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FI MU Report Series FIMU-RS-99-05

Copyright c© 1999, FI MU September 1999



Approximating Weak Bisimulation
on Basic Process Algebras

Jitka Stříbrná

Abstract

The maximal strong and weak bisimulations on any class of processes
can be obtained as the limits of decreasing chains of binary relations,
approximants. In the case of strong bisimulation and Basic Process Al-
gebras this chain has length at most ! which enables semidecidability
of strong bisimilarity. We show that it is not so for weak bisimulation
where the chain can grow much longer, and discuss the implications
this has for the problem of (semi)decidability of weak bisimilarity.

1 Introduction

Algebraic descriptions are often used in concurrency theory for specifica-
tion and verification of concurrent systems. There exist powerful process
calculi such as CCS [7] that are very expressive. However, these calculi
have the disadvantage that testing a property of a system may become
infeasible. Simpler classes of processes are often built around fewer oper-
ators and do not possess the full expressive power but they enable more
efficient testing. One class of processes that has been studied a lot recently
describes systems that can compose in a sequential manner. These are Ba-
sic Process Algebras (BPA), originally introduced in [1] as the process equi-
valent of context-free grammars. Although the structure of BPA-processes
is simple they can be used to describe quite a large class of infinite be-
haviours.

One of the properties of systems that we are interested in is behavioural
equivalence. For the sake of system design and verification we need to be
able to specify and test when processes are equivalent with respect to some
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notion of observation. Among the most favoured behavioural equivalen-
ces are strong and weak bisimulations, introduced in [7]. One of the main
issues for equivalences is the decidability problem: we want to determine
whether a particular equivalence can be decided for any pair of processes
from a fixed class.

Strong bisimulation equivalence can be decided on the class of BPA-
processes (see e.g. [2], [3]). The classical test ([3]) consists of two semide-
cision procedures. The algorithm for semideciding strong bisimilarity is
based on the fact that for every BPA there exists a finite base from which
all bisimilar pairs can be derived. The algorithm for semideciding non-
bisimilarity approximates the maximal bisimulation equivalence with a
possibly infinite decreasing sequence of binary equivalences that always
converge, with the limit being the maximal bisimulation equivalence.

Whereas the notion of strong bisimilarity is based on actions that sys-
tems perform, weak bisimilarity takes into account only actions of a sys-
tem that are observable. Processes can thus engage in internal transitions
that cannot be seen by an outside observer, and hence do not have to be
matched by an equivalent process. A special silent action � is set apart to
denote internal behaviour and any external (observable) transition can be
preceded and followed with an arbitrary sequence of �

�!. The drawback
of abstracting away from internal transitions is that even simple systems
as BPA may become infinitely branching, i.e. the transition (derivation)
trees determined by BPA-processes may contain infinite branching. This
poses a potential complication to equivalence testing. Indeed, even for the
rather simple processes of BPA the decidability problem for weak bisimu-
lation equivalence remains open.

At present there are some partial results that assert decidability of weak
bisimilarity on strict subclasses of BPA-processes ([5], [9]). However, these
are subclasses where the power of internal behaviour is in some ways
restricted. In the general case neither weak bisimilarity nor weak non-
bisimilarity can be semidecided. In this paper we concentrate on the tech-
nique for semideciding non-equivalence that is used for strong bisimila-
rity and we show that no straightforward application to weak bisimilarity
seems possible.
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2 Background

In order to define Basic Process Algebras we presuppose a fixed set of
actions Act = fa; b; c; : : :g that contains a special action � , and a finite set
of process variables or atoms Σ = fX1; : : : ;Xng. A Basic Process Algebra
(BPA) is then a pair (Σ�;∆), where Σ� is the free monoid generated by Σ,
and ∆ = fX

�
�! P j X 2 Σ;P 2 Σ�; � 2 Actg is a finite set of transitions.

BPA-processes are identified with words from Σ�. The transition rules of
∆ determine a transition relation on general BPA-processes in this way:

XQ
�
�! PQ if there is a rule X

�
�! P in ∆:

We will use capital letters X;Y to range over process variables, P;Q;R to
range over BPA-processes, and �; � to range over actions.

