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Abstract

Variables’ annotations in over-constrained problems are proposed
and described in order to express preferences for optimal solution
selection using preferences on variables. The basic interpretation of
variables’ annotations is presented and correspondence with hierar-
chical CSP and possibilistic CSP is described. An algorithm for solv-
ing systems of constraints with variables’ annotations using mappings
to hierarchy is designed. The potential application areas are also men-
tioned.

1 Introduction

Over-constrained problems are usually solved by giving some preferences
or weights to individual constraints and defining the solution as such a val-
uation which minimizes the violations of constraints. There are, however,
over-constrained problems with partially or even completely ordered vari-
ables. Assigning preferences to variables could be more natural than defin-
ing preferences for constraints artificially. We propose a new constraint
solving environment where preferences (or annotations) are assigned to in-
dividual variables instead of to the constraints themselves [Rud98]. More-
over, the annotations are local to variable occurrences, i.e., any variable
may have different annotations in different constraints (in fact, even differ-
ent occurrences in the same constraint are allowed).
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The most prominent example is the timetabling problem. The prob-
lem is stated in variables which represent teachers (dean, professors, assis-
tants...), rooms (more and less occupied) and different groups of students.
All these variables have their own preferences, which could be applied di-
rectly instead of creating unnatural preferences over individual constraints.

Another example is the problem of the search for the optimal sequence
of aircraft departures from a runway. Because practically all the constraints
are safety regulations, we can only change aircraft allocation to different
time slots. In an over-constrained situation the only allowed action is the
removal of an aircraft from further consideration. We can assign prefer-
ences to individual variables (planes) and define such a comparator which
simply abandons the aircraft with the smallest preferences.

The small timetabling example illustrates a possible interpretation of
variables’ annotations in constraints over natural numbers. Also, we show
by this example that assigning preferences to variables could be more nat-
ural than defining preferences for constraints. There is a lecture L and its
practice P. The practice should be preferably taught at least one day after
the lecture. We would like to express by the following constraint that the
lecture (taught by a professor) is more preferred than the practice (taught
by an assistant):

L@strong + 1 #=< P@medium % c1

There are two weaker constraints: the lecture has to be taught on Thursday
or Friday and the practice from Monday to Thursday:

L@weak in 4..5 % c2
P@weak in 1..4 % c3

These constraints form a kind of hierarchy: the constraint c1 with the high-
est preferences must be satisfied first and then we may try to satisfy con-
straints c2 and c3 . It is possible to satisfy c1 but not c2 and c3 taken
together. The constraint c2 influences the variable with higher annotations
(look at c1 ), so this constraint is also satisfied. Then, trying to minimize
the overall constraint violation, we get (a kind of) optimal solution L=4,
P=5. By classical hierarchy where c1 is annotated by strong or medium,
the solution L=3, P=4 is also obtained. But this solution is not optimal
from our point of view. The different requirements towards the lecture and
practice must be stated by assigning different preferences to c2 and c3 and
so these constraints must be ordered. But this could be wrong with respect
to other constraints in a more complex problem. Also, the exact location of
the two appropriate constraints need not be easy to find in this context.
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2 The Annotations’ Properties

A constraint system with variables’ annotations is composed from a set
of variables V , a set of constraints C , and from the finite domain of vari-
ables D. A solution of this system is a valuation θ : V → D. An er-
ror function e(cθ) indicates how nearly constraint c is satisfied for a val-
uation θ. This error function can be trivial (e(cθ) = 0/1 means c is sat-
isfied/unsatisfied) or we can define the error function by using the do-
main’s metric. A function a determines the variable annotation in con-
straint a : C × V → A. The system is defined by:

• A as a set of annotations;

• � as an ordering on A,
if a, b ∈ A then a � b means a is more preferred annotation than b;

• ~
ai∈A

ai (finite A ⊂ A) as a function computing global annotation,

it is defined by applying either ~ : Ak → A or a commutative and
associative closed binary operation ∗ onA, which has an extension~.

