
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

CED – Program for Corpora Editing

by

Marek Veber

FI MU Report Series FIMU-RS-99-04

Copyright c© 1999, FI MU September 1999

CED - Program for Corpora Editing

Marek Veber, mara@fi.muni.cz

September 10, 1999

Abstract

The article is concerned with editing of corpora, tagged corpora in
particular. It introduces a corpus editor (program ced) and a library for
work with corpora libkorplib.a. The following functions are described:
Journaling of changes, document editing, working with a list of localities
in the course of making aggregate corrections, co-operating with a corpus
manager, independence of the physical data storage.

1 Introduction
The current trend towards computer processing of an ever-increasing vol-
ume of documents allows the storage of enormous text files which represent
the written form of a natural language. Such files are called text corpora.
Similarly, phonetic corpora can be produced from audio records. These,
however, will not lie in the centre of our attention although some of the
methods described below can be applied to them as well. This article will
focus exclusively on text corpora. Any mention of corpora hereinafter will
always refer to text corpora only.

Today, computers make it possible to process incomparably greater
amounts of information than hundreds of human hands were able to pro-
cess in the past. This brings about new methods for natural language
processing. In the past, corpora consisted of excerpts written on paper
cards which were sorted by lexicographers who then manually produced
various statistics. The use of computers can considerably speed up such
operations.

In order to be able to make use of the data included in the corpora,
we need to be able to organize them in an efficient and logical manner,
and possibly also to assign various interpretations to individual corpus
segments. For this purpose, we use tags. These we incorporate in a
corpus, either manually or automatically, by a process called tagging.
Thus, tagged (annotated) corpora are produced.

1

2 Quality of the Corpora
Corpora can be used as means of deeper study of individual natural lan-
guages. However, if we want to carry out a well-informed analysis, we
need as distortionless data as possible, that is to say “quality corpora”.
The quality of a corpus depends partly on its size (but not in a linear
manner) and also on the requirements on its use. For example, a cor-
pus which contains mistakes (be it grammatical mistakes or misprints) is
rather unsuitable for analysis (of grammar or morphology), but on the
other hand may come in useful when constructing automatic correctors.

If we want to make the most effective use of the corpora we also need a
quality instrument to manage them. By corpus management we mean the
ability to add new data into a corpus, possibly also to search and alter data
within it. The program systems which take care of the above-mentioned
operations have been known as corpora managers.

The obtained data in their digital form and not yet included in a cor-
pus will be hereinafter referred to as the original text. This term will not
be defined any stricter for the original text is subjected to a number of in-
evitable 1 conversions which often bring about a considerable information
omission: this concerns particularly information about the typographi-
cal features of the original document. Even data after such conversions
will be referred to as the original (obtained) text. No added tags will be
considered the original text. The original text which has been modified
(not counting the initial conversions) will be termed more generally as the
corpus text.

2.1 Corpora Managers
All the available corpus managers (such as CQP (see: [3])) focus above all
on data search. Therefore, the corpus texts are often converted and stored
in the managers in structures with numerous and complex mutual bonds.
These structures may allow quick processing of inquiries, but altering the
corpus text often necessitates excessively intricate modifications of the
structures. This often results in the necessity to completely regenerate
the data structures for the entire corpus in order to update the data after
a corpus text alteration. This is why, following a corpus text alteration,
the corpus managers need to have the data structures for the entire corpus
all regenerated in order to update the data.

2.2 Drawbacks of the Available Instruments
The power to modify data is thus reserved for external (standard) text
editors. This may well enable individual users to use their favourite editor,
but the need to edit the corpus usually arises at the moment when with the
help of the corpus manager the user identifies a spot which s/he wishes to
modify, however, the standard editor does not have a direct link to scroll

1the original text must be converted into a format specific for the given corpus manager

2

to the identified spot. It is thus necessary to mark the given position down
somehow and use the editor to locate it in the corpus text.

Users are faced with difficulties also when intending to modify the
tagged corpora. The tags form a part of the corpus, however, their pres-
ence in the corpus text makes editing quite intricate. Another feature
which is needed in the course of corpus editing is the ability to identify
originators of individual changes and possibly to restore the original state
of a corpus in the case of incorrect modifications. This facilitates correc-
tion of entered mistakes.