Example 1 Here we present a simple BPA. The set of variables Σ is fX;Yg and
the transition rules of ∆ are given below:

Y a
�! � X �

�! XY X b
�! �:

The transition tree determined by the variable X is sketched in figure 1.
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Figure 1: The transition tree of the process X

The process X can with a sequence of n transitions �
�! generate n copies of Y

thus becoming XYn. For XYn to perform any move of Y the process has to dispose

of the X in front with an X b
�! � move. Only then can an a action of Y be done
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as it is always the leftmost variable in a BPA-process that is allowed to carry out
a transition. �

In order to incorporate the notion of internal behaviour we consider com-
posite actions

�
=), where

�
=) is an abbreviation of (

�
�!)�

�
�! (

�
�!)� in

case � 6= � , and (
�
�!)� in case � = � . The process X from Example 1 gives

rise to an infinitely branching tree that is shown in figure 2.
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Figure 2: X as an infinitely branching tree

We say that a binary relation R on processes is a weak bisimulation if for
every pair (P;Q) from R and every action � from Act the following holds:

� for every P
�

=) P0 there exists Q
�

=) Q0 so that (P0;Q0) 2 R;

� for every Q
�

=) Q0 there exists P
�

=) P0 so that (P0;Q0) 2 R.

Two processes P and Q are weakly bisimilar if there exists a weak bisimula-
tion containing the pair (P;Q). The union of all weak bisimulations gives
rise to the maximal weak bisimulation which is denoted by �. An equi-
valent definition of weak bisimulation is phrased in terms of single tran-
sition in the premise followed by composite transition. Both definitions
yield identical maximal weak bisimulations and we shall be using either
of them, depending on the context.

In the definition above, the maximal weak bisimulation is obtained as
the union of smaller weak bisimulations. There exists an alternative ap-
proach (see Milner [7]) where the maximal equivalence is obtained as the
limit of a decreasing chain of weak bisimulation approximants. These are bi-
nary relations on processes defined inductively in terms of ordinal numbers.
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For the sake of simplicity, in this paper we shall view ordinals as gene-
ralisation of (the well-ordered nature of) natural numbers. Ordinal num-
bers form a class, denoted by On, and are well-ordered by the element-of
relation <. The initial segment of On containing natural numbers and ! is
0; 1; 2; : : : ;n; : : : ; !, after which follow !+ 1; !+ 2; : : : ; !+ n; : : : ; !+!; etc.
The ordinals 0; !; !+!, are limit ordinals which means they have no prede-
cessor, whereas ordinals such as 1; 2; and !+1; !+2, are successor ordinals.
We shall be using some simple arithmetical operations on ordinals such as
summation and multiplication, as well as the principle of transfinite induc-
tion, the induction principle generalised to the class of all ordinal numbers.
Ordinals shall also provide us with a measure for derivation trees of par-
ticular processes which will implicitly refer to the notion of rank (height)
of a tree. For a detailed instruction on ordinal numbers the reader should
consult standard textbooks on set theory, such as [6].

Weak bisimulation approximants are defined inductively on the class
On in this way:

� P �0 Q for all P and Q;

� P ��+1 Q if for all actions �,

– whenever P
�

=) P0 then there exists Q
�

=) Q0 so that P0 �� Q0;

– whenever Q
�

=) Q0 then there exists P
�

=) P0 so that P0 �� Q0;

� P �� Q if P �� Q for every � < �, for a limit ordinal �.

It can be easily verified that binary relations�� are equivalences for every
ordinal �. The following lemma sums up the structure of the chain of
approximants and the relationship between individual approximants and
the maximal bisimulation. A proof can be found in [7], [10].

Lemma 2

1. for every �; � 2 On, � < � =)�� � ��;

2. for every � 2 On, � � ��;

3. if there is an � such that �� = ��+1 then for all � � �, �� = �� = �;

4. � =
T

�2On ��.

5



1 says that approximants form a non-increasing sequence. 2 says that the
maximal equivalence is contained in every approximant. 3 and 4 state that
the sequence converges and the limit is �.

