suppose that the property of low directional density holds for the most
of practical scenes of segments. In this case, we choose a directional constant
δ and suppose, that the δ-directional vicinity of almost all segments is crossed
by at most constant number of segments.

Once we have got the constant δ (by estimation or by computation), we
can start the BSP tree construction algorithm.

3.3 The BSP tree construction algorithm

Let us suppose we have an appropriate directional constant δ for any
scene. Next we describe, how to implement the algorithm effectively. The
principle of the algorithm results from the Lemma 2. It uses the method of
tandem search as it is described in [Berg93]. We start with rough sketch of
the algorithm and then we describe some difficult steps in detail. Finally we
determine the time complexity of the algorithm.

{Initialisation}
function CreateTree(SegmentList, δ) of Tree;

begin
(1) Create two auxiliary segments bi1 a bi2 for any segment

si ∈ SegmentList as its δ-vicinity;
Insert all segments bij into the set SegmentList;
{The segments si will be marked as S-segments

12



and segments bij will be marked as B-segments}
(2) Let P be the set of all endpoints of segments s ∈ SegmentList.

Create a dynamic balanced binary tree T (P ) lexicographically
ordered by x-coordinates of points p ∈ P ;

(3) Create dynamic convex hull CH(P );
(4) Tree:=BSP(SegmentList,T ,CH);

end

{The function creating BSP}
function BSP(SegmentList,T ,CH) of Tree;

begin
(5) if Card(SegmentList) > 0 then

begin
(6) if There exists any ε-free segments then

begin
(6.a) Select any ε-free segment s;

l:= line containing s;
end;

(6.b) else l:= FindPartitionLine(SegmentList, T );
(7) Split the scene into the next sets:

SegmentList r:= (SegmentList −b|b ∈ B, b ∩ l 6= ∅) ∩ l+

SegmentList l:= (SegmentList −b|b ∈ B, b ∩ l 6= ∅) ∩ l−

SegmentList c:= (SegmentList −b|b ∈ B, b ∩ l 6= ∅) ∩ l;
Create the structures T (Pr), T (Pl),
CH(Pr) and CH(Pl) for the sets Pr a Pl;

(8) Root.right:= BSP(SegmentList r, T (Pr), CH(Pr));
Root.left:= BSP(SegmentList l, T (Pl), CH(Pl));
Root.list:= SegmentList c;
return Root;

end;
(9) else return nil;

end;

Now we explain the individual steps of the algorithm.
The steps (1) – (4) represent the initial part of the algorithm. They are

essentially simple. In step (1), we create the set of auxiliary segments B
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as in the Lemma 24 and in steps (2) and (3) we create the data structures
necessary for implementation of the tandem search. In the step (4) the
function creating a BSP tree is called.

The recursive function generating the BSP tree through steps (5) – (9)
follows.

In step (5), we check, whether continuation of recursive partitioning
makes a sense. In case it does not, we will return to the step (9).

In step (6), we must choose one of two options on splitting line l. We will
check whether the list Uε of ε-free segments is empty.

(6.a) If the Uε is not empty, we choose an arbitrary Uε-free segment s and
discard the one from Uε. We choose a line containing the segment s as the
splitting line l.

(6.b) In the case the list Uε is empty, we call the function FindPartition-
Line. This function selects a splitting line according Lemma1. The function
is based on the following idea:

We use a horizontal sweep line l′ and sweep the scene from left to right.
An elementary change of number of segments crossed by l′ occurs only in case,
the line passes through an endpoint of a segment u ∈ SegmentList. As the
x-coordinates are stored in the tree T , we can do the sweep effectively. The
number of S-segments and B-segments crossed by the sweep line l′ during the
sweep will be maintained with help of two variables S.number and B.number.
According to the Lemma 1, the case of S.number/B.number ≥ δ must arise
at least once.