2.3 Motivation
We searched available resources (both literature and the Internet) for in-
struments which would handle corpus editing better than an “ordinary”
standard editor. We arrived at the conclusion that there exist many dif-
ferent taggers?? and converters but the only product which can be con-
sidered a suitable instrument for corpus editing is Xcorpus2. However, its
development has been discontinued. Surprisingly enough, we were unable
to find any universal corpus editor at all.

One of the research goals of the “Laboratory for Natural Language
Processing” at the Faculty of Information Science of Masaryk Univerzity
in Brno is to develop the best tagged corpus possible. Corpus DESAM
(see: [1, 2])3 is an example of a corpus which needs revision of mistakes.

The need for a quality method of corpus tagging and of correction of
mistakes led us to develop a system for corpus editing which we call CED
(see: section. 3). The decision to create a completely new system resulted,
besides other reasons, from the following:

1. the need to make corpus editing more efficient

2. non-existence of similar instruments

3. the challenge to create and modify a system according to our own
specific requirements

We expect the CED system to considerably speed up the development
of a tagged corpus with the number of mistakes reduced to minimum.

2.4 General Solution
Our objective is to propose a solution which will use standard resources
to deal with some of the drawbacks of corpus editing (see: section. 2.2).

2.4.1 Basic Terms

Before listing the features of the proposed system, we will first describe
the basic structures we will be working with. The proposed system is

2(see: http://www.loria.fr/projets/XCorpus/XCorpus.EN.html)
3The corpus DESAM is composed of newspaper articles and contains about a million lexical

forms. To each of the lexical forms, its morphological category and basic form are assigned,
in dependence on the context.

3

based on structures used by the system CQP (see: [3]). In CQP, a corpus is
composed of a list of positions among which structural tags may occur.
Each position consists of a simple string of signs from a national alphabet
which represents a basic language unit. Intuitively, an individual position
can correspond to a word from a given language or to a punctuation
mark, such as a question mark, a period, a quotation mark or a semicolon.
Apart from the above-mentioned string, several other attributes may be
assigned to each position such as: the basic form and morphological mark.
By chaining individual positions we obtain a coherent corpus text. By
the help of the above-mentioned structural tags, the corpus then may be
divided into logical segments such as documents, paragraphs, sentences
and collocations.

Our corpus consists of a list of documents where a document consists
of a list of positions. However, the position in our system is more general
than the position as defined by CQP. It does not necessarily contain a part
of the corpus text. It may either correspond to the position as known from
the above-mentioned description (described earlier in the text for CQP) or
it may consist of a structural tag (unlike within CPQ where a structural tag
is not regarded as a position). Structural tags mark a continuous block of
successive positions (structure the text in a logical manner, enclose a block
of positions in brackets) and assign interpretation to it in dependence on
the type and attributes of a given tag.

To each position, attributes may be assigned (similarly to CQP) which
can be interpreted also as structural tags referring only to an interval
which contains just one specific position. Such attributes usually indicate
the basic form (lemma), morphological category (word class, . . .) and
possibly also other data specific for the given position. Similarly, each
corpus and each document have their own attributes which convey further
information.

Individual positions within the corpora will be unambiguously identi-
fied by the following triplet: (kor, doc, pos), where kor defines a cor-
pus, doc defines a document within the corpus and pos defines a position
within the document. These triplets will be referred to as localities.

2.4.2 Journaling of changes

If we want to modify a corpus, yet keep the option to restore the original
version of the text (as it was before certain changes were made or as of
a certain point in time), we need the so called “versioning”. This can
be handled by the process called journaling of changes: we keep the file
containing the original text and create a file of changes where we enter
individual changes made. To obtain the actual picture of the corpus,
we load the original corpus into memory and gradually carry out all the
changes from the file of changes. With each entered change, we note down
the time and the originator of the change, regardless of whether it is a user
or a program. The state before modification can be restored by skipping
a given change. In the case when the skipped change deletes or inserts (a)
position(s) it is necessary to re-count accordingly the changes which follow

4

and are related to absolute numbers of positions. The described algorithm
cannot, however, be implemented in practice in such a simple manner due
to the enormous volume of data included in the corpora. To accelerate
the process it is often inevitable to divide a corpus into shorter segments
and store individual modifications of each of the segments separately in
some kind of an indexed database. Changes are then loaded selectively,
only for the desired corpus segment. Concrete types of changes will be
dealt with later in the text (see: section. 3.2.1).