Note: The notion of strong bisimulation �, resp. strong bisimulation
approximants��, is defined analogously to weak bisimulation, resp. weak
bisimulation approximants, where the composite transition

�
=) is replaced

by the single transition
�
�!. A lemma analogous to Lemma 2 holds, i.e. the

chain of strong bisimulation approximants converges with the limit being
�. For finitely branching processes (such as BPA-processes) the conver-
gence occurs at level !, that is � = �! =

T
n2! �n. Proof of this claim can

be found in [4].
Every BPA-process has only finitely many possible derivatives there-

fore each approximant �n is decidable. Then a straightforward semideci-
sion procedure for non-bisimilarity proceeds by successive enumeration
of all natural numbers n and testing equivalence at �n. However, we shall
see that this approach cannot be used for weak bisimulation approximants
as we shall establish that there exist BPA where � ( �!.

3 Hierarchy of Non-bisimilar BPA-processes

In this section we will construct a hierarchy of processes that will dis-
tinguish individual approximants �!n (and all approximants in between)
from the maximal weak bisimulation �. We will start with a simple con-
struction that will later lend itself to straightforward generalisation. We
define variables C and A by these transition rules:

A
a
�! � A

�
�! � C

�
�! CA C

�
�! �:

The transition tree determined by the variable C is drawn in figure 3. The
tree contains infinite branching at the top level as C can generate with a
�

=) move any number of copies of A. It is not difficult to see that Ak �k Al

for every k � l. In order to distinguish �! from � it suffices to consider
the processes C and AC.

Lemma 3 C �! AC and C 6� AC.
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Proof: We will show that the processes C and AC are equivalent at �k

for all k but not weakly bisimilar. Any move of C can be matched by AC
after discarding the A in front with AC

�
�! C. To the move AC

�
�! C the

variable C responds with C
�

=) C. Hence we only need to consider the
a
�! transition of AC. For a fixed k, if AC

a
�! C then C generates enough

copies of A with C �
�! AN+1 a

�! AN, for some N > k. Then C and AN will
surely be related at �k and we can conclude that C �! AC. On the other
hand, because AC has one more copy of A at its disposal, we obtain that
C 6�!+1 AC and hence C 6� AC. �
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Figure 3: The process C

We can use the two variables C and A to reach even higher. If we consider
the processes Cn and ACn for some n > 1, then we can repeat the trick of
generating arbitrary many copies of A several (at most n) times. Hence
each copy of C gives rise to an infinitely branching tier in the derivation
tree determined by the process Cn, resp. ACn. Thus we construct trees of
height ! � n, resp. ! � n + 1. The process ACn has one extra action com-
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pared with Cn which makes the two processes non-bisimilar while being
equivalent at the level �!�n.

In the same way that C could generate any number of atoms A we can
introduce a new variable capable of producing any number of C’s. Thus
we can obtain an infinite hierarchy of variables that will enable us to go
beyond !2. The variables are defined inductively in this way:

1. D0
a
�! �, D0

�
�! �;

2. assuming we have defined the variables D0; : : : ;Di, the variable Di+1

is defined by Di+1
�
�! Di+1Di, Di+1

�
�! �.

The variable A, resp. C, is renamed D0, resp. D1. Notice that the only
variable capable of performing a visible action is D0. The purpose of the
other variables is to create bigger and bigger branching so as to obtain trees
of still greater height. The ultimate goal is to construct pairs of processes
Pi and Qi, sequences over variables D0;D1; : : : ;Di, with the property that
Pi �!i Qi and Pi 6� Qi. Before we carry out the desired construction we
shall analyse the behaviour of individual variables Di.

Starting from a variable Di we can only do a �
=) sequence with which

we obtain the process DiD
ei�1

i�1
for some ei�1. We cannot get a more complex

shape without removing the Di in front. After having discarded Di we can
continue and from Dei�1

i�1
generate (with another �

=) sequence) the process
Di�1Dei�2

i�2
Dei�1�1

i�1
. We repeat the procedure several times and finally derive

a process either of the form Dk+1Dek
k Dek+1

k+1
: : :Dem

m or Dek
k Dek+1

k+1
: : :Dem

m , where
k � 0, m < i and ek; : : : ; em � 0. The latter process is a composition of atoms
with increasing indeces and so will be denoted by

Qm
i=0 Dei

i and called a
product. We will see that it suffices to consider products as it is not difficult
to convince oneself that every Dk+1Dek

k Dek+1

k+1
: : :Dem

m is weakly bisimilar to
the product Dek+1+1

k+1
Dek+2

k+2
: : :Dem

m � Dek+1+1

k+1

Qm
i=k+2 Dei

i . That means these two
processes produce identical behaviour, with regard to� and also��. First
we shall prove the following statement that characterises one particular
type of weakly bisimilar processes over atoms Di:

Proposition 4 For every k, m, and l, Dl+1
k+1

� Dk+1Dm
k Dl

k+1
.

