My Project  UNKNOWN_GIT_VERSION
ipshell.cc
Go to the documentation of this file.
1 /****************************************
2 * Computer Algebra System SINGULAR *
3 ****************************************/
4 /*
5 * ABSTRACT:
6 */
7 
8 #include "kernel/mod2.h"
9 
10 #include "omalloc/omalloc.h"
11 
12 #include "factory/factory.h"
13 
14 #include "misc/options.h"
15 #include "misc/mylimits.h"
16 #include "misc/intvec.h"
17 #include "misc/prime.h"
18 
19 #include "coeffs/numbers.h"
20 #include "coeffs/coeffs.h"
21 
22 #include "coeffs/rmodulon.h"
23 #include "coeffs/longrat.h"
24 
25 #include "polys/monomials/ring.h"
26 #include "polys/monomials/maps.h"
27 
28 #include "polys/prCopy.h"
29 #include "polys/matpol.h"
30 
31 #include "polys/weight.h"
32 #include "polys/clapsing.h"
33 
34 
37 
38 #include "kernel/polys.h"
39 #include "kernel/ideals.h"
40 
43 
44 #include "kernel/GBEngine/syz.h"
45 #include "kernel/GBEngine/kstd1.h"
46 #include "kernel/GBEngine/kutil.h" // denominator_list
47 
50 
51 #include "kernel/spectrum/semic.h"
52 #include "kernel/spectrum/splist.h"
54 
56 
57 #include "Singular/lists.h"
58 #include "Singular/attrib.h"
59 #include "Singular/ipconv.h"
60 #include "Singular/links/silink.h"
61 #include "Singular/ipshell.h"
62 #include "Singular/maps_ip.h"
63 #include "Singular/tok.h"
64 #include "Singular/ipid.h"
65 #include "Singular/subexpr.h"
66 #include "Singular/fevoices.h"
67 #include "Singular/sdb.h"
68 
69 #include <cmath>
70 #include <ctype.h>
71 
72 #include "kernel/maps/gen_maps.h"
73 
74 #ifdef SINGULAR_4_2
75 #include "Singular/number2.h"
76 #include "coeffs/bigintmat.h"
77 #endif
80 const char *lastreserved=NULL;
81 
83 
84 /*0 implementation*/
85 
86 const char * iiTwoOps(int t)
87 {
88  if (t<127)
89  {
90  static char ch[2];
91  switch (t)
92  {
93  case '&':
94  return "and";
95  case '|':
96  return "or";
97  default:
98  ch[0]=t;
99  ch[1]='\0';
100  return ch;
101  }
102  }
103  switch (t)
104  {
105  case COLONCOLON: return "::";
106  case DOTDOT: return "..";
107  //case PLUSEQUAL: return "+=";
108  //case MINUSEQUAL: return "-=";
109  case MINUSMINUS: return "--";
110  case PLUSPLUS: return "++";
111  case EQUAL_EQUAL: return "==";
112  case LE: return "<=";
113  case GE: return ">=";
114  case NOTEQUAL: return "<>";
115  default: return Tok2Cmdname(t);
116  }
117 }
118 
119 int iiOpsTwoChar(const char *s)
120 {
121 /* not handling: &&, ||, ** */
122  if (s[1]=='\0') return s[0];
123  else if (s[2]!='\0') return 0;
124  switch(s[0])
125  {
126  case '.': if (s[1]=='.') return DOTDOT;
127  else return 0;
128  case ':': if (s[1]==':') return COLONCOLON;
129  else return 0;
130  case '-': if (s[1]=='-') return MINUSMINUS;
131  else return 0;
132  case '+': if (s[1]=='+') return PLUSPLUS;
133  else return 0;
134  case '=': if (s[1]=='=') return EQUAL_EQUAL;
135  else return 0;
136  case '<': if (s[1]=='=') return LE;
137  else if (s[1]=='>') return NOTEQUAL;
138  else return 0;
139  case '>': if (s[1]=='=') return GE;
140  else return 0;
141  case '!': if (s[1]=='=') return NOTEQUAL;
142  else return 0;
143  }
144  return 0;
145 }
146 
147 static void list1(const char* s, idhdl h,BOOLEAN c, BOOLEAN fullname)
148 {
149  char buffer[22];
150  int l;
151  char buf2[128];
152 
153  if(fullname) sprintf(buf2, "%s::%s", "", IDID(h));
154  else sprintf(buf2, "%s", IDID(h));
155 
156  Print("%s%-30.30s [%d] ",s,buf2,IDLEV(h));
157  if (h == currRingHdl) PrintS("*");
158  PrintS(Tok2Cmdname((int)IDTYP(h)));
159 
160  ipListFlag(h);
161  switch(IDTYP(h))
162  {
163  case ALIAS_CMD: Print(" for %s",IDID((idhdl)IDDATA(h))); break;
164  case INT_CMD: Print(" %d",IDINT(h)); break;
165  case INTVEC_CMD:Print(" (%d)",IDINTVEC(h)->length()); break;
166  case INTMAT_CMD:Print(" %d x %d",IDINTVEC(h)->rows(),IDINTVEC(h)->cols());
167  break;
168  case POLY_CMD:
169  case VECTOR_CMD:if (c)
170  {
171  PrintS(" ");wrp(IDPOLY(h));
172  if(IDPOLY(h) != NULL)
173  {
174  Print(", %d monomial(s)",pLength(IDPOLY(h)));
175  }
176  }
177  break;
178  case MODUL_CMD: Print(", rk %d", (int)(IDIDEAL(h)->rank));
179  case IDEAL_CMD: Print(", %u generator(s)",
180  IDELEMS(IDIDEAL(h))); break;
181  case MAP_CMD:
182  Print(" from %s",IDMAP(h)->preimage); break;
183  case MATRIX_CMD:Print(" %u x %u"
184  ,MATROWS(IDMATRIX(h))
185  ,MATCOLS(IDMATRIX(h))
186  );
187  break;
188  case SMATRIX_CMD:Print(" %u x %u"
189  ,(int)(IDIDEAL(h)->rank)
190  ,IDELEMS(IDIDEAL(h))
191  );
192  break;
193  case PACKAGE_CMD:
194  paPrint(IDID(h),IDPACKAGE(h));
195  break;
196  case PROC_CMD: if((IDPROC(h)->libname!=NULL)
197  && (strlen(IDPROC(h)->libname)>0))
198  Print(" from %s",IDPROC(h)->libname);
199  if(IDPROC(h)->language==LANG_C)
200  PrintS(" (C)");
201  if(IDPROC(h)->is_static)
202  PrintS(" (static)");
203  break;
204  case STRING_CMD:
205  {
206  char *s;
207  l=strlen(IDSTRING(h));
208  memset(buffer,0,22);
209  strncpy(buffer,IDSTRING(h),si_min(l,20));
210  if ((s=strchr(buffer,'\n'))!=NULL)
211  {
212  *s='\0';
213  }
214  PrintS(" ");
215  PrintS(buffer);
216  if((s!=NULL) ||(l>20))
217  {
218  Print("..., %d char(s)",l);
219  }
220  break;
221  }
222  case LIST_CMD: Print(", size: %d",IDLIST(h)->nr+1);
223  break;
224  case RING_CMD:
225  if ((IDRING(h)==currRing) && (currRingHdl!=h))
226  PrintS("(*)"); /* this is an alias to currRing */
227 #ifdef RDEBUG
229  Print(" <%lx>",(long)(IDRING(h)));
230 #endif
231  break;
232 #ifdef SINGULAR_4_2
233  case CNUMBER_CMD:
234  { number2 n=(number2)IDDATA(h);
235  Print(" (%s)",nCoeffName(n->cf));
236  break;
237  }
238  case CMATRIX_CMD:
239  { bigintmat *b=(bigintmat*)IDDATA(h);
240  Print(" %d x %d (%s)",
241  b->rows(),b->cols(),
242  nCoeffName(b->basecoeffs()));
243  break;
244  }
245 #endif
246  /*default: break;*/
247  }
248  PrintLn();
249 }
250 
252 {
253  BOOLEAN oldShortOut = FALSE;
254 
255  if (currRing != NULL)
256  {
257  oldShortOut = currRing->ShortOut;
258  currRing->ShortOut = 1;
259  }
260  int t=v->Typ();
261  Print("// %s %s ",v->Name(),Tok2Cmdname(t));
262  switch (t)
263  {
264  case MAP_CMD:Print(" from %s\n",((map)(v->Data()))->preimage); break;
265  case INTMAT_CMD: Print(" %d x %d\n",((intvec*)(v->Data()))->rows(),
266  ((intvec*)(v->Data()))->cols()); break;
267  case MATRIX_CMD:Print(" %u x %u\n" ,
268  MATROWS((matrix)(v->Data())),
269  MATCOLS((matrix)(v->Data())));break;
270  case MODUL_CMD: Print(", rk %d\n", (int)(((ideal)(v->Data()))->rank));break;
271  case LIST_CMD: Print(", size %d\n",((lists)(v->Data()))->nr+1); break;
272 
273  case PROC_CMD:
274  case RING_CMD:
275  case IDEAL_CMD: PrintLn(); break;
276 
277  //case INT_CMD:
278  //case STRING_CMD:
279  //case INTVEC_CMD:
280  //case POLY_CMD:
281  //case VECTOR_CMD:
282  //case PACKAGE_CMD:
283 
284  default:
285  break;
286  }
287  v->Print();
288  if (currRing != NULL)
289  currRing->ShortOut = oldShortOut;
290 }
291 
292 static void killlocals0(int v, idhdl * localhdl, const ring r)
293 {
294  idhdl h = *localhdl;
295  while (h!=NULL)
296  {
297  int vv;
298  //Print("consider %s, lev: %d:",IDID(h),IDLEV(h));
299  if ((vv=IDLEV(h))>0)
300  {
301  if (vv < v)
302  {
303  if (iiNoKeepRing)
304  {
305  //PrintS(" break\n");
306  return;
307  }
308  h = IDNEXT(h);
309  //PrintLn();
310  }
311  else //if (vv >= v)
312  {
313  idhdl nexth = IDNEXT(h);
314  killhdl2(h,localhdl,r);
315  h = nexth;
316  //PrintS("kill\n");
317  }
318  }
319  else
320  {
321  h = IDNEXT(h);
322  //PrintLn();
323  }
324  }
325 }
326 
327 void killlocals_rec(idhdl *root,int v, ring r)
328 {
329  idhdl h=*root;
330  while (h!=NULL)
331  {
332  if (IDLEV(h)>=v)
333  {
334 // Print("kill %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
335  idhdl n=IDNEXT(h);
336  killhdl2(h,root,r);
337  h=n;
338  }
339  else if (IDTYP(h)==PACKAGE_CMD)
340  {
341  // Print("into pack %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
342  if (IDPACKAGE(h)!=basePack)
343  killlocals_rec(&(IDRING(h)->idroot),v,r);
344  h=IDNEXT(h);
345  }
346  else if (IDTYP(h)==RING_CMD)
347  {
348  if ((IDRING(h)!=NULL) && (IDRING(h)->idroot!=NULL))
349  // we have to test IDRING(h)!=NULL: qring Q=groebner(...): killlocals
350  {
351  // Print("into ring %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
352  killlocals_rec(&(IDRING(h)->idroot),v,IDRING(h));
353  }
354  h=IDNEXT(h);
355  }
356  else
357  {
358 // Print("skip %s lev %d for lev %d\n",IDID(h),IDLEV(h),v);
359  h=IDNEXT(h);
360  }
361  }
362 }
364 {
365  if (L==NULL) return FALSE;
366  BOOLEAN changed=FALSE;
367  int n=L->nr;
368  for(;n>=0;n--)
369  {
370  leftv h=&(L->m[n]);
371  void *d=h->data;
372  if ((h->rtyp==RING_CMD)
373  && (((ring)d)->idroot!=NULL))
374  {
375  if (d!=currRing) {changed=TRUE;rChangeCurrRing((ring)d);}
376  killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
377  }
378  else if (h->rtyp==LIST_CMD)
379  changed|=killlocals_list(v,(lists)d);
380  }
381  return changed;
382 }
383 void killlocals(int v)
384 {
385  BOOLEAN changed=FALSE;
386  idhdl sh=currRingHdl;
387  ring cr=currRing;
388  if (sh!=NULL) changed=((IDLEV(sh)<v) || (IDRING(sh)->ref>0));
389  //if (changed) Print("currRing=%s(%x), lev=%d,ref=%d\n",IDID(sh),IDRING(sh),IDLEV(sh),IDRING(sh)->ref);
390 
391  killlocals_rec(&(basePack->idroot),v,currRing);
392 
394  {
395  int t=iiRETURNEXPR.Typ();
396  if (/*iiRETURNEXPR.Typ()*/ t==RING_CMD)
397  {
399  if (((ring)h->data)->idroot!=NULL)
400  killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
401  }
402  else if (/*iiRETURNEXPR.Typ()*/ t==LIST_CMD)
403  {
405  changed |=killlocals_list(v,(lists)h->data);
406  }
407  }
408  if (changed)
409  {
411  if (currRingHdl==NULL)
412  currRing=NULL;
413  else if(cr!=currRing)