2.4.3 Effective Editing

Clear editing of the tags is made possible by means of their visual sepa-
ration from the original text. Thus we separately display the corpus text,
through which we scroll using the cursor, and the tags corresponding to
the positioning of the cursor. This position will be hereinafter referred to
as the actual position.

The user is allowed to scroll freely through the corpus text and at
the same time watch the values of the attributes associated with a given
position, while being also allowed to delete and modify individual posi-
tions, link them together or divide them and add new ones on demand.
When altering attributes of a certain position, it is advisable to make use
of certain external programs which identify available values from which a
correct one can be selected (disambiguated).

2.4.4 Aggregate changes

Among the drawbacks suggested in chapter 2.2 belongs the failure to sat-
isfactorily integrate standard editors into the current corpus managers.

We are often able to locate the list of localities which we intend to
correct, either using the given corpus manager (for example CQP) or even
in some other manner. What constitutes a problem is the method of
scrolling through the list in a standard editor.

Therefore we first generate the list according to the given inquiry by
means of an external call of the corpus manager (see: [3]). We program a
function which opens the document and sets the actual position according
to the given locality. This function will then facilitate scrolling through the
list and editing positions determined by individual localities, and possibly
their environment.

We facilitate adding a locality into the list of localities during the very
editing, thus making it possible to manually tag interesting (questionable)
spots in the corpus. This enables us to get back to them later.

2.4.5 Operations with Documents and Corpora

At times, a need may emerge to remove from a corpus a whole document,
for example in the case of its unfitness or duplicity. In such a case, editing
of the whole corpus may be feasible neither timewise, nor memory-wise.
Therefore we make use of a value of the document’s attribute (hereinafter

5

referred to as DEL). The value will be set in such a manner so as to distin-
guish between the documents intended for deletion and those which are to
be kept. For example, for the documents to be removed we set DEL = 1,
otherwise DEL = 0. In addition, we assign a special attribute EXPR to the
corpus whose value will be represented by a logical expression (condition).
The condition will be met in the case of the documents which are to be
retained in the corpus. The rest of the documents will be ignored in the
subsequent operations. That is for example EXPR="DEL==0".

3 The CED System
We have developed a special program instrument for corpus editing which
we call CED - an abbreviation for Corpora Editor. It is compatible with
any operating system based on UNIX, DOS or MS-WINDOWS. The whole
system is implemented in the “C++” language. It consists of a library for
work with the corpus libkorplib.a, a display library libcase.a and a
program written using these two libraries (ced, or ced.exe for DOS and
MS-WINDOWS).

The system implements all the features described in chapter 2.4.

3.1 The Library for Work with the Corpora
The creation of this library was essential for the development of the pro-
gram for corpus editing ced. It allows a certain level of abstraction from
physical implementation, which will be henceforth referred to as the ap-
plication level. Thus, parallel access to corpora with mutually different
physical data storage is made possible, one needs only to have access to
implementations (see: section. 3.2) for the given storage types.

3.2 Physical Implementation
To date, we have only implemented and described the method of access-
ing the corpus data stored in text files (see below). In the future, we
expect to introduce two more extensions: to the data stored in the SQL
database (for example postgres (see: [8]) or mSQL (see: [9]))) and to the
data provided by the client-server system via network. This system links
one of the above-mentioned variants of physical implementation with the
application level, when the two levels are separated by the network.

The advantage of the SQL database over text files will lie in the ability
to process faster large corpora and use the network to distribute data and
interconnect various platforms.

Text Files: A combination of text files and a library is applied here.
*** The library uses the *** mechanism to associate a certain item (key)
with another one that contains the entered data. The file managed by the
library will be referred to as the gdbm-index.

6

A file containing a list of documents is used for the list of corpora and
their attributes. It is a gdbm-index which serves to associate a corpus
number with its attributes. The corpus attributes provide the following
information: corpus name, path to the main corpus file and its index, and
possibly also paths to the files of changes (see below).

The main text file includes the original corpus text. Individual posi-
tions (see: section. 2.4.1) are separated by new-line markers and attributes
in each position are separated by tabulator markers. Boundaries between
individual documents are marked by structural tags.

To each main file a gdbm-index is assigned which serves to associate
a document number with the corresponding documents’ attributes. One
of these attributes indicates the document’s initial position (offset) in the
main file. The whole document can thus be accessed using the document
number.