Proof: In order to demonstrate that two processes are weakly bisimilar it
suffices to construct a binary relation containing the pair of the processes
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in question and show that the relation is a weak bisimulation. For that
purpose we will define a binary relation R = f(DlDm

l�1
Dk

l ;DlDn
l�1

Dk
l )jk; l >

0;m;n 2 Ng[f(D̂; D̂)jDlDm
l�1

Dk
l

a�
=) D̂; k; l > 0;m 2 Ng. Clearly the relation

R contains the pairs (Dk+1
l ;DlDm

l�1
Dk

l ) for every k, m and l > 0. Now we

have to check that it is closed under expansion with
�
�!, that means for

every pair (P;Q) from R, if there is a transition P
�
�! P0 then there has to

be a matching transition Q
�

=) Q0 with the resulting pair (P0;Q0) again in
R, and conversely, also starting from Q.

Firstly we will choose a pair (DlDm
l�1

Dk
l ;DlDn

l�1
Dk

l ) for some fixed k; l >
0;m and n. We remind ourselves that for any l > 0, the only possible
transitions Dl can do are Dl

�
�! � and Dl

�
�! DlDl�1. If either DlDm

l�1
Dk

l or
DlDn

l�1
Dk

l chooses to perform the transition Dl
�
�! DlDl�1 the other process

does exactly the same which results in a pair (DlDm+1
l�1

Dk
l ;DlDn+1

l�1
Dk

l ) that
belongs to R by definition.

To analyse the case when one process decides to employ the transi-
tion Dl

�
�! � we will assume that m � n. Hence the response to the

move DlDn
l�1

Dk
l

�
�! Dn

l�1
Dk

l will be DlDm
l�1

Dk
l

�n�m

�! DlDn
l�1

Dk
l

�
�! Dn

l�1
Dk

l

and the pair (Dn
l�1

Dk
l ;D

n
l�1

Dk
l ) will belong to R since Dn

l�1
Dk

l is derived
from DlDn

l�1
Dk

l . If it is DlDm
l�1

Dk
l that disposes of Dl and becomes Dm

l�1
Dk

l

then the other process DlDn
l�1

Dk
l responds by removing Dl in the first place

and then all superfluous copies of Dl�1 to become Dm
l�1

Dk
l . Again the pair

(Dm
l�1

Dk
l ;D

m
l�1

Dk
l ) is in R.

Lastly, if we have a pair (D̂; D̂) from R with D̂ being an a�
=) derivative

of some DlDm
l�1

Dk
l then any D̄ obtained from D̂ by performing

�
�! is also an

a�
=) derivative of DlDm

l�1
Dk

l and hence the pair (D̄; D̄) belongs to R. �

As a corollary of Proposition 4 we obtain the desired relation between the
two types of processes that can arise as product derivatives.

Corollary 5 The processes Dl
Qm

i=l�1 Dfi
i and Dfl+1

l

Qm
i=l+1 Dfi

i are weakly bisimi-
lar.

In fact, with a bit extra effort one could show that an arbitrary composition
of the atoms Di is weakly bisimilar to some product, however we shall not
pursue that line here.
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Next we will define a measure on products that will enable us to make
statements about the largest ordinal number that relates two non-bisimilar
products. The measure is not chosen arbitrarily but captures in some
way the branching power that processes possess; in fact it corresponds
precisely to the ordinal height of derivation trees of product processes.
To a product

Qm
i=0 Dei

i we assign an ordinal number
Pm

i=0 !
iei = !mem +

!m�1em�1 + : : : + !e1 + e0. As will be shown later, one special property
of this notion is that all derivatives of a product are assigned a smaller or
equal ordinal.

Example 6 We consider the variables D2, D1 and D0. Starting from D2, we can

perform this derivation sequence: D2
�
�!

3
D2D3

1

�
�! D3

1

�
�!