414  rChangeCurrRing(cr);
415  }
416 
417  if (myynest<=1) iiNoKeepRing=TRUE;
418  //Print("end killlocals >= %d\n",v);
419  //listall();
420 }
421 
422 void list_cmd(int typ, const char* what, const char *prefix,BOOLEAN iterate, BOOLEAN fullname)
423 {
424  package savePack=currPack;
425  idhdl h,start;
426  BOOLEAN all = typ<0;
427  BOOLEAN really_all=FALSE;
428 
429  if ( typ==0 )
430  {
431  if (strcmp(what,"all")==0)
432  {
433  if (currPack!=basePack)
434  list_cmd(-1,NULL,prefix,iterate,fullname); // list current package
435  really_all=TRUE;
436  h=basePack->idroot;
437  }
438  else
439  {
440  h = ggetid(what);
441  if (h!=NULL)
442  {
443  if (iterate) list1(prefix,h,TRUE,fullname);
444  if (IDTYP(h)==ALIAS_CMD) PrintS("A");
445  if ((IDTYP(h)==RING_CMD)
446  //|| (IDTYP(h)==PACKAGE_CMD)
447  )
448  {
449  h=IDRING(h)->idroot;
450  }
451  else if(IDTYP(h)==PACKAGE_CMD)
452  {
454  //Print("list_cmd:package\n");
455  all=TRUE;typ=PROC_CMD;fullname=TRUE;really_all=TRUE;
456  h=IDPACKAGE(h)->idroot;
457  }
458  else
459  {
460  currPack=savePack;
461  return;
462  }
463  }
464  else
465  {
466  Werror("%s is undefined",what);
467  currPack=savePack;
468  return;
469  }
470  }
471  all=TRUE;
472  }
473  else if (RingDependend(typ))
474  {
475  h = currRing->idroot;
476  }
477  else
478  h = IDROOT;
479  start=h;
480  while (h!=NULL)
481  {
482  if ((all
483  && (IDTYP(h)!=PROC_CMD)
484  &&(IDTYP(h)!=PACKAGE_CMD)
485  &&(IDTYP(h)!=CRING_CMD)
486  )
487  || (typ == IDTYP(h))
488  || ((IDTYP(h)==CRING_CMD) && (typ==RING_CMD))
489  )
490  {
491  list1(prefix,h,start==currRingHdl, fullname);
492  if ((IDTYP(h)==RING_CMD)
493  && (really_all || (all && (h==currRingHdl)))
494  && ((IDLEV(h)==0)||(IDLEV(h)==myynest)))
495  {
496  list_cmd(0,IDID(h),"// ",FALSE);
497  }
498  if (IDTYP(h)==PACKAGE_CMD && really_all)
499  {
500  package save_p=currPack;
502  list_cmd(0,IDID(h),"// ",FALSE);
503  currPack=save_p;
504  }
505  }
506  h = IDNEXT(h);
507  }
508  currPack=savePack;
509 }
510 
511 void test_cmd(int i)
512 {
513  int ii;
514 
515  if (i<0)
516  {
517  ii= -i;
518  if (ii < 32)
519  {
520  si_opt_1 &= ~Sy_bit(ii);
521  }
522  else if (ii < 64)
523  {
524  si_opt_2 &= ~Sy_bit(ii-32);
525  }
526  else
527  WerrorS("out of bounds\n");
528  }
529  else if (i<32)
530  {
531  ii=i;
532  if (Sy_bit(ii) & kOptions)
533  {
534  WarnS("Gerhard, use the option command");
535  si_opt_1 |= Sy_bit(ii);
536  }
537  else if (Sy_bit(ii) & validOpts)
538  si_opt_1 |= Sy_bit(ii);
539  }
540  else if (i<64)
541  {
542  ii=i-32;
543  si_opt_2 |= Sy_bit(ii);
544  }
545  else
546  WerrorS("out of bounds\n");
547 }
548 
550 {
551  int rc = 0;
552  while (v!=NULL)
553  {
554  switch (v->Typ())
555  {
556  case INT_CMD:
557  case POLY_CMD:
558  case VECTOR_CMD:
559  case NUMBER_CMD:
560  rc++;
561  break;
562  case INTVEC_CMD:
563  case INTMAT_CMD:
564  rc += ((intvec *)(v->Data()))->length();
565  break;
566  case MATRIX_CMD:
567  case IDEAL_CMD:
568  case MODUL_CMD:
569  {
570  matrix mm = (matrix)(v->Data());
571  rc += mm->rows() * mm->cols();
572  }
573  break;
574  case LIST_CMD:
575  rc+=((lists)v->Data())->nr+1;
576  break;
577  default:
578  rc++;
579  }
580  v = v->next;
581  }
582  return rc;
583 }
584 
586 {
587  sleftv vf;
588  if (iiConvert(v->Typ(),LINK_CMD,iiTestConvert(v->Typ(),LINK_CMD),v,&vf))
589  {
590  WerrorS("link expected");
591  return TRUE;
592  }
593  si_link l=(si_link)vf.Data();
594  if (vf.next == NULL)
595  {
596  WerrorS("write: need at least two arguments");
597  return TRUE;
598  }
599 
600  BOOLEAN b=slWrite(l,vf.next); /* iiConvert preserves next */
601  if (b)
602  {
603  const char *s;
604  if ((l!=NULL)&&(l->name!=NULL)) s=l->name;
605  else s=sNoName_fe;
606  Werror("cannot write to %s",s);
607  }
608  vf.CleanUp();
609  return b;
610 }
611 
612 leftv iiMap(map theMap, const char * what)
613 {
614  idhdl w,r;
615  leftv v;
616  int i;
617  nMapFunc nMap;
618 
619  r=IDROOT->get(theMap->preimage,myynest);
620  if ((currPack!=basePack)
621  &&((r==NULL) || ((r->typ != RING_CMD) )))
622  r=basePack->idroot->get(theMap->preimage,myynest);
623  if ((r==NULL) && (currRingHdl!=NULL)
624  && (strcmp(theMap->preimage,IDID(currRingHdl))==0))
625  {
626  r=currRingHdl;
627  }
628  if ((r!=NULL) && (r->typ == RING_CMD))
629  {
630  ring src_ring=IDRING(r);
631  if ((nMap=n_SetMap(src_ring->cf, currRing->cf))==NULL)
632  {
633  Werror("can not map from ground field of %s to current ground field",
634  theMap->preimage);
635  return NULL;
636  }
637  if (IDELEMS(theMap)<src_ring->N)
638  {
639  theMap->m=(polyset)omReallocSize((ADDRESS)theMap->m,
640  IDELEMS(theMap)*sizeof(poly),
641  (src_ring->N)*sizeof(poly));
642  for(i=IDELEMS(theMap);i<src_ring->N;i++)
643  theMap->m[i]=NULL;
644  IDELEMS(theMap)=src_ring->N;
645  }
646  if (what==NULL)
647  {
648  WerrorS("argument of a map must have a name");
649  }
650  else if ((w=src_ring->idroot->get(what,myynest))!=NULL)
651  {
652  char *save_r=NULL;
654  sleftv tmpW;
655  memset(&tmpW,0,sizeof(sleftv));
656  tmpW.rtyp=IDTYP(w);
657  if (tmpW.rtyp==MAP_CMD)
658  {
659  tmpW.rtyp=IDEAL_CMD;
660  save_r=IDMAP(w)->preimage;
661  IDMAP(w)->preimage=0;
662  }
663  tmpW.data=IDDATA(w);
664  // check overflow
665  BOOLEAN overflow=FALSE;
666  if ((tmpW.rtyp==IDEAL_CMD)
667  || (tmpW.rtyp==MODUL_CMD)
668  || (tmpW.rtyp==MAP_CMD))
669  {
670  ideal id=(ideal)tmpW.data;
671  long *degs=(long*)omAlloc(IDELEMS(id)*sizeof(long));
672  for(int i=IDELEMS(id)-1;i>=0;i--)
673  {
674  poly p=id->m[i];
675  if (p!=NULL) degs[i]=p_Totaldegree(p,src_ring);
676  else degs[i]=0;
677  }
678  for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
679  {
680  if (theMap->m[j]!=NULL)
681  {
682  long deg_monexp=pTotaldegree(theMap->m[j]);
683 
684  for(int i=IDELEMS(id)-1;i>=0;i--)
685  {
686  poly p=id->m[i];
687  if ((p!=NULL) && (degs[i]!=0) &&
688  ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)degs[i])/2)))
689  {
690  overflow=TRUE;
691  break;
692  }
693  }
694  }
695  }
696  omFreeSize(degs,IDELEMS(id)*sizeof(long));
697  }
698  else if (tmpW.rtyp==POLY_CMD)
699  {
700  for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
701  {
702  if (theMap->m[j]!=NULL)
703  {
704  long deg_monexp=pTotaldegree(theMap->m[j]);
705  poly p=(poly)tmpW.data;
706  long deg=0;
707  if ((p!=NULL) && ((deg=p_Totaldegree(p,src_ring))!=0) &&
708  ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)deg)/2)))
709  {
710  overflow=TRUE;
711  break;
712  }
713  }
714  }
715  }
716  if (overflow)
717  Warn("possible OVERFLOW in map, max exponent is %ld",currRing->bitmask/2);
718 #if 0
719  if (((tmpW.rtyp==IDEAL_CMD)||(tmpW.rtyp==MODUL_CMD)) && idIs0(IDIDEAL(w)))
720  {
721  v->rtyp=tmpW.rtyp;
722  v->data=idInit(IDELEMS(IDIDEAL(w)),IDIDEAL(w)->rank);
723  }
724  else
725 #endif
726  {
727  if ((tmpW.rtyp==IDEAL_CMD)
728  ||(tmpW.rtyp==MODUL_CMD)
729  ||(tmpW.rtyp==MATRIX_CMD)
730  ||(tmpW.rtyp==MAP_CMD))
731  {
732  v->rtyp=tmpW.rtyp;
733  char *tmp = theMap->preimage;
734  theMap->preimage=(char*)1L;
735  // map gets 1 as its rank (as an ideal)
736  v->data=maMapIdeal(IDIDEAL(w), src_ring, (ideal)theMap, currRing,nMap);
737  theMap->preimage=tmp; // map gets its preimage back
738  }
739  if (v->data==NULL) /*i.e. not IDEAL_CMD/MODUL_CMD/MATRIX_CMD/MAP */
740  {
741  if (maApplyFetch(MAP_CMD,theMap,v,&tmpW,src_ring,NULL,NULL,0,nMap))
742  {
743  Werror("cannot map %s(%d)",Tok2Cmdname(w->typ),w->typ);
745  if (save_r!=NULL) IDMAP(w)->preimage=save_r;
746  return NULL;
747  }
748  }
749  }
750  if (save_r!=NULL)
751  {
752  IDMAP(w)->preimage=save_r;
753  IDMAP((idhdl)v)->preimage=omStrDup(save_r);
754  v->rtyp=MAP_CMD;
755  }
756  return v;
757  }
758  else
759  {
760  Werror("%s undefined in %s",what,theMap->preimage);
761  }
762  }
763  else
764  {
765  Werror("cannot find preimage %s",theMap->preimage);
766  }
767  return NULL;
768 }
769 
770 #ifdef OLD_RES
771 void iiMakeResolv(resolvente r, int length, int rlen, char * name, int typ0,
772  intvec ** weights)
773 {
774  lists L=liMakeResolv(r,length,rlen,typ0,weights);
775  int i=0;
776  idhdl h;
777  char * s=(char *)omAlloc(strlen(name)+5);
778 
779  while (i<=L->nr)
780  {
781  sprintf(s,"%s(%d)",name,i+1);
782  if (i==0)
783  h=enterid(s,myynest,typ0,&(currRing->idroot), FALSE);
784  else
785  h=enterid(s,myynest,MODUL_CMD,&(currRing->idroot), FALSE);
786  if (h!=NULL)
787  {
788  h->data.uideal=(ideal)L->m[i].data;
789  h->attribute=L->m[i].attribute;
791  Print("//defining: %s as %d-th syzygy module\n",s,i+1);
792  }
793  else
794  {
795  idDelete((ideal *)&(L->m[i].data));
796  Warn("cannot define %s",s);
797  }
798  //L->m[i].data=NULL;
799  //L->m[i].rtyp=0;
800  //L->m[i].attribute=NULL;
801  i++;
802  }
803  omFreeSize((ADDRESS)L->m,(L->nr+1)*sizeof(sleftv));
805  omFreeSize((ADDRESS)s,strlen(name)+5);
806 }
807 #endif
808 
809 //resolvente iiFindRes(char * name, int * len, int *typ0)
810 //{
811 // char *s=(char *)omAlloc(strlen(name)+5);
812 // int i=-1;
813 // resolvente r;
814 // idhdl h;
815 //
816 // do
817 // {
818 // i++;
819 // sprintf(s,"%s(%d)",name,i+1);
820 // h=currRing->idroot->get(s,myynest);
821 // } while (h!=NULL);
822 // *len=i-1;
823 // if (*len<=0)
824 // {
825 // Werror("no objects %s(1),.. found",name);
826 // omFreeSize((ADDRESS)s,strlen(name)+5);
827 // return NULL;
828 // }
829 // r=(ideal *)omAlloc(/*(len+1)*/ i*sizeof(ideal));
830 // memset(r,0,(*len)*sizeof(ideal));
831 // i=-1;
832 // *typ0=MODUL_CMD;
833 // while (i<(*len))
834 // {
835 // i++;
836 // sprintf(s,"%s(%d)",name,i+1);
837 // h=currRing->idroot->get(s,myynest);
838 // if (h->typ != MODUL_CMD)
839 // {
840 // if ((i!=0) || (h->typ!=IDEAL_CMD))