These primary definitions induce:

• ≤c as an ordering of constraints, 1

if c, d ∈ C then c ≤c d means c is more preferred than d;

• a method for the selection of optimal solution θ.

And now we describe some auxiliary definitions:

• var(c) is a set of variables of constraint c, var(c) ⊆ V ;

• global variable annotation av : V → A, av(v) = ~
{c∈C| v∈var(c)}

a(c, v);

• constraint annotation ac : C → A, ac(c) = ~
{v∈var(c)}

a(c, v);

• global constraint annotation acv : C → A, acv(c) = ~
{v∈var(c)}

av(v).

1Sect. 3.2 gives an example of how the primary definitions induce an ordering of con-
straints.
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3 Instances of the Framework

Different instances of the framework may be obtained by determining the
mentioned properties in a similar way to Semiring-based CSP [BMR97a,
BMR97b] and Valued CSP [SFV95] (both of these frameworks are intro-
duced and compared in [BFM+96]). In the following, we describe a map-
ping of annotations to the possibilistic CSP [DFP96, Sch92] and to the hier-
archical CSP [BFBW92, WB93]. These mappings may be used as examples
of possible semantics of variables’ annotations.

3.1 Possibilistic System

The interpretation of annotations through possibilistic CSP emphasizes glo-
bal variables’ annotations whereas the importance of particular constraint’s
annotation is deferred.

The specifications of the general definitions for this mapping are A =
(0, 1〉, ordering ≥ over real numbers as �, and the geometric average over
real numbers as ~. The value 0 is not a member of A because a variable
with such annotation plays no role in the constraint system.

Every solution θ has the error E(Cθ) = max{c∈C} acv(c)e(cθ). The opti-
mal solution is the solution with minimal error. Preferences for the trivial
error function e(cθ) are expressed only by the global constraint annotation.
When the metric error function is used the situation is very different. Then,
the preferences of constraints are changed with respect to the chosen val-
uation θ and a sufficiently great value of error function can change the so-
lution drastically. This combination of the metric error function and global
constraint annotation can be used only when the metric error function is
normalized.

Let us consider the example with constraints C = {c1, c2} and two val-
uations θ0, θ1 and describe the selection of a better valuation with a metric
comparator. We suppose global constraints’ annotations:

acv(c1) = 0.9, acv(c2) = 0.1

and value for error function (in this case, the normalization is done by di-
viding by maximal expectable value of the error function):

e(c1θ0) = 0/1000 e(c2θ0) = 10/1000

e(c1θ1) = 1/1000 e(c2θ1) = 9/1000
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The error E(Cθi) for both valuations are

E(Cθ0) = max{acv(c1) × e(c1θ0), acv(c2) × e(c2θ0)} =

max{0.9× 0, 0.1× 0.01} = 0.001

E(Cθ1) = max{acv(c1) × e(c1θ1), acv(c2) × e(c2θ1)} =

max{0.9× 0.001, 0.1× 0.009} = 0.0009

and the better valuation is θ1 with minimal error 0.0009. This valuation
violates the constraint c1 with the highest global constraint’s annotation but
the great value of e(c2θ0) causes this selection. But the trivial comparator
chooses as a solution the valuation θ0, because the valuation θ0 does not
violate the strong constraint c1 and the combination with a value of the
error function is trivial.

The great differences was seen between the metric and trivial approach.
The metric error function should be used when the decrease of large values
of the error function is desirable. The trivial error function is advantageous
when the meaning of annotations is not to be influenced by the shape of
the error function so the size of error (any greater than zero) is not too
important.

3.2 Hierarchy

An opposite view of variables’ annotation demonstrates the interpretation
using hierarchical CSP. The hierarchy is constructed over constraint anno-
tations av, with additional order imposed by global constraint annotations
acv within each level.