5
D1D5

0D2
1

�
�!

D5
0D2

1

a
�! D4

0D2
1 : : :. On the other hand, there is no derivation sequence that

would produce the process D2D1D0. The ordinals assigned to each element of the
derivation sequence are !2 to D2, then ! � 3 to D3

1, ! � 2 + 5 to D5
0D2

1, and ! � 2 + 4
to D4

0D2
1. Finally, processes D3

1D5
0 and D1D5

0D2
1 are weakly bisimilar. �

Finally we can give a precise classification of product derivatives in terms
of the ordinal measure defined above. We shall rely on the following
proposition in the proofs of the next section where a rigourous analysis
of product behaviour shall be required.

Proposition 7 For a product
Qm

i=0 Dei
i and process P, if there is a derivation

Qm
i=0 Dei

i

�
=) P then P is weakly bisimilar to some

Qm
i=0 Dfi

i , where
Pm

i=0 !
ifi <Pm

i=0 !
iei in case � = a, and

Pm
i=0 !

ifi �
Pm

i=0 !
iei in case � = � .

Proof: We assume a fixed product
Qm

i=0 Dei
i and the corresponding

Pm
i=0 !

iei.
If e0 > 0 then before removing all copies of D0, all sequences of transitions
lead to a product of the form De

0De1
1 : : :Dem

m with e < e0 and therefore also
!mem + : : : + !e1 + e < !mem + : : : + !e1 + e0.

Once we have exhausted all D0 what remains is some product D
ej

j : : :D
em
m

with j > 0. This product can either step by step remove some of the

front variables which results in some D
e0k
k : : :Dem

m , where k > j or k = j
and e0k < ej. The respective ordinal is then !mem + : : : + !ke0k which is less
than the original !mem + : : : + !jej. Or, after a few such steps some vari-
able Dk, k � j, performs a sequence of transitions Dk

�
�! DkDk�1 which

results in the process DkD
ek�1

k�1
D

e0k�1

k : : :Dem
m . Again, the respective ordinal
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!mem + : : :+!k(e0k� 1) +!k�1ek�1 is less than !mem + : : :+!jej. Then we can

apply Proposition 4 to conclude that DkD
ek�1

k�1
D

e0k�1

k : : :Dem
m is actually weakly

bisimilar to D
e0k
k : : :Dem

m . �

4 Equivalence and Inequivalence Results

This mainly technical section concentrates on the relationship between
pairs of products and individual approximants. We shall start by speci-
fying the maximal ordinal that relates two (non-bisimilar) products. As-
suming two products P and Q that are assigned ordinal numbers � and ,
respectively, P and Q will be equivalent at ��, where � is any ordinal up
to the minimum of � and . We shall first describe on an intuitive level
why this is so as the rigourous proof is rather technical. Without loss of
generality, we can assume that � � � < . That means that Q has the abi-
lity to evolve exactly into P with a �

=) and hence can copy all its moves.
Therefore it is the process P that needs to keep up with Q. In order to
do so it will respond to moves of Q with the minimal loss of power, i.e.
it will only discard the atoms necessary to match Q’s moves. To demon-
strate equivalence at ��, if Q performs Q a

=) Q0 then P has to be able to
reach by a matching move some derivative P0 such that P0 �� Q0, for any
� < �. So P will choose such a derivation that the resulting product P0

will determine an ordinal � � � (unless P can evolve directly into Q0). The
possibility of such a move for P follows from Proposition 4. By finite ap-
plication of these steps we reach the approximant �0 where all processes
are equivalent. Consequently, P has demonstrated equivalence with Q at
level �. The precise statement is as follows:

Theorem 8 For all products,
Qm

i=0 Dei
i ��

Qm
i=0 Dfi

i , where � � minf�; g with
� = !mem +!m�1em�1 + : : :+!e1 + e0 and  = !mfm +!m�1fm�1 + : : :+!f1 + f0.

Proof: We will prove this statement by transfinite induction on � which
consists of proving the claim for the cases of � being 0, then a successor
ordinal number and finally a limit ordinal number. The claim obviously
holds for � = 0 since all processes are related at zero level.