841 // {
842 // Werror("%s is not of type module",s);
843 // omFreeSize((ADDRESS)r,(*len)*sizeof(ideal));
844 // omFreeSize((ADDRESS)s,strlen(name)+5);
845 // return NULL;
846 // }
847 // *typ0=IDEAL_CMD;
848 // }
849 // if ((i>0) && (idIs0(r[i-1])))
850 // {
851 // *len=i-1;
852 // break;
853 // }
854 // r[i]=IDIDEAL(h);
855 // }
856 // omFreeSize((ADDRESS)s,strlen(name)+5);
857 // return r;
858 //}
859 
861 {
862  int i;
863  resolvente res=(ideal *)omAlloc0((l+1)*sizeof(ideal));
864 
865  for (i=0; i<l; i++)
866  if (r[i]!=NULL) res[i]=idCopy(r[i]);
867  return res;
868 }
869 
871 {
872  int len=0;
873  int typ0;
874  lists L=(lists)v->Data();
875  intvec *weights=(intvec*)atGet(v,"isHomog",INTVEC_CMD);
876  int add_row_shift = 0;
877  if (weights==NULL)
878  weights=(intvec*)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
879  if (weights!=NULL) add_row_shift=weights->min_in();
880  resolvente rr=liFindRes(L,&len,&typ0);
881  if (rr==NULL) return TRUE;
882  resolvente r=iiCopyRes(rr,len);
883 
884  syMinimizeResolvente(r,len,0);
885  omFreeSize((ADDRESS)rr,len*sizeof(ideal));
886  len++;
887  res->data=(char *)liMakeResolv(r,len,-1,typ0,NULL,add_row_shift);
888  return FALSE;
889 }
890 
892 {
893  sleftv tmp;
894  memset(&tmp,0,sizeof(tmp));
895  tmp.rtyp=INT_CMD;
896  tmp.data=(void *)1;
897  if ((u->Typ()==IDEAL_CMD)
898  || (u->Typ()==MODUL_CMD))
899  return jjBETTI2_ID(res,u,&tmp);
900  else
901  return jjBETTI2(res,u,&tmp);
902 }
903 
905 {
907  l->Init(1);
908  l->m[0].rtyp=u->Typ();
909  l->m[0].data=u->Data();
910  attr *a=u->Attribute();
911  if (a!=NULL)
912  l->m[0].attribute=*a;
913  sleftv tmp2;
914  memset(&tmp2,0,sizeof(tmp2));
915  tmp2.rtyp=LIST_CMD;
916  tmp2.data=(void *)l;
917  BOOLEAN r=jjBETTI2(res,&tmp2,v);
918  l->m[0].data=NULL;
919  l->m[0].attribute=NULL;
920  l->m[0].rtyp=DEF_CMD;
921  l->Clean();
922  return r;
923 }
924 
926 {
927  resolvente r;
928  int len;
929  int reg,typ0;
930  lists l=(lists)u->Data();
931 
932  intvec *weights=NULL;
933  int add_row_shift=0;
934  intvec *ww=NULL;
935  if (l->nr>=0) ww=(intvec *)atGet(&(l->m[0]),"isHomog",INTVEC_CMD);
936  if (ww!=NULL)
937  {
938  weights=ivCopy(ww);
939  add_row_shift = ww->min_in();
940  (*weights) -= add_row_shift;
941  }
942  //Print("attr:%x\n",weights);
943 
944  r=liFindRes(l,&len,&typ0);
945  if (r==NULL) return TRUE;
946  intvec* res_im=syBetti(r,len,&reg,weights,(int)(long)v->Data());
947  res->data=(void*)res_im;
948  omFreeSize((ADDRESS)r,(len)*sizeof(ideal));
949  //Print("rowShift: %d ",add_row_shift);
950  for(int i=1;i<=res_im->rows();i++)
951  {
952  if (IMATELEM(*res_im,1,i)==0) { add_row_shift--; }
953  else break;
954  }
955  //Print(" %d\n",add_row_shift);
956  atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
957  if (weights!=NULL) delete weights;
958  return FALSE;
959 }
960 
962 {
963  int len,reg,typ0;
964 
965  resolvente r=liFindRes(L,&len,&typ0);
966 
967  if (r==NULL)
968  return -2;
969  intvec *weights=NULL;
970  int add_row_shift=0;
971  intvec *ww=(intvec *)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
972  if (ww!=NULL)
973  {
974  weights=ivCopy(ww);
975  add_row_shift = ww->min_in();
976  (*weights) -= add_row_shift;
977  }
978  //Print("attr:%x\n",weights);
979 
980  intvec *dummy=syBetti(r,len,&reg,weights);
981  if (weights!=NULL) delete weights;
982  delete dummy;
983  omFreeSize((ADDRESS)r,len*sizeof(ideal));
984  return reg+1+add_row_shift;
985 }
986 
988 #define BREAK_LINE_LENGTH 80
989 void iiDebug()
990 {
991 #ifdef HAVE_SDB
992  sdb_flags=1;
993 #endif
994  Print("\n-- break point in %s --\n",VoiceName());
996  char * s;
998  s = (char *)omAlloc(BREAK_LINE_LENGTH+4);
999  loop
1000  {
1001  memset(s,0,80);
1003  if (s[BREAK_LINE_LENGTH-1]!='\0')
1004  {
1005  Print("line too long, max is %d chars\n",BREAK_LINE_LENGTH);
1006  }
1007  else
1008  break;
1009  }
1010  if (*s=='\n')
1011  {
1013  }
1014 #if MDEBUG
1015  else if(strncmp(s,"cont;",5)==0)
1016  {
1018  }
1019 #endif /* MDEBUG */
1020  else
1021  {
1022  strcat( s, "\n;~\n");
1024  }
1025 }
1026 
1027 lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
1028 {
1029  int i;
1030  indset save;
1032 
1033  hexist = hInit(S, Q, &hNexist, currRing);
1034  if (hNexist == 0)
1035  {
1036  intvec *iv=new intvec(rVar(currRing));
1037  for(i=0; i<rVar(currRing); i++) (*iv)[i]=1;
1038  res->Init(1);
1039  res->m[0].rtyp=INTVEC_CMD;
1040  res->m[0].data=(intvec*)iv;
1041  return res;
1042  }
1043  else if (hisModule!=0)
1044  {
1045  res->Init(0);
1046  return res;
1047  }
1048  save = ISet = (indset)omAlloc0Bin(indlist_bin);
1049  hMu = 0;
1050  hwork = (scfmon)omAlloc(hNexist * sizeof(scmon));
1051  hvar = (varset)omAlloc((rVar(currRing) + 1) * sizeof(int));
1052  hpure = (scmon)omAlloc((1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1053  hrad = hexist;
1054  hNrad = hNexist;
1055  radmem = hCreate(rVar(currRing) - 1);
1056  hCo = rVar(currRing) + 1;
1057  hNvar = rVar(currRing);
1058  hRadical(hrad, &hNrad, hNvar);
1059  hSupp(hrad, hNrad, hvar, &hNvar);
1060  if (hNvar)
1061  {
1062  hCo = hNvar;
1063  memset(hpure, 0, (rVar(currRing) + 1) * sizeof(long));
1064  hPure(hrad, 0, &hNrad, hvar, hNvar, hpure, &hNpure);
1065  hLexR(hrad, hNrad, hvar, hNvar);
1067  }
1068  if (hCo && (hCo < rVar(currRing)))
1069  {
1071  }
1072  if (hMu!=0)
1073  {
1074  ISet = save;
1075  hMu2 = 0;
1076  if (all && (hCo+1 < rVar(currRing)))
1077  {
1080  i=hMu+hMu2;
1081  res->Init(i);
1082  if (hMu2 == 0)
1083  {
1085  }
1086  }
1087  else
1088  {
1089  res->Init(hMu);
1090  }
1091  for (i=0;i<hMu;i++)
1092  {
1093  res->m[i].data = (void *)save->set;
1094  res->m[i].rtyp = INTVEC_CMD;
1095  ISet = save;
1096  save = save->nx;
1098  }
1099  omFreeBin((ADDRESS)save, indlist_bin);
1100  if (hMu2 != 0)
1101  {
1102  save = JSet;
1103  for (i=hMu;i<hMu+hMu2;i++)
1104  {
1105  res->m[i].data = (void *)save->set;
1106  res->m[i].rtyp = INTVEC_CMD;
1107  JSet = save;
1108  save = save->nx;
1110  }
1111  omFreeBin((ADDRESS)save, indlist_bin);
1112  }
1113  }
1114  else
1115  {
1116  res->Init(0);
1118  }
1119  hKill(radmem, rVar(currRing) - 1);
1120  omFreeSize((ADDRESS)hpure, (1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1121  omFreeSize((ADDRESS)hvar, (rVar(currRing) + 1) * sizeof(int));
1122  omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon));
1124  return res;
1125 }
1126 
1127 int iiDeclCommand(leftv sy, leftv name, int lev,int t, idhdl* root,BOOLEAN isring, BOOLEAN init_b)
1128 {
1129  BOOLEAN res=FALSE;
1130  const char *id = name->name;
1131 
1132  memset(sy,0,sizeof(sleftv));
1133  if ((name->name==NULL)||(isdigit(name->name[0])))
1134  {
1135  WerrorS("object to declare is not a name");
1136  res=TRUE;
1137  }
1138  else
1139  {
1140  if (t==QRING_CMD) t=RING_CMD; // qring is always RING_CMD
1141 
1142  if (TEST_V_ALLWARN
1143  && (name->rtyp!=0)
1144  && (name->rtyp!=IDHDL)
1145  && (currRingHdl!=NULL) && (IDLEV(currRingHdl)==myynest))
1146  {
1147  Warn("`%s` is %s in %s:%d:%s",name->name,Tok2Cmdname(name->rtyp),
1149  }
1150  {
1151  sy->data = (char *)enterid(id,lev,t,root,init_b);
1152  }
1153  if (sy->data!=NULL)
1154  {
1155  sy->rtyp=IDHDL;
1156  currid=sy->name=IDID((idhdl)sy->data);
1157  // name->name=NULL; /* used in enterid */
1158  //sy->e = NULL;
1159  if (name->next!=NULL)
1160  {
1162  res=iiDeclCommand(sy->next,name->next,lev,t,root, isring);
1163  }
1164  }
1165  else res=TRUE;
1166  }
1167  name->CleanUp();
1168  return res;
1169 }
1170 
1172 {
1173  attr at=NULL;
1174  if (iiCurrProc!=NULL)
1175  at=iiCurrProc->attribute->get("default_arg");
1176  if (at==NULL)
1177  return FALSE;
1178  sleftv tmp;
1179  memset(&tmp,0,sizeof(sleftv));
1180  tmp.rtyp=at->atyp;
1181  tmp.data=at->CopyA();
1182  return iiAssign(p,&tmp);
1183 }
1185 {
1186  // must be inside a proc, as we simultae an proc_end at the end
1187  if (myynest==0)
1188  {
1189  WerrorS("branchTo can only occur in a proc");
1190  return TRUE;
1191  }
1192  // <string1...stringN>,<proc>
1193  // known: args!=NULL, l>=1
1194  int l=args->listLength();
1195  int ll=0;
1196  if (iiCurrArgs!=NULL) ll=iiCurrArgs->listLength();
1197  if (ll!=(l-1)) return FALSE;
1198  leftv h=args;
1199  // set up the table for type test:
1200  short *t=(short*)omAlloc(l*sizeof(short));
1201  t[0]=l-1;
1202  int b;
1203  int i;
1204  for(i=1;i<l;i++,h=h->next)
1205  {
1206  if (h->Typ()!=STRING_CMD)
1207  {
1208  omFree(t);
1209  Werror("arg %d is not a string",i);
1210  return TRUE;
1211  }
1212  int tt;
1213  b=IsCmd((char *)h->Data(),tt);
1214  if(b) t[i]=tt;
1215  else
1216  {
1217  omFree(t);
1218  Werror("arg %d is not a type name",i);
1219  return TRUE;
1220  }
1221  }
1222  if (h->Typ()!=PROC_CMD)
1223  {
1224  omFree(t);
1225  Werror("last(%d.) arg.(%s) is not a proc(but %s(%d)), nesting=%d",
1226  i,h->name,Tok2Cmdname(h->Typ()),h->Typ(),myynest);
1227  return TRUE;
1228  }
1229  b=iiCheckTypes(iiCurrArgs,t,0);
1230  omFree(t);
1231  if (b && (h->rtyp==IDHDL) && (h->e==NULL))
1232  {
1233  // get the proc:
1234  iiCurrProc=(idhdl)h->data;
1236  // already loaded ?
1237  if( pi->data.s.body==NULL )
1238  {
1240  if (pi->data.s.body==NULL) return TRUE;
1241  }
1242  // set currPackHdl/currPack
1243  if ((pi->pack!=NULL)&&(currPack!=pi->pack))
1244  {
1245  currPack=pi->pack;
1248  //Print("set pack=%s\n",IDID(currPackHdl));
1249  }
1250  // see iiAllStart:
1251  BITSET save1=si_opt_1;
1252  BITSET save2=si_opt_2;
1253  newBuffer( omStrDup(pi->data.s.body), BT_proc,
1254  pi, pi->data.s.body_lineno-(iiCurrArgs==NULL) );
1255  BOOLEAN err=yyparse();
1256  si_opt_1=save1;
1257  si_opt_2=save2;
1258  // now save the return-expr.