It looks like we could simply select a first line l which fulfils the condition
to be the splitting line. But if we proceeded with the proposed algorithm,
we could go through all endpoints of the majority of both sets arisen by the
recursive splitting of the set P . Such proceeding causes a bad time complexity
of the algorithm in the worst case. In practice it would be enough to go
through the smaller of both sets. Hence we use the tandem search technique
now. We use two sweep lines (l′1 a l

′
2) instead of one sweep line. Both lines are

vertical and they proceed alternately (over one endpoint). The l′1 proceeds
from the left border of the scene to the right and the l′1 proceeds from the
right border of the scene to the left. In such way, we make only the number
of steps linear in relation to the size of the smaller of the two subsets (from

4we create two segments bi1 ∈ B; bi1 = Ω(δ, si[X]) and bi2 ∈ B. bi2 = Ω(δ, si[Y ]) to
each segment si ∈ S.
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beginning the function to locating the first line l satisfying the condition of
Lemma 1).

In step (7), we repeatedly use the tandem search technique, because it is
enough to find the smaller of the two parts, which the set P will be divided
into. The larger set contains remaining elements of P .

Thus, we need to find effectively two points for tandem search. The first
point lies on the right of the splitting line l and the second point lies on the
left of the splitting line l. Because the line l can occur in general position
(we use the ε-free cuts), we must choose a more sophisticated solution than
in (6.b). For that purpose we use the dynamic convex hull CH. We will find
two points lying in the farthest distance from l ( pr to the right of l and pl
to the left of l) by means of the CH. (The fact that the points pr and pl
are farthest from l is not significant. It is only important that the points
lie on the opposite sides of the splitting line l and that we can find them
effectively.)

Now we show how to process the point pr. (The point pl can be processed
similarly. Only in the case of event 3 we will not process this point.) Let u
be a segment containing the point pr. We eliminate the points p1 a p2 of the
segment u from CH at first. Hereafter, the one of the next four cases may
occur:

1. The line l contains the segment u.

If the segment u is a S-segment, we add it to the SegmentList c.

2. Both endpoints of u lie in the same halfplane designated by the line l.

In this case we add the points p1 and p2 to the list aux.Pr of points to
the right of l. (A similar list aux.Pl is created for the points to the left
of l.) The segment u is added to the SegmentList r.

3. The segment u is a S-segment divided by the line l into two parts.

In this case we split the segment u into two parts in the point of inter-
section with l: the ur = u ∩ l+ and ul = u ∩ l−. The endpoints of ur
are added to aux.Pr and the endpoints of ul are added to aux.Pl. The
segment ur is added to the list SegmentList r and the segment ul is
added to the SegmentList l.

4. The segment u is a B-segment (for example bi1) divided by the line l
onto two parts.
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In this case a test is performed, whether there is a segment u′ (con-
tained in SegmentList) dual to the segment u. (We test, whether there
is a segment bi2 ∈ SegmentList to the segment bi1 in our example.)
If the dual segment does not exist, we add the S-segment associated
with u to the Uε list. (Both segments associated with the S-segment
have been eliminated (and thus crossed by a splitting line) from the
SegmentList.)

We will continue this way, until the points on the right of l and on the left
of l exists at the same time.

Let us suppose, there is not any point on the right of l yet. (The case of
non-existence of points on the left of l is symmetrical again.) Since the set
aux.Pr contains endpoints of the smaller set into which P is split by l. The
set aux.Pl contains as many endpoints as aux.Pr but they lie at the opposite
halfspace designated by l. It remains to create the convex hulls CH(Pl) and
CH(Pr) and the trees T (Pr) and T (Pl) yet. The convex hull CH(Pr) and the
tree T (Pr) can be created from scratch, because they belong to the smaller
of both set. The convex hull CH(Pl) is created by adding the points of the
set aux.Pl to the remainder of original convex hull CH. The tree T (Pl) is
created by recovering the points of the set aux.Pl from the original tree T .

In step (8) we compile the resultant tree by recursive calling of the pro-
cedure BSP.