In order to prove the successor case we assume that the claim holds for
some � and we will want to prove it for � + 1. We presuppose two pro-
cesses P �

Qm
i=0 Dei

i and Q �
Qm

i=0 Dfi
i such that, without loss of generality,

11



� + 1 � � =
Pm

i=0 !
iei �  =

Pm
i=0 !

ifi and we will show that P ��+1 Q.
We know that � =  if and only if ei = fi for every i = 0; : : : ;m. In that case
P and Q are two identical processes which are trivially equivalent at every
level. Hence we shall assume that � < .

We remind ourselves that P ��+1 Q if for every move P
�

=) P0 there
is a matching transition Q

�
=) Q0 with P0 �� Q0, and conversely, starting

from Q. Since
Pm

i=0 !
iei <

Pm
i=0 !

ifi the process Q can evolve into P by
a �

=) sequence so in case P takes the initiative and performs a transition
P

�
=) P0 the process Q will copy P and become P0 as well. Then we can

conclude that P0 �� P0.
It remains to check the moves of Q =

Qm
i=0 Dfi

i . Either Q
�

=)
Qm

i=0 Dgi

i ,

where
Pm

i=0 !
igi � , or Q

�
=) Dj

Qm
i=j�1 Dgi

i . The latter is by Proposi-

tion 4 weakly bisimilar to the product D
gj+1

j

Qm
i=j+1 Dgi

i . We can replace
Dj
Qm

i=j�1 Dgi

i with the bisimilar product because of Corollary 5 and the fol-
lowing two facts: firstly, for every ordinal �, � � ��, and secondly, �� is
transitive. Therefore if P0 �� D

gj+1

j

Qm
i=j+1 Dgi

i for some P-derivative P0 then
also P0 �� Dj

Qm
i=j�1 Dgi

i . Hence we will assume that Q evolves into a pro-
duct

Qm
i=0 Dgi

i . We have to distinguish two cases according to the height of
the Q-derivative:

1. � <
Pm

i=0 !
igi

We will show that P can do a matching action and evolve into a pro-
duct

Qm
i=0 Dhi

i with
Pm

i=0 !
ihi � �. Then we will use the induction

hypothesis and conclude that
Qm

i=0 Dhi
i ��

Qm
i=0 Dgi

i . There are two
ways in which P will respond depending on e0 (the exponent of D0

in P).

� If e0 > 0 then P contains at least one copy of D0 which will

perform the appropriate action using the transition D0
a=�
�! �. P

will therefore evolve into De0�1
0 : : :Dem

m with
Pm

i=0 !
iei � 1 � �.

Hence � � minf
Pm

i=0 !
iei� 1;

Pm
i=0 !

igig and from the induction
hypothesis we can conclude that De0�1

0 : : :Dem
m ��

Qm
i=0 Dgi

i .

� If e0 = 0 then � =
Pm

i=0 !
iei is a limit ordinal. Since � + 1 is a

successor ordinal and � + 1 � � then from the nature of ordinal

12



numbers �+ 1 < � and, moreover, there exists an ordinal � with
� < � < �. Now we can use the statement of Proposition 7
and deduce that there has to be a matching move of P resulting
in a product

Qm
i=0 Dhi

i with � < � =
Pm

i=0 !
ihi. Then we have

again that � � minf
Pm

i=0 !
ihi;
Pm

i=0 !
igig and the conclusion is

that
Qm

i=0 Dhi
i ��

Qm
i=0 Dgi

i .

2. � �
Pm

i=0 !
igi

In this case also
Pm

i=0 !
igi <

Pm
i=0 !

iei which means that by Proposi-
tion 7 the process P can simulate the move of Q and become exactly
the product

Qm
i=0 Dgi

i . Again we conclude with the argument that the
relation �� is an equivalence and so

Qm
i=0 Dgi

i ��

Qm
i=0 Dgi

i .

Lastly we have to check the case of a limit ordinal �. The argument is the
following: we assume that the two processes

Qm
i=0 Dei

i and
Qm

i=0 Dfi
i are such

that � � minf
Pm

i=0 !
iei;
Pm

i=0 !
ifig. Hence the same holds for every � < �.