1260  memcpy(&sLastPrinted,&iiRETURNEXPR,sizeof(sleftv));
1261  iiRETURNEXPR.Init();
1262  // warning about args.:
1263  if (iiCurrArgs!=NULL)
1264  {
1265  if (err==0) Warn("too many arguments for %s",IDID(iiCurrProc));
1266  iiCurrArgs->CleanUp();
1268  iiCurrArgs=NULL;
1269  }
1270  // similate proc_end:
1271  // - leave input
1272  void myychangebuffer();
1273  myychangebuffer();
1274  // - set the current buffer to its end (this is a pointer in a buffer,
1275  // not a file ptr) "branchTo" is only valid in proc)
1277  // - kill local vars
1279  // - return
1280  newBuffer(omStrDup("\n;return(_);\n"),BT_execute);
1281  return (err!=0);
1282  }
1283  return FALSE;
1284 }
1286 {
1287  if (iiCurrArgs==NULL)
1288  {
1289  if (strcmp(p->name,"#")==0)
1290  return iiDefaultParameter(p);
1291  Werror("not enough arguments for proc %s",VoiceName());
1292  p->CleanUp();
1293  return TRUE;
1294  }
1295  leftv h=iiCurrArgs;
1296  leftv rest=h->next; /*iiCurrArgs is not NULL here*/
1297  BOOLEAN is_default_list=FALSE;
1298  if (strcmp(p->name,"#")==0)
1299  {
1300  is_default_list=TRUE;
1301  rest=NULL;
1302  }
1303  else
1304  {
1305  h->next=NULL;
1306  }
1307  BOOLEAN res=iiAssign(p,h);
1308  if (is_default_list)
1309  {
1310  iiCurrArgs=NULL;
1311  }
1312  else
1313  {
1314  iiCurrArgs=rest;
1315  }
1316  h->CleanUp();
1318  return res;
1319 }
1320 
1321 static BOOLEAN iiInternalExport (leftv v, int toLev)
1322 {
1323  idhdl h=(idhdl)v->data;
1324  //Print("iiInternalExport('%s',%d)%s\n", v->name, toLev,"");
1325  if (IDLEV(h)==0)
1326  {
1327  if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(h));
1328  }
1329  else
1330  {
1331  h=IDROOT->get(v->name,toLev);
1332  idhdl *root=&IDROOT;
1333  if ((h==NULL)&&(currRing!=NULL))
1334  {
1335  h=currRing->idroot->get(v->name,toLev);
1336  root=&currRing->idroot;
1337  }
1338  BOOLEAN keepring=FALSE;
1339  if ((h!=NULL)&&(IDLEV(h)==toLev))
1340  {
1341  if (IDTYP(h)==v->Typ())
1342  {
1343  if ((IDTYP(h)==RING_CMD)
1344  && (v->Data()==IDDATA(h)))
1345  {
1346  IDRING(h)->ref++;
1347  keepring=TRUE;
1348  IDLEV(h)=toLev;
1349  //WarnS("keepring");
1350  return FALSE;
1351  }
1352  if (BVERBOSE(V_REDEFINE))
1353  {
1354  Warn("redefining %s (%s)",IDID(h),my_yylinebuf);
1355  }
1356  if (iiLocalRing[0]==IDRING(h) && (!keepring)) iiLocalRing[0]=NULL;
1357  killhdl2(h,root,currRing);
1358  }
1359  else
1360  {
1361  return TRUE;
1362  }
1363  }
1364  h=(idhdl)v->data;
1365  IDLEV(h)=toLev;
1366  if (keepring) IDRING(h)->ref--;
1368  //Print("export %s\n",IDID(h));
1369  }
1370  return FALSE;
1371 }
1372 
1373 BOOLEAN iiInternalExport (leftv v, int toLev, package rootpack)
1374 {
1375  idhdl h=(idhdl)v->data;
1376  if(h==NULL)
1377  {
1378  Warn("'%s': no such identifier\n", v->name);
1379  return FALSE;
1380  }
1381  package frompack=v->req_packhdl;
1382  if (frompack==NULL) frompack=currPack;
1383  if ((RingDependend(IDTYP(h)))
1384  || ((IDTYP(h)==LIST_CMD)
1385  && (lRingDependend(IDLIST(h)))
1386  )
1387  )
1388  {
1389  //Print("// ==> Ringdependent set nesting to 0\n");
1390  return (iiInternalExport(v, toLev));
1391  }
1392  else
1393  {
1394  IDLEV(h)=toLev;
1395  v->req_packhdl=rootpack;
1396  if (h==frompack->idroot)
1397  {
1398  frompack->idroot=h->next;
1399  }
1400  else
1401  {
1402  idhdl hh=frompack->idroot;
1403  while ((hh!=NULL) && (hh->next!=h))
1404  hh=hh->next;
1405  if ((hh!=NULL) && (hh->next==h))
1406  hh->next=h->next;
1407  else
1408  {
1409  Werror("`%s` not found",v->Name());
1410  return TRUE;
1411  }
1412  }
1413  h->next=rootpack->idroot;
1414  rootpack->idroot=h;
1415  }
1416  return FALSE;
1417 }
1418 
1419 BOOLEAN iiExport (leftv v, int toLev)
1420 {
1421  BOOLEAN nok=FALSE;
1422  leftv r=v;
1423  while (v!=NULL)
1424  {
1425  if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL))
1426  {
1427  Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1428  nok=TRUE;
1429  }
1430  else
1431  {
1432  if(iiInternalExport(v, toLev))
1433  {
1434  r->CleanUp();
1435  return TRUE;
1436  }
1437  }
1438  v=v->next;
1439  }
1440  r->CleanUp();
1441  return nok;
1442 }
1443 
1444 /*assume root!=idroot*/
1445 BOOLEAN iiExport (leftv v, int toLev, package pack)
1446 {
1447 // if ((pack==basePack)&&(pack!=currPack))
1448 // { Warn("'exportto' to Top is depreciated in >>%s<<",my_yylinebuf);}
1449  BOOLEAN nok=FALSE;
1450  leftv rv=v;
1451  while (v!=NULL)
1452  {
1453  if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL)
1454  )
1455  {
1456  Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1457  nok=TRUE;
1458  }
1459  else
1460  {
1461  idhdl old=pack->idroot->get( v->name,toLev);
1462  if (old!=NULL)
1463  {
1464  if ((pack==currPack) && (old==(idhdl)v->data))
1465  {
1466  if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(old));
1467  break;
1468  }
1469  else if (IDTYP(old)==v->Typ())
1470  {
1471  if (BVERBOSE(V_REDEFINE))
1472  {
1473  Warn("redefining %s (%s)",IDID(old),my_yylinebuf);
1474  }
1475  v->name=omStrDup(v->name);
1476  killhdl2(old,&(pack->idroot),currRing);
1477  }
1478  else
1479  {
1480  rv->CleanUp();
1481  return TRUE;
1482  }
1483  }
1484  //Print("iiExport: pack=%s\n",IDID(root));
1485  if(iiInternalExport(v, toLev, pack))
1486  {
1487  rv->CleanUp();
1488  return TRUE;
1489  }
1490  }
1491  v=v->next;
1492  }
1493  rv->CleanUp();
1494  return nok;
1495 }
1496 
1498 {
1499  if (currRing==NULL)
1500  {
1501  #ifdef SIQ
1502  if (siq<=0)
1503  {
1504  #endif
1505  if (RingDependend(i))
1506  {
1507  WerrorS("no ring active");
1508  return TRUE;
1509  }
1510  #ifdef SIQ
1511  }
1512  #endif
1513  }
1514  return FALSE;
1515 }
1516 
1517 poly iiHighCorner(ideal I, int ak)
1518 {
1519  int i;
1520  if(!idIsZeroDim(I)) return NULL; // not zero-dim.
1521  poly po=NULL;
1523  {
1524  scComputeHC(I,currRing->qideal,ak,po);
1525  if (po!=NULL)
1526  {
1527  pGetCoeff(po)=nInit(1);
1528  for (i=rVar(currRing); i>0; i--)
1529  {
1530  if (pGetExp(po, i) > 0) pDecrExp(po,i);
1531  }
1532  pSetComp(po,ak);
1533  pSetm(po);
1534  }
1535  }
1536  else
1537  po=pOne();
1538  return po;
1539 }
1540 
1542 {
1543  if (p!=basePack)
1544  {
1545  idhdl t=basePack->idroot;
1546  while ((t!=NULL) && (IDTYP(t)!=PACKAGE_CMD) && (IDPACKAGE(t)!=p)) t=t->next;
1547  if (t==NULL)
1548  {
1549  WarnS("package not found\n");
1550  p=basePack;
1551  }
1552  }
1553 }
1554 
1555 idhdl rDefault(const char *s)
1556 {
1557  idhdl tmp=NULL;
1558 
1559  if (s!=NULL) tmp = enterid(s, myynest, RING_CMD, &IDROOT);
1560  if (tmp==NULL) return NULL;
1561 
1562 // if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
1564  {
1566  memset(&sLastPrinted,0,sizeof(sleftv));
1567  }
1568 
1569  ring r = IDRING(tmp) = (ring) omAlloc0Bin(sip_sring_bin);
1570 
1571  #ifndef TEST_ZN_AS_ZP
1572  r->cf = nInitChar(n_Zp, (void*)32003); // r->cf->ch = 32003;
1573  #else
1574  mpz_t modBase;
1575  mpz_init_set_ui(modBase, (long)32003);
1576  ZnmInfo info;
1577  info.base= modBase;
1578  info.exp= 1;
1579  r->cf=nInitChar(n_Zn,(void*) &info);
1580  r->cf->is_field=1;
1581  r->cf->is_domain=1;
1582  r->cf->has_simple_Inverse=1;
1583  #endif
1584  r->N = 3;
1585  /*r->P = 0; Alloc0 in idhdl::set, ipid.cc*/
1586  /*names*/
1587  r->names = (char **) omAlloc0(3 * sizeof(char_ptr));
1588  r->names[0] = omStrDup("x");
1589  r->names[1] = omStrDup("y");
1590  r->names[2] = omStrDup("z");
1591  /*weights: entries for 3 blocks: NULL*/
1592  r->wvhdl = (int **)omAlloc0(3 * sizeof(int_ptr));
1593  /*order: dp,C,0*/
1594  r->order = (rRingOrder_t *) omAlloc(3 * sizeof(rRingOrder_t *));
1595  r->block0 = (int *)omAlloc0(3 * sizeof(int *));
1596  r->block1 = (int *)omAlloc0(3 * sizeof(int *));
1597  /* ringorder dp for the first block: var 1..3 */
1598  r->order[0] = ringorder_dp;
1599  r->block0[0] = 1;
1600  r->block1[0] = 3;
1601  /* ringorder C for the second block: no vars */
1602  r->order[1] = ringorder_C;
1603  /* the last block: everything is 0 */
1604  r->order[2] = (rRingOrder_t)0;
1605 
1606  /* complete ring intializations */
1607  rComplete(r);
1608  rSetHdl(tmp);
1609  return currRingHdl;
1610 }
1611 
1613 {
1615  if (h!=NULL) return h;
1616  if (IDROOT!=basePack->idroot) h=rSimpleFindHdl(r,basePack->idroot,n);
1617  if (h!=NULL) return h;
1619  while(p!=NULL)
1620  {
1621  if ((p->cPack!=basePack)
1622  && (p->cPack!=currPack))
1623  h=rSimpleFindHdl(r,p->cPack->idroot,n);
1624  if (h!=NULL) return h;
1625  p=p->next;
1626  }
1627  idhdl tmp=basePack->idroot;
1628  while (tmp!=NULL)
1629  {
1630  if (IDTYP(tmp)==PACKAGE_CMD)
1631  h=rSimpleFindHdl(r,IDPACKAGE(tmp)->idroot,n);
1632  if (h!=NULL) return h;
1633  tmp=IDNEXT(tmp);
1634  }
1635  return NULL;
1636 }
1637 
1638 void rDecomposeCF(leftv h,const ring r,const ring R)
1639 {
1641  L->Init(4);
1642  h->rtyp=LIST_CMD;
1643  h->data=(void *)L;
1644  // 0: char/ cf - ring
1645  // 1: list (var)
1646  // 2: list (ord)
1647  // 3: qideal
1648  // ----------------------------------------
1649  // 0: char/ cf - ring
1650  L->m[0].rtyp=INT_CMD;
1651  L->m[0].data=(void *)(long)r->cf->ch;
1652  // ----------------------------------------
1653  // 1: list (var)
1655  LL->Init(r->N);
1656  int i;
1657  for(i=0; i<r->N; i++)
1658  {
1659  LL->m[i].rtyp=STRING_CMD;
1660  LL->m[i].data=(void *)omStrDup(r->names[i]);
1661  }
1662  L->m[1].rtyp=LIST_CMD;
1663  L->m[1].data=(void *)LL;
1664  // ----------------------------------------
1665  // 2: list (ord)
1667  i=rBlocks(r)-1;
1668  LL->Init(i);
1669  i--;
1670  lists LLL;
1671  for(; i>=0; i--)
1672  {
1673  intvec *iv;
1674  int j;
1675  LL->m[i].rtyp=LIST_CMD;
1677  LLL->Init(2);
1678  LLL->m[0].rtyp=STRING_CMD;
1679  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1680  if (r->block1[i]-r->block0[i] >=0 )
1681  {
1682  j=r->block1[i]-r->block0[i];
1683  if(r->order[i]==ringorder_M) j=(j+1)*(j+1)-1;
1684  iv=new intvec(j+1);
1685  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
1686  {
1687  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j];
1688  }
1689  else switch (r->order[i])
1690  {
1691  case ringorder_dp:
1692  case ringorder_Dp:
1693  case ringorder_ds:
1694  case ringorder_Ds:
1695  case ringorder_lp:
1696  for(;j>=0; j--) (*iv)[j]=1;