Lemma 4: The algorithm described above creates a linear BSP tree for
a set of segments with low directional density and an appropriate directional
constant δ.

Proof: This statement results from the proof of Lemma 2, since the algo-
rithm above works according to the principle of Lemma 2. 2

Lemma 5: The algorithm described above can be implemented for a set of
segments with low directional density in the time O(n log3 n).

Proof: Let us have a look at the initialisation part of the algorithm at first.
The step (1) can be processed simply in the linear time. The construction
of the balanced binary tree T (the one allows update in O(logn) time and
operations succ(p) and pred(p) of finding successor and predecessor of a leaf p
in linear time) takes O(n logn). Furthermore, the dynamic data structure of
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convex hull CH allowing deletions and insertions have to be created. For this
purpose we use the data structure of Overmars and Van Leeuwen [Overm81].
Updates in this structure take O(log2 n) time and queries take O(logn) time.
The preprocessing time is O(n logn).

The analysis of one recursion pass will be described in the following text.
From aspect of time complexity, the steps (6.a) and (7) are essential. The
rest can be processed in constant time.

In step (6.a) we make vertical sweep with help of two lines. We achieve
at most O(k) by the means of tandem search. The number k is the size of
the smaller set, which the set SegmentsSet will be split into. Furthermore,
we spend only constant time in any step of the sweep. This holds by reason
of constant time operations succ(p) and pred(p) on the tree T lists.

In step (7) we create the sets aux.Pr and aux.Pl at first. It is done by
tandem search technique. The both sets have at most k elements, where k
is the number of endpoints of the smaller set which is the set P split into.
When any endpoint is treated the operations of query (O(logn)) and update
(O(log2 n) have to be done. Hence, this takes O(k log2 n) time in total.

Furthermore, the update of data structures of the convex hull CH(Pr),
CH(Pl) and the balanced binary tree T (Pr), T (Pl) is needed. The smaller
member in any pair can be created from scratch from an appropriate aux-
set which takes O(k logn) time. The higher member in any pair is created
by adding (recovering) of k endpoints of an appropriate aux-set to (from) a
remainder of the original data structure CH (T ). It can be done inO(k log2 n)
(O(k logn)) time in total.

In conclusion, we have to determine the complexity of processing of end-
points belonging to splitted B-segments and endpoints added to the set
SegmentList c. The processing of any such endpoint takes O(log2 n) time
(the most expensive operation, again, is the update of CH). We deal with
each such endpoint only once and the total number of the endpoints is linear.
Thus the total time cost is O(n log2 n).

The consequential time we spend in step (7) (without the time of opera-
tions mentioned in the paragraph above) is O(k log2 n) altogether.

Now we use the issue of Lemma 3 that the consequential BSP tree has
linear size. Hence, there is such constant c that the number of nodes of the
BSP tree is at most cn. The running time of the algorithm can be bounded
by sum of O(n log2 n) and the recursion

T (n) ≤ max
0≤k≤cn/2

O(k log2 n) + T (r) + T (cn− r)|k ≤ r
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which implies that T = O(n log3 n). So the running time of the algorithm is
bounded by T = O(n log3 n). 2

Let us summarise our results in the following theorem:

Theorem 6: Given a set of n disjoint segments in the plane which sat-
isfy the condition of low directional density and an appropriate directional
constant δ, it is possible to construct a BSP tree of linear size in O(n log3 n)
time.

4 Conclusion

We have proved the existence of linear BSP tree for sets of segments with
low directional density in the plane. We have also presented an efficient
algorithm for computing linear size binary space partitions for such sets of
segments.

This work extends previous results achieved by Paterson and Yao [Pater90b],
who proved existence of linear size BSPs for sets of orthogonal segments in
the plane and [Berg94], who proved existence of the one for sets of segments
with constant ratio between the lengths of the longest and shortest segment.
However, the problem of existence of linear size BSP for any set of line seg-
ments still remains open. We hope that our technique can help to solve this
general problem.
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