From the induction hypothesis we conclude that
Qm

i=0 Dei
i ��

Qm
i=0 Dfi

i for
every � < � and from the definition of a limit approximant we know that
Qm

i=0 Dei
i ��

Qm
i=0 Dfi

i . �

We have shown that for products P and Q and their corresponding ordi-
nals � and , P is equivalent with Q at �, where � is the minimum of �
and . In fact, � is the dividing line (for non-bisimilar products) as we
shall show next that for any � greater than �, P and Q are not equivalent
at �. Again we shall first give an informal justification of the claim. The
argument is rather similar to the intuitive explanation we have presented
before Theorem 8. This time it is the product that is assigned the greater
ordinal of the two that takes care to retain as much height as possible. To
be more precise, assuming that � < , i.e. Q is the larger product, and
the level of inspection is � > �, then appropriate moves of Q will be those
that remain above �. From the assumptions it follows that all non-empty
moves of P will always stay below �. By iterating transitions so that they
satisfy this condition Q will eventually reach a stage where some of its
derivatives will have a

=) move at its disposal but no P derivative will be
able to match it. Thus the inequivalence of P and Q will be sealed. The
exact statement goes like this:

13



Theorem 9 If
Qm

i=0 Dei
i 6=

Qm
i=0 Dfi

i then
Qm

i=0 Dei
i 6��

Qm
i=0 Dfi

i where � >
minf�; gwith � = !mem+!m�1em�1+: : :+!e1+e0 and  = !mfm+!m�1fm�1+
: : : + !f1 + f0.

Proof: We will again prove this statement by transfinite induction on �.
For � = 0 the statement holds vacuously. Next we check the case of a
successor ordinal. We assume that the claim holds for an ordinal � and we
will argue that it also holds for � + 1. We know that

Qm
i=0 Dei

i =
Qm

i=0 Dfi
i

if and only if
Pm

i=0 !
iei =

Pm
i=0 !

ifi hence without loss of generality we
can presuppose two products

Qm
i=0 Dei

i and
Qm

i=0 Dfi
i such that

Pm
i=0 !

iei >Pm
i=0 !

ifi and � + 1 >
Pm

i=0 !
ifi.

Now let the larger product
Qm

i=0 Dei
i take the initiative and perform a

=)

to become
Qm

i=0 D
e0i
i with

Pm
i=0 !

ie0i �
Pm

i=0 !
ifi. The possibility of such a

move follows from our earlier assumption and Proposition 7. Again using
the Proposition 7 and Corollary 5 we conclude that any matching move

a
=) of

Qm
i=0 Dfi

i will necessarily be sum decreasing, that is if
Qm

i=0 Dfi
i

a
=)

Qm
i=0 D

f 0i
i then

Pm
i=0 !

if 0i <
Pm

i=0 !
ifi. Hence the two derivatives are distinct

with
Pm

i=0 !
ie0i >

Pm
i=0 !

if 0i and moreover, also � >
Pm

i=0 !
if 0i and we can

use the induction hypothesis to conclude that
Qm

i=0 D
e0i
i 6��

Qm
i=0 D

f 0i
i . Since

this is true for all matching responses of
Qm

i=0 Dfi
i , the products

Qm
i=0 Dei

i and
Qm

i=0 Dfi
i cannot be equivalent at � + 1.

Finally we shall assume that � is a limit ordinal and P �
Qm

i=0 Dei
i ,

Q �
Qm

i=0 Dfi
i are distinct products such that, without loss of generality,Pm

i=0 !
iei >

Pm
i=0 !

ifi and � >
Pm

i=0 !
ifi. From the definition, P �� Q if for

every � < �, P �� Q, so if there exists an � < � with P 6�� Q then also
P 6�� Q. We have to distinguish two cases:

1. � >
Pm

i=0 !
iei

Then we know that there exists an ordinal � such that � > � >Pm
i=0 !

iei. From the induction hypothesis it follows that
Qm

i=0 Dei
i 6��

Qm
i=0 Dfi

i and we can deduce that
Qm

i=0 Dei
i 6��

Qm
i=0 Dfi

i .