1697  break;
1698  default: /* do nothing */;
1699  }
1700  }
1701  else
1702  {
1703  iv=new intvec(1);
1704  }
1705  LLL->m[1].rtyp=INTVEC_CMD;
1706  LLL->m[1].data=(void *)iv;
1707  LL->m[i].data=(void *)LLL;
1708  }
1709  L->m[2].rtyp=LIST_CMD;
1710  L->m[2].data=(void *)LL;
1711  // ----------------------------------------
1712  // 3: qideal
1713  L->m[3].rtyp=IDEAL_CMD;
1714  if (nCoeff_is_transExt(R->cf))
1715  L->m[3].data=(void *)idInit(1,1);
1716  else
1717  {
1718  ideal q=idInit(IDELEMS(r->qideal));
1719  q->m[0]=p_Init(R);
1720  pSetCoeff0(q->m[0],(number)(r->qideal->m[0]));
1721  L->m[3].data=(void *)q;
1722 // I->m[0] = pNSet(R->minpoly);
1723  }
1724  // ----------------------------------------
1725 }
1726 static void rDecomposeC_41(leftv h,const coeffs C)
1727 /* field is R or C */
1728 {
1730  if (nCoeff_is_long_C(C)) L->Init(3);
1731  else L->Init(2);
1732  h->rtyp=LIST_CMD;
1733  h->data=(void *)L;
1734  // 0: char/ cf - ring
1735  // 1: list (var)
1736  // 2: list (ord)
1737  // ----------------------------------------
1738  // 0: char/ cf - ring
1739  L->m[0].rtyp=INT_CMD;
1740  L->m[0].data=(void *)0;
1741  // ----------------------------------------
1742  // 1:
1744  LL->Init(2);
1745  LL->m[0].rtyp=INT_CMD;
1746  LL->m[0].data=(void *)(long)si_max(C->float_len,SHORT_REAL_LENGTH/2);
1747  LL->m[1].rtyp=INT_CMD;
1748  LL->m[1].data=(void *)(long)si_max(C->float_len2,SHORT_REAL_LENGTH);
1749  L->m[1].rtyp=LIST_CMD;
1750  L->m[1].data=(void *)LL;
1751  // ----------------------------------------
1752  // 2: list (par)
1753  if (nCoeff_is_long_C(C))
1754  {
1755  L->m[2].rtyp=STRING_CMD;
1756  L->m[2].data=(void *)omStrDup(*n_ParameterNames(C));
1757  }
1758  // ----------------------------------------
1759 }
1760 static void rDecomposeC(leftv h,const ring R)
1761 /* field is R or C */
1762 {
1764  if (rField_is_long_C(R)) L->Init(3);
1765  else L->Init(2);
1766  h->rtyp=LIST_CMD;
1767  h->data=(void *)L;
1768  // 0: char/ cf - ring
1769  // 1: list (var)
1770  // 2: list (ord)
1771  // ----------------------------------------
1772  // 0: char/ cf - ring
1773  L->m[0].rtyp=INT_CMD;
1774  L->m[0].data=(void *)0;
1775  // ----------------------------------------
1776  // 1:
1778  LL->Init(2);
1779  LL->m[0].rtyp=INT_CMD;
1780  LL->m[0].data=(void *)(long)si_max(R->cf->float_len,SHORT_REAL_LENGTH/2);
1781  LL->m[1].rtyp=INT_CMD;
1782  LL->m[1].data=(void *)(long)si_max(R->cf->float_len2,SHORT_REAL_LENGTH);
1783  L->m[1].rtyp=LIST_CMD;
1784  L->m[1].data=(void *)LL;
1785  // ----------------------------------------
1786  // 2: list (par)
1787  if (rField_is_long_C(R))
1788  {
1789  L->m[2].rtyp=STRING_CMD;
1790  L->m[2].data=(void *)omStrDup(*rParameter(R));
1791  }
1792  // ----------------------------------------
1793 }
1794 
1795 #ifdef HAVE_RINGS
1797 /* field is R or C */
1798 {
1800  if (nCoeff_is_Ring(C)) L->Init(1);
1801  else L->Init(2);
1802  h->rtyp=LIST_CMD;
1803  h->data=(void *)L;
1804  // 0: char/ cf - ring
1805  // 1: list (module)
1806  // ----------------------------------------
1807  // 0: char/ cf - ring
1808  L->m[0].rtyp=STRING_CMD;
1809  L->m[0].data=(void *)omStrDup("integer");
1810  // ----------------------------------------
1811  // 1: modulo
1812  if (nCoeff_is_Z(C)) return;
1814  LL->Init(2);
1815  LL->m[0].rtyp=BIGINT_CMD;
1816  LL->m[0].data=nlMapGMP((number) C->modBase, C, coeffs_BIGINT);
1817  LL->m[1].rtyp=INT_CMD;
1818  LL->m[1].data=(void *) C->modExponent;
1819  L->m[1].rtyp=LIST_CMD;
1820  L->m[1].data=(void *)LL;
1821 }
1822 #endif
1823 
1824 void rDecomposeRing(leftv h,const ring R)
1825 /* field is R or C */
1826 {
1827 #ifdef HAVE_RINGS
1829  if (rField_is_Z(R)) L->Init(1);
1830  else L->Init(2);
1831  h->rtyp=LIST_CMD;
1832  h->data=(void *)L;
1833  // 0: char/ cf - ring
1834  // 1: list (module)
1835  // ----------------------------------------
1836  // 0: char/ cf - ring
1837  L->m[0].rtyp=STRING_CMD;
1838  L->m[0].data=(void *)omStrDup("integer");
1839  // ----------------------------------------
1840  // 1: module
1841  if (rField_is_Z(R)) return;
1843  LL->Init(2);
1844  LL->m[0].rtyp=BIGINT_CMD;
1845  LL->m[0].data=nlMapGMP((number) R->cf->modBase, R->cf, R->cf); // TODO: what is this?? // extern number nlMapGMP(number from, const coeffs src, const coeffs dst); // FIXME: replace with n_InitMPZ(R->cf->modBase, coeffs_BIGINT); ?
1846  LL->m[1].rtyp=INT_CMD;
1847  LL->m[1].data=(void *) R->cf->modExponent;
1848  L->m[1].rtyp=LIST_CMD;
1849  L->m[1].data=(void *)LL;
1850 #else
1851  WerrorS("rDecomposeRing");
1852 #endif
1853 }
1854 
1855 
1857 {
1858  assume( C != NULL );
1859 
1860  // sanity check: require currRing==r for rings with polynomial data
1861  if ( nCoeff_is_algExt(C) && (C != currRing->cf))
1862  {
1863  WerrorS("ring with polynomial data must be the base ring or compatible");
1864  return TRUE;
1865  }
1866  if (nCoeff_is_numeric(C))
1867  {
1868  rDecomposeC_41(res,C);
1869  }
1870 #ifdef HAVE_RINGS
1871  else if (nCoeff_is_Ring(C))
1872  {
1874  }
1875 #endif
1876  else if ( C->extRing!=NULL )// nCoeff_is_algExt(r->cf))
1877  {
1878  rDecomposeCF(res, C->extRing, currRing);
1879  }
1880  else if(nCoeff_is_GF(C))
1881  {
1883  Lc->Init(4);
1884  // char:
1885  Lc->m[0].rtyp=INT_CMD;
1886  Lc->m[0].data=(void*)(long)C->m_nfCharQ;
1887  // var:
1889  Lv->Init(1);
1890  Lv->m[0].rtyp=STRING_CMD;
1891  Lv->m[0].data=(void *)omStrDup(*n_ParameterNames(C));
1892  Lc->m[1].rtyp=LIST_CMD;
1893  Lc->m[1].data=(void*)Lv;
1894  // ord:
1896  Lo->Init(1);
1898  Loo->Init(2);
1899  Loo->m[0].rtyp=STRING_CMD;
1900  Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
1901 
1902  intvec *iv=new intvec(1); (*iv)[0]=1;
1903  Loo->m[1].rtyp=INTVEC_CMD;
1904  Loo->m[1].data=(void *)iv;
1905 
1906  Lo->m[0].rtyp=LIST_CMD;
1907  Lo->m[0].data=(void*)Loo;
1908 
1909  Lc->m[2].rtyp=LIST_CMD;
1910  Lc->m[2].data=(void*)Lo;
1911  // q-ideal:
1912  Lc->m[3].rtyp=IDEAL_CMD;
1913  Lc->m[3].data=(void *)idInit(1,1);
1914  // ----------------------
1915  res->rtyp=LIST_CMD;
1916  res->data=(void*)Lc;
1917  }
1918  else
1919  {
1920  res->rtyp=INT_CMD;
1921  res->data=(void *)(long)C->ch;
1922  }
1923  // ----------------------------------------
1924  return FALSE;
1925 }
1926 
1928 {
1929  assume( r != NULL );
1930  const coeffs C = r->cf;
1931  assume( C != NULL );
1932 
1933  // sanity check: require currRing==r for rings with polynomial data
1934  if ( (r!=currRing) && (
1935  (r->qideal != NULL)
1936 #ifdef HAVE_PLURAL
1937  || (rIsPluralRing(r))
1938 #endif
1939  )
1940  )
1941  {
1942  WerrorS("ring with polynomial data must be the base ring or compatible");
1943  return NULL;
1944  }
1945  // 0: char/ cf - ring
1946  // 1: list (var)
1947  // 2: list (ord)
1948  // 3: qideal
1949  // possibly:
1950  // 4: C
1951  // 5: D
1953  if (rIsPluralRing(r))
1954  L->Init(6);
1955  else
1956  L->Init(4);
1957  // ----------------------------------------
1958  // 0: char/ cf - ring
1959  L->m[0].rtyp=CRING_CMD;
1960  L->m[0].data=(char*)r->cf; r->cf->ref++;
1961  // ----------------------------------------
1962  // 1: list (var)
1964  LL->Init(r->N);
1965  int i;
1966  for(i=0; i<r->N; i++)
1967  {
1968  LL->m[i].rtyp=STRING_CMD;
1969  LL->m[i].data=(void *)omStrDup(r->names[i]);
1970  }
1971  L->m[1].rtyp=LIST_CMD;
1972  L->m[1].data=(void *)LL;
1973  // ----------------------------------------
1974  // 2: list (ord)
1976  i=rBlocks(r)-1;
1977  LL->Init(i);
1978  i--;
1979  lists LLL;
1980  for(; i>=0; i--)
1981  {
1982  intvec *iv;
1983  int j;
1984  LL->m[i].rtyp=LIST_CMD;
1986  LLL->Init(2);
1987  LLL->m[0].rtyp=STRING_CMD;
1988  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1989 
1990  if(r->order[i] == ringorder_IS) // || r->order[i] == ringorder_s || r->order[i] == ringorder_S)
1991  {
1992  assume( r->block0[i] == r->block1[i] );
1993  const int s = r->block0[i];
1994  assume( -2 < s && s < 2);
1995 
1996  iv=new intvec(1);
1997  (*iv)[0] = s;
1998  }
1999  else if (r->block1[i]-r->block0[i] >=0 )
2000  {
2001  int bl=j=r->block1[i]-r->block0[i];
2002  if (r->order[i]==ringorder_M)
2003  {
2004  j=(j+1)*(j+1)-1;
2005  bl=j+1;
2006  }
2007  else if (r->order[i]==ringorder_am)
2008  {
2009  j+=r->wvhdl[i][bl+1];
2010  }
2011  iv=new intvec(j+1);
2012  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2013  {
2014  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2015  }
2016  else switch (r->order[i])
2017  {
2018  case ringorder_dp:
2019  case ringorder_Dp:
2020  case ringorder_ds:
2021  case ringorder_Ds:
2022  case ringorder_lp:
2023  for(;j>=0; j--) (*iv)[j]=1;
2024  break;
2025  default: /* do nothing */;
2026  }
2027  }
2028  else
2029  {
2030  iv=new intvec(1);
2031  }
2032  LLL->m[1].rtyp=INTVEC_CMD;
2033  LLL->m[1].data=(void *)iv;
2034  LL->m[i].data=(void *)LLL;
2035  }
2036  L->m[2].rtyp=LIST_CMD;
2037  L->m[2].data=(void *)LL;
2038  // ----------------------------------------
2039  // 3: qideal
2040  L->m[3].rtyp=IDEAL_CMD;
2041  if (r->qideal==NULL)
2042  L->m[3].data=(void *)idInit(1,1);
2043  else
2044  L->m[3].data=(void *)idCopy(r->qideal);
2045  // ----------------------------------------
2046 #ifdef HAVE_PLURAL // NC! in rDecompose
2047  if (rIsPluralRing(r))
2048  {
2049  L->m[4].rtyp=MATRIX_CMD;
2050  L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2051  L->m[5].rtyp=MATRIX_CMD;
2052  L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2053  }
2054 #endif
2055  return L;
2056 }
2057 
2058 lists rDecompose(const ring r)
2059 {
2060  assume( r != NULL );
2061  const coeffs C = r->cf;
2062  assume( C != NULL );
2063 
2064  // sanity check: require currRing==r for rings with polynomial data
2065  if ( (r!=currRing) && (
2066  (nCoeff_is_algExt(C) && (C != currRing->cf))
2067  || (r->qideal != NULL)
2068 #ifdef HAVE_PLURAL
2069  || (rIsPluralRing(r))
2070 #endif
2071  )
2072  )
2073  {
2074  WerrorS("ring with polynomial data must be the base ring or compatible");
2075  return NULL;
2076  }
2077  // 0: char/ cf - ring
2078  // 1: list (var)
2079  // 2: list (ord)
2080  // 3: qideal
2081  // possibly:
2082  // 4: C
2083  // 5: D
2085  if (rIsPluralRing(r))
2086  L->Init(6);
2087  else
2088  L->Init(4);