The global definitions are specialized to A = (0, 1〉, ordering ≥ over
real numbers (�), and the geometric average over real numbers (~). In this
case, the basic properties are the same as in the possibilistic approach. The
main difference between instances appears in the definition of the method
for selecting optimal solution. In the hierarchical approach this method
applies the definition of constraint annotation: for c, d ∈ C such that c ≤c d
holds, the proposition ac(c) ≥ ac(d) is implied. The next part describes this
method for global and local comparators, respectively.

The hierarchy of constraints C is a union of disjunctive sets Ci where
preferences of constraints decrease with increasing value of i:

C = C0 ∪ C1 ∪ . . . ∪ Cn and for i ∈ 0 . . . n

Ci = {c ∈ C| (∀d ∈ Cj , j < i : d <c c) ∧ (∀e ∈ Ck, i < k : c <c e)} holds.
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The level C0 is a set of required constraints. The annotation of every vari-
able in constraint at this level is equal to 1. The valuation θ has an error

E(Cθ) = [E(C0θ), E(C1θ), . . . , E(Cnθ)]
where E(Ciθ) =

∑
{c∈Ci}

acv(c) e(cθ).

Therefore the value acv(c) is understood as a weight of constraint c. The
optimal solution θ has minimal error E(Cθ) compared by weighted-sum-
better comparator as in classical hierarchical CSP. The normalization of the
error function had to be used in possibilistic approach with respect to main
properties of possibility theory. There is no reason for the normalization in
the hierarchical approach.

In a similar way, worst-case-better and least-squares-better compara-
tors can be applied:

worst-case-better: E(Ciθ) = max{c∈Ci} acv(c)e(cθ)

least-squares-better: E(Ciθ) =
∑
{c∈Ci}

acv(c) e(cθ)2.

The described mapping applies global comparators for the selection of
a better solution. The complexity of global comparators is very high and
standard local comparators are not very suitable for efficient mapping of
variables’ annotations to constraint hierarchy. Therefore a new local com-
parator is proposed, which uses an ordering of constraints at every level.
This ordering is then defined through global constraint annotation.

A valuation θ is ordered-better than another valuation δ if, for each of
the constraints through some level k− 1, the error after applying θ is equal
to that after applying δ, and at the level k the errors are compared with
respect to an ordering ≤w of a set W given by a function w : C → W

(proposition w(c) ≤w w(d) means c is preferred constraint over d):

ordered-better(θ, δ, C) ≡
∃k ∈ 1 . . . n such that
∀l ∈ 1 . . . k − 1 ∀c ∈ Cl : e(cθ) = e(cδ)
∧ ∃c ∈ Ck : e(cθ) < e(cδ)
∧ ∀d ∈ Ck such that w(d) ≤w w(c) : e(dθ) ≤ e(dδ).

All constraints at level C0 have to be satisfied and therefore we may re-
strict ourselves to levels 1 . . . n only. We can choose trivial error function e
or metric function, and then we get ordered-predicate-better or ordered-
metric-better comparators, respectively. The valuation θ is ordered-better if
no valuation ω ordered-better than θ exists.
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Now we can define the mapping of constraints with variables’ anno-
tations to constraint hierarchy with local comparator. The hierarchy is
constructed using constraints’ annotations as above and the ordered-better
comparator chooses a better solution. The function w, the set W , and the
ordering ≤w correspond to acv, A, and �, respectively.

3.2.1 Theory

We clarify the relations between ordered-better and locally-better 2 com-
parators and also we study some special properties of ordered-better com-
parator.

Next we suppose that C = {c1, c2, . . . , cm} is constraint hierarchy with
levels C0, C1, . . . , Cn, an ordering ≤w, and function w.

Lemma 3.1 Every ordered-better solution θ of hierarchy C is locally-better.