2.
Pm

i=0 !
iei � � >

Pm
i=0 !

ifi

In this case we can find an ordinal number � such that � > � >
Pm

i=0 !
ifi. By Proposition 7 there exists a transition

Qm
i=0 Dei

i
a

=)
Qm

i=0 D
e0i
i
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with � =
Pm

i=0 !
ie0i. For any matching move Q a

=)
Qm

i=0 D
f 0i
i the or-

dinal number
Pm

i=0 !
if 0i is smaller than �. Hence we can deduce that

Qm
i=0 D

e0i
i 6=

Qm
i=0 D

f 0i
i and � > minf

Pm
i=0 !

ie0i;
Pm

i=0 !
if 0i g which means

that
Qm

i=0 D
e0i
i 6��

Qm
i=0 D

f 0i
i and finally,

Qm
i=0 Dei

i 6��+1

Qm
i=0 Dfi

i and
Qm

i=0 Dei
i 6��

Qm
i=0 Dfi

i . �

5 Lower and Upper Bounds

In this section we will use the results of the previous section to deduce a
lower bound on the ordinal where convergence occurs for weak bisimila-
rity on BPA. For a fixed n we shall define a Basic Process Algebra (Σ�

n;∆n),
where Σn = fD0;D1; : : : ;Dng and ∆n = fD0

�
�! �;D0

a
�! �;Di+1

�
�!

Di+1Di;Di+1
�
�! � j 0 � i < ng. We consider the two processes Dn and

D0Dn from Σ�

n. The ordinals assigned to Dn, resp. D0Dn, are !n, resp. !n+1.
Then by applying Theorem 8 and Theorem 9 we obtain these results:

Dn �!n D0Dn ^ Dn 6�!n+1 D0Dn:

Therefore we can conclude that on the algebra (Σ�

n;∆n), one can distin-
guish the approximant �!n from the maximal weak bisimulation �. This
can be carried out for any n hence we come to the following conclusion:

Theorem 10 For every� < !! there exists a Basic Process Algebra (Σ�;∆) such
that � ( �� with respect to (Σ�;∆).

The implication is that a lower bound on the convergence to � is !!. If we
analyse the construction we can see that in order to reach higher levels we
need to introduce new variables. Since we are only allowed to use a finite
number of variables in the definition of a BPA this leads to the following
conjecture:

Conjecture 11 For Basic Process Algebras, � = �!! .

Now we shall try to establish some upper bounds on the level of conver-
gence. That does not seem to be so easy as we do not have appropriate
tools that could establish the maximal level of convergence, even for a
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specific algebra. It seems that the only claim we can make stems from the
fact that the process algebras we deal with are countable. We have already
showed that

�� = ��+1 =)�� = �;

that is if two subsequent levels � and � + 1 define the same equivalence
then all levels � for � � � are equal and hence equal the maximal weak
bisimulation. We can define only countably many processes and hence
countably many pairs of processes which means we can never distinguish
more than countably many approximants. That can be expressed as fol-
lows:

Lemma 12 � = �!1 .

Obviously, this is a rather crude upper bound (!1 is the first uncountable
ordinal). Bradfield observed that there exists a stronger upper bound that
can be obtained as follows. Non-bisimulation is an inductively defined
property, and the monotone (and indeed positive) operator over which
induction occurs is arithmetical, since the

�
=) relation for BPA is clearly

arithmetical. There is a theorem due to Spector (consult Theorem IV.2.15
in [8]) that any inductive definition over a monotone arithmetical (or even
Π1

1) operator has closure ordinal � !CK
1 , the least non-recursive ordinal.

6 Discussion

To summarise the importance of the presented results we will compare
strong and weak bisimulation equivalences with regard to decidability.
The classical decision procedure for strong bisimilarity consists of two
semidecision procedures. The algorithm for semideciding bisimilarity sear-
ches for a finite base of�. The complementary algorithm for semideciding
6� checks all individual approximants �n step by step, and tests for equi-
valence at n.

The construction that was presented in the paper poses a serious prob-
lem to the semidecidability of 6�. Obviously enumerating approximants
up to some level !n does not seem feasible. Moreover we may not be able
to check equivalence at �!n . The aforementioned construction is rather
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simple yet it is already not clear what an appropriate method for testing
(non)bisimilarity of a pair of processes would be.

On the other hand, it seems plausible that in general there might exist
a finite base for the maximal weak bisimulation. Indeed it is rather easy
to construct a finite base for � for every BPA (Σn;∆n) from the presented
construction. Thus we may conclude that semidecidability of � appears
plausible in contrast with semidecidability of 6�which seems to require an
entirely new technique.
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