2089  // ----------------------------------------
2090  // 0: char/ cf - ring
2091  if (rField_is_numeric(r))
2092  {
2093  rDecomposeC(&(L->m[0]),r);
2094  }
2095  else if (rField_is_Ring(r))
2096  {
2097  rDecomposeRing(&(L->m[0]),r);
2098  }
2099  else if ( r->cf->extRing!=NULL )// nCoeff_is_algExt(r->cf))
2100  {
2101  rDecomposeCF(&(L->m[0]), r->cf->extRing, r);
2102  }
2103  else if(rField_is_GF(r))
2104  {
2106  Lc->Init(4);
2107  // char:
2108  Lc->m[0].rtyp=INT_CMD;
2109  Lc->m[0].data=(void*)(long)r->cf->m_nfCharQ;
2110  // var:
2112  Lv->Init(1);
2113  Lv->m[0].rtyp=STRING_CMD;
2114  Lv->m[0].data=(void *)omStrDup(*rParameter(r));
2115  Lc->m[1].rtyp=LIST_CMD;
2116  Lc->m[1].data=(void*)Lv;
2117  // ord:
2119  Lo->Init(1);
2121  Loo->Init(2);
2122  Loo->m[0].rtyp=STRING_CMD;
2123  Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
2124 
2125  intvec *iv=new intvec(1); (*iv)[0]=1;
2126  Loo->m[1].rtyp=INTVEC_CMD;
2127  Loo->m[1].data=(void *)iv;
2128 
2129  Lo->m[0].rtyp=LIST_CMD;
2130  Lo->m[0].data=(void*)Loo;
2131 
2132  Lc->m[2].rtyp=LIST_CMD;
2133  Lc->m[2].data=(void*)Lo;
2134  // q-ideal:
2135  Lc->m[3].rtyp=IDEAL_CMD;
2136  Lc->m[3].data=(void *)idInit(1,1);
2137  // ----------------------
2138  L->m[0].rtyp=LIST_CMD;
2139  L->m[0].data=(void*)Lc;
2140  }
2141  else
2142  {
2143  L->m[0].rtyp=INT_CMD;
2144  L->m[0].data=(void *)(long)r->cf->ch;
2145  }
2146  // ----------------------------------------
2147  // 1: list (var)
2149  LL->Init(r->N);
2150  int i;
2151  for(i=0; i<r->N; i++)
2152  {
2153  LL->m[i].rtyp=STRING_CMD;
2154  LL->m[i].data=(void *)omStrDup(r->names[i]);
2155  }
2156  L->m[1].rtyp=LIST_CMD;
2157  L->m[1].data=(void *)LL;
2158  // ----------------------------------------
2159  // 2: list (ord)
2161  i=rBlocks(r)-1;
2162  LL->Init(i);
2163  i--;
2164  lists LLL;
2165  for(; i>=0; i--)
2166  {
2167  intvec *iv;
2168  int j;
2169  LL->m[i].rtyp=LIST_CMD;
2171  LLL->Init(2);
2172  LLL->m[0].rtyp=STRING_CMD;
2173  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
2174 
2175  if((r->order[i] == ringorder_IS)
2176  || (r->order[i] == ringorder_s)) //|| r->order[i] == ringorder_S)
2177  {
2178  assume( r->block0[i] == r->block1[i] );
2179  const int s = r->block0[i];
2180  assume( (-2 < s && s < 2)||(r->order[i] != ringorder_IS));
2181 
2182  iv=new intvec(1);
2183  (*iv)[0] = s;
2184  }
2185  else if (r->block1[i]-r->block0[i] >=0 )
2186  {
2187  int bl=j=r->block1[i]-r->block0[i];
2188  if (r->order[i]==ringorder_M)
2189  {
2190  j=(j+1)*(j+1)-1;
2191  bl=j+1;
2192  }
2193  else if (r->order[i]==ringorder_am)
2194  {
2195  j+=r->wvhdl[i][bl+1];
2196  }
2197  iv=new intvec(j+1);
2198  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2199  {
2200  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2201  }
2202  else switch (r->order[i])
2203  {
2204  case ringorder_dp:
2205  case ringorder_Dp:
2206  case ringorder_ds:
2207  case ringorder_Ds:
2208  case ringorder_lp:
2209  for(;j>=0; j--) (*iv)[j]=1;
2210  break;
2211  default: /* do nothing */;
2212  }
2213  }
2214  else
2215  {
2216  iv=new intvec(1);
2217  }
2218  LLL->m[1].rtyp=INTVEC_CMD;
2219  LLL->m[1].data=(void *)iv;
2220  LL->m[i].data=(void *)LLL;
2221  }
2222  L->m[2].rtyp=LIST_CMD;
2223  L->m[2].data=(void *)LL;
2224  // ----------------------------------------
2225  // 3: qideal
2226  L->m[3].rtyp=IDEAL_CMD;
2227  if (r->qideal==NULL)
2228  L->m[3].data=(void *)idInit(1,1);
2229  else
2230  L->m[3].data=(void *)idCopy(r->qideal);
2231  // ----------------------------------------
2232 #ifdef HAVE_PLURAL // NC! in rDecompose
2233  if (rIsPluralRing(r))
2234  {
2235  L->m[4].rtyp=MATRIX_CMD;
2236  L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2237  L->m[5].rtyp=MATRIX_CMD;
2238  L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2239  }
2240 #endif
2241  return L;
2242 }
2243 
2244 void rComposeC(lists L, ring R)
2245 /* field is R or C */
2246 {
2247  // ----------------------------------------
2248  // 0: char/ cf - ring
2249  if ((L->m[0].rtyp!=INT_CMD) || (L->m[0].data!=(char *)0))
2250  {
2251  WerrorS("invalid coeff. field description, expecting 0");
2252  return;
2253  }
2254 // R->cf->ch=0;
2255  // ----------------------------------------
2256  // 1:
2257  if (L->m[1].rtyp!=LIST_CMD)
2258  {
2259  WerrorS("invalid coeff. field description, expecting precision list");
2260  return;
2261  }
2262  lists LL=(lists)L->m[1].data;
2263  if (((LL->nr!=2)
2264  || (LL->m[0].rtyp!=INT_CMD)
2265  || (LL->m[1].rtyp!=INT_CMD))
2266  && ((LL->nr!=1)
2267  || (LL->m[0].rtyp!=INT_CMD)))
2268  {
2269  WerrorS("invalid coeff. field description list");
2270  return;
2271  }
2272  int r1=(int)(long)LL->m[0].data;
2273  int r2=(int)(long)LL->m[1].data;
2274  if (L->nr==2) // complex
2275  R->cf = nInitChar(n_long_C, NULL);
2276  else if ((r1<=SHORT_REAL_LENGTH)
2277  && (r2=SHORT_REAL_LENGTH))
2278  R->cf = nInitChar(n_R, NULL);
2279  else
2280  {
2282  p->float_len=r1;
2283  p->float_len2=r2;
2284  R->cf = nInitChar(n_long_R, NULL);
2285  }
2286 
2287  if ((r1<=SHORT_REAL_LENGTH) // should go into nInitChar
2288  && (r2=SHORT_REAL_LENGTH))
2289  {
2290  R->cf->float_len=SHORT_REAL_LENGTH/2;
2291  R->cf->float_len2=SHORT_REAL_LENGTH;
2292  }
2293  else
2294  {
2295  R->cf->float_len=si_min(r1,32767);
2296  R->cf->float_len2=si_min(r2,32767);
2297  }
2298  // ----------------------------------------
2299  // 2: list (par)
2300  if (L->nr==2)
2301  {
2302  //R->cf->extRing->N=1;
2303  if (L->m[2].rtyp!=STRING_CMD)
2304  {
2305  WerrorS("invalid coeff. field description, expecting parameter name");
2306  return;
2307  }
2308  //(rParameter(R))=(char**)omAlloc0(rPar(R)*sizeof(char_ptr));
2309  rParameter(R)[0]=omStrDup((char *)L->m[2].data);
2310  }
2311  // ----------------------------------------
2312 }
2313 
2314 #ifdef HAVE_RINGS
2315 void rComposeRing(lists L, ring R)
2316 /* field is R or C */
2317 {
2318  // ----------------------------------------
2319  // 0: string: integer
2320  // no further entries --> Z
2321  mpz_t modBase;
2322  unsigned int modExponent = 1;
2323 
2324  if (L->nr == 0)
2325  {
2326  mpz_init_set_ui(modBase,0);
2327  modExponent = 1;
2328  }
2329  // ----------------------------------------
2330  // 1:
2331  else
2332  {
2333  if (L->m[1].rtyp!=LIST_CMD) WerrorS("invalid data, expecting list of numbers");
2334  lists LL=(lists)L->m[1].data;
2335  if ((LL->nr >= 0) && LL->m[0].rtyp == BIGINT_CMD)
2336  {
2337  number tmp= (number) LL->m[0].data; // never use CopyD() on list elements
2338  // assume that tmp is integer, not rational
2339  mpz_init(modBase);
2340  n_MPZ (modBase, tmp, coeffs_BIGINT);
2341  }
2342  else if (LL->nr >= 0 && LL->m[0].rtyp == INT_CMD)
2343  {
2344  mpz_init_set_ui(modBase,(unsigned long) LL->m[0].data);
2345  }
2346  else
2347  {
2348  mpz_init_set_ui(modBase,0);
2349  }
2350  if (LL->nr >= 1)
2351  {
2352  modExponent = (unsigned long) LL->m[1].data;
2353  }
2354  else
2355  {
2356  modExponent = 1;
2357  }
2358  }
2359  // ----------------------------------------
2360  if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
2361  {
2362  WerrorS("Wrong ground ring specification (module is 1)");
2363  return;
2364  }
2365  if (modExponent < 1)
2366  {
2367  WerrorS("Wrong ground ring specification (exponent smaller than 1)");
2368  return;
2369  }
2370  // module is 0 ---> integers
2371  if (mpz_sgn1(modBase) == 0)
2372  {
2373  R->cf=nInitChar(n_Z,NULL);
2374  }
2375  // we have an exponent
2376  else if (modExponent > 1)
2377  {
2378  //R->cf->ch = R->cf->modExponent;
2379  if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
2380  {
2381  /* this branch should be active for modExponent = 2..32 resp. 2..64,
2382  depending on the size of a long on the respective platform */
2383  R->cf=nInitChar(n_Z2m,(void*)(long)modExponent); // Use Z/2^ch
2384  }
2385  else
2386  {
2387  //ringtype 3
2388  ZnmInfo info;
2389  info.base= modBase;
2390  info.exp= modExponent;
2391  R->cf=nInitChar(n_Znm,(void*) &info);
2392  }
2393  }
2394  // just a module m > 1
2395  else
2396  {
2397  //ringtype = 2;
2398  //const int ch = mpz_get_ui(modBase);
2399  ZnmInfo info;
2400  info.base= modBase;
2401  info.exp= modExponent;
2402  R->cf=nInitChar(n_Zn,(void*) &info);
2403  }
2404  mpz_clear(modBase);
2405 }
2406 #endif
2407 
2408 static void rRenameVars(ring R)
2409 {
2410  int i,j;
2411  BOOLEAN ch;
2412  do
2413  {
2414  ch=0;
2415  for(i=0;i<R->N-1;i++)
2416  {
2417  for(j=i+1;j<R->N;j++)
2418  {
2419  if (strcmp(R->names[i],R->names[j])==0)
2420  {
2421  ch=TRUE;
2422  Warn("name conflict var(%d) and var(%d): `%s`, rename to `@%s`",i+1,j+1,R->names[i],R->names[i]);
2423  omFree(R->names[j]);
2424  R->names[j]=(char *)omAlloc(2+strlen(R->names[i]));
2425  sprintf(R->names[j],"@%s",R->names[i]);
2426  }
2427  }
2428  }
2429  }
2430  while (ch);
2431  for(i=0;i<rPar(R); i++)
2432  {
2433  for(j=0;j<R->N;j++)
2434  {
2435  if (strcmp(rParameter(R)[i],R->names[j])==0)
2436  {
2437  Warn("name conflict par(%d) and var(%d): `%s`, renaming the VARIABLE to `@@(%d)`",i+1,j+1,R->names[j],i+1);
2438 // omFree(rParameter(R)[i]);
2439 // rParameter(R)[i]=(char *)omAlloc(10);
2440 // sprintf(rParameter(R)[i],"@@(%d)",i+1);
2441  omFree(R->names[j]);
2442  R->names[j]=(char *)omAlloc(10);
2443  sprintf(R->names[j],"@@(%d)",i+1);
2444  }
2445  }
2446  }
2447 }
2448 
2449 static inline BOOLEAN rComposeVar(const lists L, ring R)
2450 {
2451  assume(R!=NULL);
2452  if (L->m[1].Typ()==LIST_CMD)
2453  {
2454  lists v=(lists)L->m[1].Data();
2455  R->N = v->nr+1;
2456  if (R->N<=0)
2457  {
2458  WerrorS("no ring variables");
2459  return TRUE;
2460  }
2461  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
2462  int i;
2463  for(i=0;i<R->N;i++)
2464  {
2465  if (v->m[i].Typ()==STRING_CMD)
2466  R->names[i]=omStrDup((char *)v->m[i].Data());
2467  else if (v->m[i].Typ()==POLY_CMD)
2468  {
2469  poly p=(poly)v->m[i].Data();
2470  int nr=pIsPurePower(p);
2471  if (nr>0)
2472  R->names[i]=omStrDup(currRing->names[nr-1]);
2473  else
2474  {
2475  Werror("var name %d must be a string or a ring variable",i+1);
2476  return TRUE;
2477  }
2478  }
2479  else
2480  {
2481  Werror("var name %d must be `string`",i+1);