Proof. Assume that θ is not a locally-better solution and let ω be locally-
better than θ. Next let cω ∈ Ck be the first constraint where ω and θ have
different errors e(cωθ), e(cωω) and because the valuation ω is locally-better
than valuation θ:

e(cωω) < e(cωθ) (1)

Ck is the first level where any error functions differ, and so the next propo-
sition follows from the ordered-better comparator definition:

∃cθ ∈ Ck such that ∀d ∈ Ck such that
w(d) ≤w w(cθ) : e(dθ) ≤ e(dω) ∧ e(cθθ) < e(cθω). (2)

This proposition holds for every d and so it holds for cω too. There are two
possibilities:

1. w(cω) ≤w w(cθ) implies e(cωθ) ≤ e(cωω) (2) but this conflicts with
proposition (1);

2. w(cω) >w w(cθ) and at the same time we know e(cθθ) < e(cθω) (2)
which is contradictory to locally-better property of ω solution.

2Locally-better comparator does not consider any ordering. We recall its definition
briefly (in detail [BFBW92, WB93]): locally-better(θ, δ,C) ≡ ∃k ∈ 1 . . . n such that (∀l ∈
1 . . . k − 1 : (∀c ∈ Cl : e(cθ) = e(cδ))) ∧ (∃c ∈ Ck : e(cθ) < e(cδ)) ∧ (∀d ∈ Ck : e(dθ) ≤
e(dδ)).
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This means that no locally-better solution ω exists and valuation θ has to be
the locally-better solution. ut

There are locally-better solutions which are not ordered-better. For ex-
ample, let us consider hierarchy C = C1 = {c, d} where w(c) <w w(d)
holds. Let there exist solutions ω and θ such that e(cω) > e(cθ), e(dω) <
e(dθ). Both solutions could be locally-better but only θ could be ordered-
better because it is ordered-better than ω.

��

��

��

��

HH

HH

HH

HH

r r

r

rr

r

c d C

C = C1 = {c, d}

w(c) <w w(d)

e ω θ

Figure 1: The valuation ω could be locally-better but not ordered-better.

Definition 3.2 A sequence SC = 〈c1, . . . , cm〉 is hierarchy-ordering of hier-
archy C = {c1, . . . , cm} if all constraints of SC are sorted by the level
of hierarchy (ci ∈ Ck, cj ∈ Cl, k < l implies i < j) and by the order-
ing ≤w (for ci, cj ∈ Ck such that w(ci) <w w(cj) implies i < j). A sequence
〈c1, c2, . . . , ci〉 is denoted SCi for i ≤ m.

Definition 3.3 Let SC = 〈c1, c2, . . . , cm〉 be a hierarchy-ordering of hierar-
chy C . Recursively defined set S = Sm is denoted ordering-solution-set of
hierarchy-ordering SC if

S0 = {θ | θ is a valuation of SC}
Si = {θ | θ ∈ Si−1 ∧ e(ciθ) = minω∈Si−1e(ciω)} for i ∈ 1 . . . m

holds.

Lemma 3.4 Let us consider constraint hierarchy C . If w(d) 6=w w(f) holds for
every two constraints d, f ∈ Ck for all k ∈ 1 . . . n, then a value of error func-
tion e(cθ) is determined for every constraint c ∈ C and for every ordered-better
solution θ uniquely.
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Proof. There is only one hierarchy-ordering SC of such hierarchy C . We
show that the set Si from definition 3.3 is the set of all ordered-better solu-
tion of SCi for every i ∈ 1 . . . m. So the value of e(ciθ) is uniquely deter-
mined for every i.

The proof is by induction on i. The base case i = 0 is trivial because
SC0 is empty and S0 is the set of all hierarchy’s valuation.

Suppose that the proposition holds for SCi−1 and now consider the so-
lution of SCi. Constraint ci belongs to a higher level of hierarchy than
cj(j < i) or w(cj) <w w(ci) holds which entails Si ⊆ Si−1. Let the value
e(ciω), ω ∈ Si be not minimal, then e(ciω) > e(ciθ) holds for some ordered-
better valuation θ. Every ordered-better solution of SCi−1 is the member of
Si−1 and so e(cjω) = e(cjθ) holds for every j < i. We obtain the result that
the valuation θ is ordered-better than ω. So ω is not ordered-better and can
not be a member of Si. ut

Theorem 3.5 Let SC be a hierarchy-ordering ofC and S be the ordering-solution-
set of SC . Then S is the set of ordered-better solutions.