A file of changes is a text file which contains one change on each
line. To the file of changes a gdbm-index is assigned which associates a
document number with the position (in the text file) of the first and the
last change relevant for this document. Each change consists of several
items separated either by the character “:” or “$”. The first item has a
fixed length (10 digits) and indicates the position of the next change for
the same document in the same file of changes. The value 0 marks the last
item of the list. This item, together with the relevant gdbm-index, serves
only to create lists of changes for individual documents. The second item
indicates the number of the document to which the change applies. The
third item is an identification number of the user, or the program, who
carried out the change. The fourth one introduces a list of commands
(see: section. 3.2.1) separated by semicolons, for this change.

An example of changes for the 1st document made by a user number
11587 which set the value of the lemma attribute of the first position in
the document to “nemocnice”4 and the value of the tag attribute of the
zero position to “k2”5:
0000000095$1:915707012:11578:[1].L="nemocnice";
0000000000$1:915707013:11578:[0].T="k2";

3.2.1 Changes in the Documents

We will enter the notation for the entry of corrections which are to be
carried out (commands for corrections). In the course of editing a docu-
ment composed of positions ***, the following elementary operations will
be sufficient: entering a new position into a specific place in the list of
positions, deleting a specific position and altering a position’s attribute.

For some purposes, it is advisable to create abbreviations for certain
sequences consisting of the above mentioned elementary operations. The

4hospital
5adjective

7

following will be used: linking several positions into one, dividing one
position into two, demarking a segment of positions by a structural tag.

We use the following notation:

• I(pos) — insert a new position after the actual one (−1 means
before the very first position), all attributes of the new position are
empty

• D(from, len) — clear the given interval of positions

• [pos].A="value" — set attribute A of position pos to given value,
where A is either serial number of the attribute or attribute’s sym-
bolic name: 0 ≡ W (word), 1 ≡ L (lemma), 2 ≡ T (tag), 3 ≡ N
(note)

• J(from, len) — join the interval of positions to one position, store
new value of attribute W as a chain of W attributes for all joined
positions, other attributes of the newly created position are empty.

• S(pos, col) — split position in two, both have only the value of W
attribute set (other attributes are empty), new values of W attributes
are created by splitting of W attribute of the original position after
col-th character

• Q(from, len, "zn arg1 arg2 ...") — mark the interval of posi-
tions with given structural tag

All changes in documents will be provided by the mentioned com-
mands. A journal of changes will be produced, this journal enables ver-
sioning of corpora’s data.

4 Conclusions
We have developed system for easy corpora editation (program ced). This
system can be used on UNIX terminals or with X-WINDOWS, on DOS
and MS-WIDOWS platforms. A special graphics library is used by the
system, this library provides interactive tools such as: menu, hot-keys,
dialog windows, etc.

System enables to work with list of localities, that can be created in
several ways. A list of localities can be explored (step by step through
a part of the given list) and the corpora positions denoted by localities
in a corpus can be repaired, if needed. This approach enables making of
aggregate changes in localities selected using complicated queries6.

All changes made in corpora are logged in journal to enable determin-
ing the author of the change and enable undoing selected changes.

This program has been used to mark sentence boundaries in the corpus
DESAM (see: [1, 2]) and other aggregate changes.

6by external programs cqp (see: [3])

8

References
[1] K. Pala, P. Rychlý, and P. Smrž. DESAM — Approaches to Disam-

biguation. Technical Report FIMU-RS-97-09, Faculty of Informatics,
Masaryk University, Brno, 1997.

[2] K. Pala, P. Rychlý, and P. Smrž. DESAM — Annotated Corpus for
Czech. In Proceedings of SOFSEM’97. Springer-Verlag, 1997.

[3] CQP B.Maximilian, O.Christ — The CQP User’s Manual, Univer-
sität Stuttgart, 1994.

[4] Philip A. Nelson— The GNU database manager, Free Software Foun-
dation, Inc., (see: http://www.gnu.org)

[5] P.Ševeček : LEMMA — morphological analyzer and lemmatizer for
Czech, program in "C", Brno, 1996. (manuscript).

[6] V. Puža — Diploma Thesis, Faculty of Informatics, Masaryk Univer-
sity, Brno, duben 1997.

[8] http://www.cz.postgresql.org.

[9] http://www.Hughes.com.au/products/msql.

9

Copyright c© 1999, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