2482  return TRUE;
2483  }
2484  }
2485  }
2486  else
2487  {
2488  WerrorS("variable must be given as `list`");
2489  return TRUE;
2490  }
2491  return FALSE;
2492 }
2493 
2494 static inline BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
2495 {
2496  assume(R!=NULL);
2497  long bitmask=0L;
2498  if (L->m[2].Typ()==LIST_CMD)
2499  {
2500  lists v=(lists)L->m[2].Data();
2501  int n= v->nr+2;
2502  int j_in_R,j_in_L;
2503  // do we have an entry "L",... ?: set bitmask
2504  for (int j=0; j < n-1; j++)
2505  {
2506  if (v->m[j].Typ()==LIST_CMD)
2507  {
2508  lists vv=(lists)v->m[j].Data();
2509  if ((vv->nr==1)
2510  &&(vv->m[0].Typ()==STRING_CMD)
2511  &&(strcmp((char*)vv->m[0].Data(),"L")==0))
2512  {
2513  number nn=(number)vv->m[1].Data();
2514  if (vv->m[1].Typ()==BIGINT_CMD)
2515  bitmask=n_Int(nn,coeffs_BIGINT);
2516  else if (vv->m[1].Typ()==INT_CMD)
2517  bitmask=(long)nn;
2518  else
2519  {
2520  Werror("illegal argument for pseudo ordering L: %d",vv->m[1].Typ());
2521  return TRUE;
2522  }
2523  break;
2524  }
2525  }
2526  }
2527  if (bitmask!=0) n--;
2528 
2529  // initialize fields of R
2530  R->order=(rRingOrder_t *)omAlloc0(n*sizeof(rRingOrder_t));
2531  R->block0=(int *)omAlloc0(n*sizeof(int));
2532  R->block1=(int *)omAlloc0(n*sizeof(int));
2533  R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
2534  // init order, so that rBlocks works correctly
2535  for (j_in_R= n-2; j_in_R>=0; j_in_R--)
2536  R->order[j_in_R] = ringorder_unspec;
2537  // orderings
2538  for(j_in_R=0,j_in_L=0;j_in_R<n-1;j_in_R++,j_in_L++)
2539  {
2540  // todo: a(..), M
2541  if (v->m[j_in_L].Typ()!=LIST_CMD)
2542  {
2543  WerrorS("ordering must be list of lists");
2544  return TRUE;
2545  }
2546  lists vv=(lists)v->m[j_in_L].Data();
2547  if ((vv->nr==1)
2548  && (vv->m[0].Typ()==STRING_CMD))
2549  {
2550  if (strcmp((char*)vv->m[0].Data(),"L")==0)
2551  {
2552  j_in_R--;
2553  continue;
2554  }
2555  if ((vv->m[1].Typ()!=INTVEC_CMD) && (vv->m[1].Typ()!=INT_CMD))
2556  {
2557  PrintS(lString(vv));
2558  WerrorS("ordering name must be a (string,intvec)(1)");
2559  return TRUE;
2560  }
2561  R->order[j_in_R]=rOrderName(omStrDup((char*)vv->m[0].Data())); // assume STRING
2562 
2563  if (j_in_R==0) R->block0[0]=1;
2564  else
2565  {
2566  int jj=j_in_R-1;
2567  while((jj>=0)
2568  && ((R->order[jj]== ringorder_a)
2569  || (R->order[jj]== ringorder_aa)
2570  || (R->order[jj]== ringorder_am)
2571  || (R->order[jj]== ringorder_c)
2572  || (R->order[jj]== ringorder_C)
2573  || (R->order[jj]== ringorder_s)
2574  || (R->order[jj]== ringorder_S)
2575  ))
2576  {
2577  //Print("jj=%, skip %s\n",rSimpleOrdStr(R->order[jj]));
2578  jj--;
2579  }
2580  if (jj<0) R->block0[j_in_R]=1;
2581  else R->block0[j_in_R]=R->block1[jj]+1;
2582  }
2583  intvec *iv;
2584  if (vv->m[1].Typ()==INT_CMD)
2585  iv=new intvec((int)(long)vv->m[1].Data(),(int)(long)vv->m[1].Data());
2586  else
2587  iv=ivCopy((intvec*)vv->m[1].Data()); //assume INTVEC
2588  int iv_len=iv->length();
2589  if ((R->order[j_in_R]!=ringorder_s)
2590  &&(R->order[j_in_R]!=ringorder_c)
2591  &&(R->order[j_in_R]!=ringorder_C))
2592  {
2593  R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+iv_len-1);
2594  if (R->block1[j_in_R]>R->N)
2595  {
2596  if (R->block0[j_in_R]>R->N)
2597  {
2598  Werror("not enough variables for ordering %d (%s)",j_in_R,rSimpleOrdStr(R->order[j_in_R]));
2599  return TRUE;
2600  }
2601  R->block1[j_in_R]=R->N;
2602  iv_len=R->block1[j_in_R]-R->block0[j_in_R]+1;
2603  }
2604  //Print("block %d from %d to %d\n",j,R->block0[j], R->block1[j]);
2605  }
2606  int i;
2607  switch (R->order[j_in_R])
2608  {
2609  case ringorder_ws:
2610  case ringorder_Ws:
2611  R->OrdSgn=-1;
2612  case ringorder_aa:
2613  case ringorder_a:
2614  case ringorder_wp:
2615  case ringorder_Wp:
2616  R->wvhdl[j_in_R] =( int *)omAlloc(iv_len*sizeof(int));
2617  for (i=0; i<iv_len;i++)
2618  {
2619  R->wvhdl[j_in_R][i]=(*iv)[i];
2620  }
2621  break;
2622  case ringorder_am:
2623  R->wvhdl[j_in_R] =( int *)omAlloc((iv->length()+1)*sizeof(int));
2624  for (i=0; i<iv_len;i++)
2625  {
2626  R->wvhdl[j_in_R][i]=(*iv)[i];
2627  }
2628  R->wvhdl[j_in_R][i]=iv->length() - iv_len;
2629  //printf("ivlen:%d,iv->len:%d,mod:%d\n",iv_len,iv->length(),R->wvhdl[j][i]);
2630  for (; i<iv->length(); i++)
2631  {
2632  R->wvhdl[j_in_R][i+1]=(*iv)[i];
2633  }
2634  break;
2635  case ringorder_M:
2636  R->wvhdl[j_in_R] =( int *)omAlloc((iv->length())*sizeof(int));
2637  for (i=0; i<iv->length();i++) R->wvhdl[j_in_R][i]=(*iv)[i];
2638  R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+(int)sqrt((double)(iv->length()-1)));
2639  if (R->block1[j_in_R]>R->N)
2640  {
2641  WerrorS("ordering matrix too big");
2642  return TRUE;
2643  }
2644  break;
2645  case ringorder_ls:
2646  case ringorder_ds:
2647  case ringorder_Ds:
2648  case ringorder_rs:
2649  R->OrdSgn=-1;
2650  case ringorder_lp:
2651  case ringorder_dp:
2652  case ringorder_Dp:
2653  case ringorder_rp:
2654  break;
2655  case ringorder_S:
2656  break;
2657  case ringorder_c:
2658  case ringorder_C:
2659  R->block1[j_in_R]=R->block0[j_in_R]=0;
2660  break;
2661 
2662  case ringorder_s:
2663  R->block1[j_in_R]=R->block0[j_in_R]=(*iv)[0];
2664  rSetSyzComp(R->block0[j_in_R],R);
2665  break;
2666 
2667  case ringorder_IS:
2668  {
2669  R->block1[j_in_R] = R->block0[j_in_R] = 0;
2670  if( iv->length() > 0 )
2671  {
2672  const int s = (*iv)[0];
2673  assume( -2 < s && s < 2 );
2674  R->block1[j_in_R] = R->block0[j_in_R] = s;
2675  }
2676  break;
2677  }
2678  case 0:
2679  case ringorder_unspec:
2680  break;
2681  case ringorder_L: /* cannot happen */
2682  case ringorder_a64: /*not implemented */
2683  WerrorS("ring order not implemented");
2684  return TRUE;
2685  }
2686  delete iv;
2687  }
2688  else
2689  {
2690  PrintS(lString(vv));
2691  WerrorS("ordering name must be a (string,intvec)");
2692  return TRUE;
2693  }
2694  }
2695  // sanity check
2696  j_in_R=n-2;
2697  if ((R->order[j_in_R]==ringorder_c)
2698  || (R->order[j_in_R]==ringorder_C)
2699  || (R->order[j_in_R]==ringorder_unspec)) j_in_R--;
2700  if (R->block1[j_in_R] != R->N)
2701  {
2702  if (((R->order[j_in_R]==ringorder_dp) ||
2703  (R->order[j_in_R]==ringorder_ds) ||
2704  (R->order[j_in_R]==ringorder_Dp) ||
2705  (R->order[j_in_R]==ringorder_Ds) ||
2706  (R->order[j_in_R]==ringorder_rp) ||
2707  (R->order[j_in_R]==ringorder_rs) ||
2708  (R->order[j_in_R]==ringorder_lp) ||
2709  (R->order[j_in_R]==ringorder_ls))
2710  &&
2711  R->block0[j_in_R] <= R->N)
2712  {
2713  R->block1[j_in_R] = R->N;
2714  }
2715  else
2716  {
2717  Werror("ordering incomplete: size (%d) should be %d",R->block1[j_in_R],R->N);
2718  return TRUE;
2719  }
2720  }
2721  if (R->block0[j_in_R]>R->N)
2722  {
2723  Werror("not enough variables (%d) for ordering block %d, scanned so far:",R->N,j_in_R+1);
2724  for(int ii=0;ii<=j_in_R;ii++)
2725  Werror("ord[%d]: %s from v%d to v%d",ii+1,rSimpleOrdStr(R->order[ii]),R->block0[ii],R->block1[ii]);
2726  return TRUE;
2727  }
2728  if (check_comp)
2729  {
2730  BOOLEAN comp_order=FALSE;
2731  int jj;
2732  for(jj=0;jj<n;jj++)
2733  {
2734  if ((R->order[jj]==ringorder_c) ||
2735  (R->order[jj]==ringorder_C)) { comp_order=TRUE; break; }
2736  }
2737  if (!comp_order)
2738  {
2739  R->order=(rRingOrder_t*)omRealloc0Size(R->order,n*sizeof(rRingOrder_t),(n+1)*sizeof(rRingOrder_t));
2740  R->block0=(int*)omRealloc0Size(R->block0,n*sizeof(int),(n+1)*sizeof(int));
2741  R->block1=(int*)omRealloc0Size(R->block1,n*sizeof(int),(n+1)*sizeof(int));
2742  R->wvhdl=(int**)omRealloc0Size(R->wvhdl,n*sizeof(int_ptr),(n+1)*sizeof(int_ptr));
2743  R->order[n-1]=ringorder_C;
2744  R->block0[n-1]=0;
2745  R->block1[n-1]=0;
2746  R->wvhdl[n-1]=NULL;
2747  n++;
2748  }
2749  }
2750  }
2751  else
2752  {
2753  WerrorS("ordering must be given as `list`");
2754  return TRUE;
2755  }
2756  if (bitmask!=0) R->bitmask=bitmask*2;
2757  return FALSE;
2758 }
2759 
2760 ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask,const int isLetterplace)
2761 {
2762  if ((L->nr!=3)
2763 #ifdef HAVE_PLURAL
2764  &&(L->nr!=5)
2765 #endif
2766  )
2767  return NULL;
2768  int is_gf_char=0;
2769  // 0: char/ cf - ring
2770  // 1: list (var)
2771  // 2: list (ord)
2772  // 3: qideal
2773  // possibly:
2774  // 4: C
2775  // 5: D
2776 
2777  ring R = (ring) omAlloc0Bin(sip_sring_bin);
2778 
2779  // ------------------------------------------------------------------
2780  // 0: char:
2781  if (L->m[0].Typ()==CRING_CMD)
2782  {
2783  R->cf=(coeffs)L->m[0].Data();
2784  R->cf->ref++;
2785  }
2786  else if (L->m[0].Typ()==INT_CMD)
2787  {
2788  int ch = (int)(long)L->m[0].Data();
2789  assume( ch >= 0 );
2790 
2791  if (ch == 0) // Q?
2792  R->cf = nInitChar(n_Q, NULL);
2793  else
2794  {
2795  int l = IsPrime(ch); // Zp?
2796  if( l != ch )
2797  {
2798  Warn("%d is invalid characteristic of ground field. %d is used.", ch, l);
2799  ch = l;
2800  }
2801  #ifndef TEST_ZN_AS_ZP
2802  R->cf = nInitChar(n_Zp, (void*)(long)ch);
2803  #else
2804  mpz_t modBase;
2805  mpz_init_set_ui(modBase,(long) ch);
2806  ZnmInfo info;
2807  info.base= modBase;
2808  info.exp= 1;
2809  R->cf=nInitChar(n_Zn,(void*) &info); //exponent is missing
2810  R->cf->is_field=1;
2811  R->cf->is_domain=1;
2812  R->cf->has_simple_Inverse=1;
2813  #endif
2814  }
2815  }
2816  else if (L->m[0].Typ()==LIST_CMD) // something complicated...
2817  {
2818  lists LL=(lists)L->m[0].Data();
2819 
2820 #ifdef HAVE_RINGS
2821  if (LL->m[0].Typ() == STRING_CMD) // 1st comes a string?
2822  {
2823  rComposeRing(LL, R); // Ring!?
2824  }
2825  else
2826 #endif
2827  if (LL->nr < 3)
2828  rComposeC(LL,R); // R, long_R, long_C
2829  else
2830  {
2831  if (LL->m[0].Typ()==INT_CMD)
2832  {
2833  int ch = (int)(long)LL->m[0].Data();
2834  while ((ch!=fftable[is_gf_char]) && (fftable[is_gf_char])) is_gf_char++;
2835  if (fftable[is_gf_char]==0) is_gf_char=-1;
2836 
2837  if(is_gf_char!= -1)
2838  {
2839  GFInfo param;
2840 
2841  param.GFChar = ch;
2842  param.GFDegree = 1;
2843  param.GFPar_name = (const char*)(((lists)(LL->m[1].Data()))->m[0].Data());
2844 
2845  // nfInitChar should be able to handle the case when ch is in fftables!