Proof. The proof is by induction on the number of constraints m. The base
case is for m = 1. The hierarchy is C = {c1} and only one SC = 〈c1〉 exists.
We obtain S = S1 = {θ | ∀ω : e(c1θ) ≤ e(c1ω)} and so every valuation θ ∈ S
is an ordered-better solution.

Suppose that the proposition holds for a hierarchy with m constraints
and now show the case with m + 1 constraint. Let us suppose θ ∈ Sm+1,
SC = SCm+1 = 〈c1, . . . , cm+1〉 and show for every valuation δ that either θ
is ordered-better than δ or δ is not ordered-better than θ.

1. δ 6∈ Sm+1 ∧ δ ∈ Sm:
The error function for every ci (i ∈ 1 . . . m) is defined uniquely which
follows from the assumption δ ∈ Sm and the definition of ordering-
solution-set. Inequality e(cm+1θ) < e(cm+1δ) is implied from the as-
sumptions δ 6∈ Sm+1 and minimal value for cm+1’s error function.
Together both these properties induce that θ is ordered-better than δ.

2. δ ∈ Sm+1:
The error function for every constraint is the same again, so no con-
straint ci (i ∈ 1 . . . m + 1) exists such that e(cθ) > e(cδ) (or <) and
neither δ nor θ is ordered-better than second valuation for SCm+1.

3. δ 6∈ Sm:
θ ∈ Sm and so δ can not be ordered-better than θ for SCm from in-
duction’s assumptions. We show that the adding of cm+1 does not
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change this situation for SCm+1. The value of error function for some
i ∈ 1 . . . m differs for θ and δ (from δ 6∈ Sm). Let i be the first of
them and suppose ci ∈ Ck and e(ciθ) < e(ciδ) (by analogy for >). θ
and δ are not comparable for SCm and so some cj ∈ Ck has to ex-
ist such that w(cj) ≤w w(ci) and e(cjθ) > e(cjδ). The proposition
w(cj) =w w(ci) holds because i is the smallest index (j > i) and SCm
is hierarchy-ordering. These differences induce incomparability for
SCm+1 too.

Therefore every θ ∈ S is an ordered-better solution. ut

There are ordered-better solutions which are not obtained using any
hierarchy-ordering as its ordering-solution-set. Let us consider the exam-
ple

c1: B >= 10
c2: B =< 8

where C = C1 = {c1 , c2 } and w(c1 ) = w(c2 ). The valuation {B =
10} is obtained for hierarchy-ordering 〈c1 , c2 〉 and {B = 8} for 〈c2 , c1 〉.
Both valuations are ordered-better but for example a valuation {B = 9} is
ordered-better, too.

4 Example

Let us consider that the example from the Introduction is solved by a hier-
archy (see Sect. 3.2) with weighted-sum-metric-better comparator.

L@3/4 + 1 #=< P@1/2 % c1
L@1/4 in 4..5 % c2
P@1/4 in 1..4 % c3

Constraints’ annotations are

ac(c1 ) = 2
√

3/4× 1/2, ac(c2 ) = 1
√

1/4, ac(c3 ) = 1
√

1/4

and so the hierarchy is C = [{c1 }, {c2 , c3 }]. Global variables’ annotations,
which we need for computing global constraints’ annotations, are

av(L) = 2
√

3/4× 1/4
.
= 0.43 av(P) = 2

√
1/2× 1/4

.
= 0.35
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Global constraints’ annotations represent the weight of constraint

acv(c1 ) = 2
√
av(L) × av(P)

.
= 0.39,

acv(c2 ) = 1
√
av(L)

.
= 0.43,

acv(c3 ) = 1
√
av(P)

.
= 0.35.

Constraint c1 from the first level can be satisfied but c2 and c3 taken to-
gether can not. With respect to the smaller weight of c3 , we get optimal
solution θ={[L, 4], [P, 5]}with error

E(Cθ) = [0, (acv(c2 )× e(c2 θ) + acv(c3 )× e(c3 θ))] =

[0, (acv(c2 )× 0 + acv(c3 ) × 1)]
.
= [0, 0.35].

Let us consider a change in P annotation in c3 to 1/2. Three levels of
hierarchy C = [{c1}, {c3 }, {c2}] arise as a consequence of ac(c3 ) increase.
The values av(P) = 2

√
1/2× 1/2 = 1/2 and acv(c3 )=1/2 increase, too. Op-

timal solution θ = {[L, 3], [P, 4]} has error E(Cθ)
.
= [0, 0, 0.43]. This value of

error reflects that we violate a more important constraint than in the exam-
ple above.

Possibilistic system with trivial error function e(cθ) gives for the origi-
nal example solution θ = {[L, 4], [P, 5]} with unsatisfied constraint c3 and
error

E(Cθ) = max{acv(c1 )× e(c1 θ), acv(c2 ) × e(c2 θ), acv(c3 ) × e(c3 θ)}
.
= max{0.39× 0, 0.43× 0, 0.35× 1} = 0.35.

In possibilistic system with metric error function, the normalization can be
done by dividing (count_of_days - 1), which is maximal possible value of
error function. The solution is the same as above.

5 Algorithm for Solving the Hierarchy

The mappings from variables’ annotations to the hierarchy of constraint
was described in Sect. 3.2. The ordered-better comparator was proposed
as a method to solve the hierarchy efficiently using local comparator only.
So, we can apply a local propagation algorithm for solving the hierarchy
of constraints which could be easily adapted to ordered-better compara-
tor. These requirements satisfy the Indigo algorithm [BAFB96a, BAFB96b]
which efficiently manipulates the acyclic set of inequality constraints.
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The key idea in Indigo is that lower and upper bounds on variables (i.e.
intervals) are propagated, and the constraints are processed from strongest
to weakest, tightening the bounds on variables using interval arithmetic
[Ben95] step by step.

The whole solution is divided into three parts:

1. the splitting set of constraints C with variables’ annotations to con-
straint hierarchy {C0, C1, . . . , Cn} using constraint annotation ac and
ordering ≤c;

2. sorting constraints in every level Ci of hierarchy using global con-
straint annotation acv to an output sequence of constraints OCi;

3. the application of the Indigo algorithm with sorted input constraints
by the sequence 〈OC0, OC1, . . . , OCn〉.

Theorem 5.1 Given an acyclic set of constraints, the algorithm computes ordered-
metric-better solution.

Proof. Input constraints for the Indigo algorithm define hierarchy-ordering
SC using OC0, OC1, . . . , OCn. The Indigo algorithm minimizes error func-
tion in the order given by hierarchy-ordering SC . Those are requirements
of Theorem 3.5 and so we obtain an ordered-metric-better solution as a re-
sult of the algorithm. ut

This algorithm for solving inequality constraints with variables’ anno-
tation mapped to the hierarchy with the ordered-better comparator was
implemented in Prolog with attributed variables and mutable terms.

6 Conclusions and Future Work

We proposed a new approach for solving over-constrained problems us-
ing variables’ annotations. This approach could be suitable for application
areas like planning or scheduling. We defined the mappings from vari-
ables’ annotations to existing over-constrained systems which allows us to
express and make sense of the semantics of variables’ annotations in the
background of existing systems. We presented mappings of variables’ an-
notations to possibilistic CSP and hierarchical CSP and we proposed a new
local comparator for the efficient solving of problems with variables’ anno-
tations. Also, the algorithm for solving constraints with variables’ annota-
tion was designed and implemented in Prolog.
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The future work will consists of the precise interpretation of constraints
with variables’ annotations which would give us a better understanding of
the potential for expressivity of variables’ preferences. We will also con-
sider the properties and scope of such interpretation with respect to real
problems.
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