2846  R->cf = nInitChar(n_GF, (void*)&param);
2847  }
2848  }
2849 
2850  if( R->cf == NULL )
2851  {
2852  ring extRing = rCompose((lists)L->m[0].Data(),FALSE,0x7fff);
2853 
2854  if (extRing==NULL)
2855  {
2856  WerrorS("could not create the specified coefficient field");
2857  goto rCompose_err;
2858  }
2859 
2860  if( extRing->qideal != NULL ) // Algebraic extension
2861  {
2862  AlgExtInfo extParam;
2863 
2864  extParam.r = extRing;
2865 
2866  R->cf = nInitChar(n_algExt, (void*)&extParam);
2867  }
2868  else // Transcendental extension
2869  {
2870  TransExtInfo extParam;
2871  extParam.r = extRing;
2872  assume( extRing->qideal == NULL );
2873 
2874  R->cf = nInitChar(n_transExt, &extParam);
2875  }
2876  }
2877  }
2878  }
2879  else
2880  {
2881  WerrorS("coefficient field must be described by `int` or `list`");
2882  goto rCompose_err;
2883  }
2884 
2885  if( R->cf == NULL )
2886  {
2887  WerrorS("could not create coefficient field described by the input!");
2888  goto rCompose_err;
2889  }
2890 
2891  // ------------------------- VARS ---------------------------
2892  if (rComposeVar(L,R)) goto rCompose_err;
2893  // ------------------------ ORDER ------------------------------
2894  if (rComposeOrder(L,check_comp,R)) goto rCompose_err;
2895 
2896  // ------------------------ ??????? --------------------
2897 
2898  if (!isLetterplace) rRenameVars(R);
2899  else R->isLPring=isLetterplace;
2900  if (bitmask!=0x7fff) R->bitmask=bitmask*2;
2901  rComplete(R);
2902 
2903  // ------------------------ Q-IDEAL ------------------------
2904 
2905  if (L->m[3].Typ()==IDEAL_CMD)
2906  {
2907  ideal q=(ideal)L->m[3].Data();
2908  if (q->m[0]!=NULL)
2909  {
2910  if (R->cf != currRing->cf) //->cf->ch!=currRing->cf->ch)
2911  {
2912  #if 0
2913  WerrorS("coefficient fields must be equal if q-ideal !=0");
2914  goto rCompose_err;
2915  #else
2916  ring orig_ring=currRing;
2917  rChangeCurrRing(R);
2918  int *perm=NULL;
2919  int *par_perm=NULL;
2920  int par_perm_size=0;
2921  nMapFunc nMap;
2922 
2923  if ((nMap=nSetMap(orig_ring->cf))==NULL)
2924  {
2925  if (rEqual(orig_ring,currRing))
2926  {
2927  nMap=n_SetMap(currRing->cf, currRing->cf);
2928  }
2929  else
2930  // Allow imap/fetch to be make an exception only for:
2931  if ( (rField_is_Q_a(orig_ring) && // Q(a..) -> Q(a..) || Q || Zp || Zp(a)
2935  ||
2936  (rField_is_Zp_a(orig_ring) && // Zp(a..) -> Zp(a..) || Zp
2937  (rField_is_Zp(currRing, rInternalChar(orig_ring)) ||
2938  rField_is_Zp_a(currRing, rInternalChar(orig_ring)))) )
2939  {
2940  par_perm_size=rPar(orig_ring);
2941 
2942 // if ((orig_ring->minpoly != NULL) || (orig_ring->qideal != NULL))
2943 // naSetChar(rInternalChar(orig_ring),orig_ring);
2944 // else ntSetChar(rInternalChar(orig_ring),orig_ring);
2945 
2946  nSetChar(currRing->cf);
2947  }
2948  else
2949  {
2950  WerrorS("coefficient fields must be equal if q-ideal !=0");
2951  goto rCompose_err;
2952  }
2953  }
2954  perm=(int *)omAlloc0((orig_ring->N+1)*sizeof(int));
2955  if (par_perm_size!=0)
2956  par_perm=(int *)omAlloc0(par_perm_size*sizeof(int));
2957  int i;
2958  #if 0
2959  // use imap:
2960  maFindPerm(orig_ring->names,orig_ring->N,orig_ring->parameter,orig_ring->P,
2961  currRing->names,currRing->N,currRing->parameter, currRing->P,
2962  perm,par_perm, currRing->ch);
2963  #else
2964  // use fetch
2965  if ((rPar(orig_ring)>0) && (rPar(currRing)==0))
2966  {
2967  for(i=si_min(rPar(orig_ring),rVar(currRing))-1;i>=0;i--) par_perm[i]=i+1;
2968  }
2969  else if (par_perm_size!=0)
2970  for(i=si_min(rPar(orig_ring),rPar(currRing))-1;i>=0;i--) par_perm[i]=-(i+1);
2971  for(i=si_min(orig_ring->N,rVar(currRing));i>0;i--) perm[i]=i;
2972  #endif
2973  ideal dest_id=idInit(IDELEMS(q),1);
2974  for(i=IDELEMS(q)-1; i>=0; i--)
2975  {
2976  dest_id->m[i]=p_PermPoly(q->m[i],perm,orig_ring, currRing,nMap,
2977  par_perm,par_perm_size);
2978  // PrintS("map:");pWrite(dest_id->m[i]);PrintLn();
2979  pTest(dest_id->m[i]);
2980  }
2981  R->qideal=dest_id;
2982  if (perm!=NULL)
2983  omFreeSize((ADDRESS)perm,(orig_ring->N+1)*sizeof(int));
2984  if (par_perm!=NULL)
2985  omFreeSize((ADDRESS)par_perm,par_perm_size*sizeof(int));
2986  rChangeCurrRing(orig_ring);
2987  #endif
2988  }
2989  else
2990  R->qideal=idrCopyR(q,currRing,R);
2991  }
2992  }
2993  else
2994  {
2995  WerrorS("q-ideal must be given as `ideal`");
2996  goto rCompose_err;
2997  }
2998 
2999 
3000  // ---------------------------------------------------------------
3001  #ifdef HAVE_PLURAL
3002  if (L->nr==5)
3003  {
3004  if (nc_CallPlural((matrix)L->m[4].Data(),
3005  (matrix)L->m[5].Data(),
3006  NULL,NULL,
3007  R,
3008  true, // !!!
3009  true, false,
3010  currRing, FALSE)) goto rCompose_err;
3011  // takes care about non-comm. quotient! i.e. calls "nc_SetupQuotient" due to last true
3012  }
3013  #endif
3014  return R;
3015 
3016 rCompose_err:
3017  if (R->N>0)
3018  {
3019  int i;
3020  if (R->names!=NULL)
3021  {
3022  i=R->N-1;
3023  while (i>=0) { omfree(R->names[i]); i--; }
3024  omFree(R->names);
3025  }
3026  }
3027  omfree(R->order);
3028  omfree(R->block0);
3029  omfree(R->block1);
3030  omfree(R->wvhdl);
3031  omFree(R);
3032  return NULL;
3033 }
3034 
3035 // from matpol.cc
3036 
3037 /*2
3038 * compute the jacobi matrix of an ideal
3039 */
3041 {
3042  int i,j;
3043  matrix result;
3044  ideal id=(ideal)a->Data();
3045 
3046  result =mpNew(IDELEMS(id),rVar(currRing));
3047  for (i=1; i<=IDELEMS(id); i++)
3048  {
3049  for (j=1; j<=rVar(currRing); j++)
3050  {
3051  MATELEM(result,i,j) = pDiff(id->m[i-1],j);
3052  }
3053  }
3054  res->data=(char *)result;
3055  return FALSE;
3056 }
3057 
3058 /*2
3059 * returns the Koszul-matrix of degree d of a vectorspace with dimension n
3060 * uses the first n entrees of id, if id <> NULL
3061 */
3063 {
3064  int n=(int)(long)b->Data();
3065  int d=(int)(long)c->Data();
3066  int k,l,sign,row,col;
3067  matrix result;
3068  ideal temp;
3069  BOOLEAN bo;
3070  poly p;
3071 
3072  if ((d>n) || (d<1) || (n<1))
3073  {
3074  res->data=(char *)mpNew(1,1);
3075  return FALSE;
3076  }
3077  int *choise = (int*)omAlloc(d*sizeof(int));
3078  if (id==NULL)
3079  temp=idMaxIdeal(1);
3080  else
3081  temp=(ideal)id->Data();
3082 
3083  k = binom(n,d);
3084  l = k*d;
3085  l /= n-d+1;
3086  result =mpNew(l,k);
3087  col = 1;
3088  idInitChoise(d,1,n,&bo,choise);
3089  while (!bo)
3090  {
3091  sign = 1;
3092  for (l=1;l<=d;l++)
3093  {
3094  if (choise[l-1]<=IDELEMS(temp))
3095  {
3096  p = pCopy(temp->m[choise[l-1]-1]);
3097  if (sign == -1) p = pNeg(p);
3098  sign *= -1;
3099  row = idGetNumberOfChoise(l-1,d,1,n,choise);
3100  MATELEM(result,row,col) = p;
3101  }
3102  }
3103  col++;
3104  idGetNextChoise(d,n,&bo,choise);
3105  }
3106  omFreeSize(choise,d*sizeof(int));
3107  if (id==NULL) idDelete(&temp);
3108 
3109  res->data=(char *)result;
3110  return FALSE;
3111 }
3112 
3113 // from syz1.cc
3114 /*2
3115 * read out the Betti numbers from resolution
3116 * (interpreter interface)
3117 */
3119 {
3120  syStrategy syzstr=(syStrategy)u->Data();
3121 
3122  BOOLEAN minim=(int)(long)w->Data();
3123  int row_shift=0;
3124  int add_row_shift=0;
3125  intvec *weights=NULL;
3126  intvec *ww=(intvec *)atGet(u,"isHomog",INTVEC_CMD);
3127  if (ww!=NULL)
3128  {
3129  weights=ivCopy(ww);
3130  add_row_shift = ww->min_in();
3131  (*weights) -= add_row_shift;
3132  }
3133 
3134  res->data=(void *)syBettiOfComputation(syzstr,minim,&row_shift,weights);
3135  //row_shift += add_row_shift;
3136  //Print("row_shift=%d, add_row_shift=%d\n",row_shift,add_row_shift);
3137  atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
3138 
3139  return FALSE;
3140 }
3142 {
3143  sleftv tmp;
3144  memset(&tmp,0,sizeof(tmp));
3145  tmp.rtyp=INT_CMD;
3146  tmp.data=(void *)1;
3147  return syBetti2(res,u,&tmp);
3148 }
3149 
3150 /*3
3151 * converts a resolution into a list of modules
3152 */
3153 lists syConvRes(syStrategy syzstr,BOOLEAN toDel,int add_row_shift)
3154 {
3155  resolvente fullres = syzstr->fullres;
3156  resolvente minres = syzstr->minres;
3157 
3158  const int length = syzstr->length;
3159 
3160  if ((fullres==NULL) && (minres==NULL))
3161  {
3162  if (syzstr->hilb_coeffs==NULL)
3163  { // La Scala
3164  fullres = syReorder(syzstr->res, length, syzstr);
3165  }
3166  else
3167  { // HRES
3168  minres = syReorder(syzstr->orderedRes, length, syzstr);
3169  syKillEmptyEntres(minres, length);
3170  }
3171  }
3172 
3173  resolvente tr;
3174  int typ0=IDEAL_CMD;
3175 
3176  if (minres!=NULL)
3177  tr = minres;
3178  else
3179  tr = fullres;
3180 
3181  resolvente trueres=NULL;
3182  intvec ** w=NULL;
3183 
3184  if (length>0)
3185  {
3186  trueres = (resolvente)omAlloc0((length)*sizeof(ideal));
3187  for (int i=length-1;i>=0;i--)
3188  {
3189  if (tr[i]!=NULL)
3190  {
3191  trueres[i] = idCopy(tr[i]);
3192  }
3193  }
3194  if ( id_RankFreeModule(trueres[0], currRing) > 0)
3195  typ0 = MODUL_CMD;
3196  if (syzstr->weights!=NULL)
3197  {
3198  w = (intvec**)omAlloc0(length*sizeof(intvec*));
3199  for (int i=length-1;i>=0;i--)
3200  {
3201  if (syzstr->weights[i]!=NULL) w[i] = ivCopy(syzstr->weights[i]);
3202  }
3203  }
3204  }
3205 
3206  lists li = liMakeResolv(trueres, length, syzstr->list_length,typ0,
3207  w, add_row_shift);
3208 
3209  if (toDel)
3210  syKillComputation(syzstr);
3211  else
3212  {
3213  if( fullres != NULL && syzstr->fullres == NULL )
3214  syzstr->fullres = fullres;
3215 
3216  if( minres != NULL && syzstr->minres == NULL )
3217  syzstr->minres = minres;
3218  }
3219  return li;
3220 }
3221 
3222 /*3
3223 * converts a list of modules into a resolution
3224 */
3226 {
3227  int typ0;
3229 
3230  resolvente fr = liFindRes(li,&(result->length),&typ0,&(result->weights));
3231  if (fr != NULL)
3232  {
3233 
3234  result->fullres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3235  for (int i=result->length-1;i>=0;i--)
3236  {
3237  if (fr[i]!=NULL)
3238  result->fullres[i] = idCopy(fr[i]);
3239  }
3240  result->list_length=result->length;
3241  omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3242  }
3243  else
3244  {
3245  omFreeSize(result, sizeof(ssyStrategy));
3246  result = NULL;
3247  }
3248  return result;
3249 }
3250 
3251 /*3
3252 * converts a list of modules into a minimal resolution
3253 */
3255 {
3256  int typ0;
3258 
3259  resolvente fr = liFindRes(li,&(result->length),&typ0);
3260  result->minres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3261  for (int i=result->length-1;i>=0;i--)
3262  {
3263  if (fr[i]!=NULL)
3264  result->minres[i] = idCopy(fr[i]);
3265  }
3266  omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3267  return result;
3268 }
3269 // from weight.cc
3271 {
3272  ideal F=(ideal)id->Data();
3273  intvec * iv = new intvec(rVar(currRing));
3274  polyset s;
3275  int sl, n, i;
3276  int *x;
3277 
3278  res->data=(char *)iv;
3279  s = F->m;
3280  sl = IDELEMS(F) - 1;
3281  n = rVar(currRing);
3282  double wNsqr = (double)2.0 / (double)n;
3284  x = (int * )omAlloc(2 * (n + 1) * sizeof(int));
3285  wCall(s, sl, x, wNsqr, currRing);
3286  for (i = n; i!=0; i--)
3287  (*iv)[i-1] = x[i + n + 1];
3288  omFreeSize((ADDRESS)x, 2 * (n + 1) * sizeof(int));
3289  return FALSE;
3290 }
3291 
3293 {
3294  res->data=(char *)id_QHomWeight((ideal)v->Data(), currRing);
3295  if (res->data==NULL)
3296  res->data=(char *)new intvec(rVar(currRing));
3297  return FALSE;
3298 }
3299 /*==============================================================*/
3300 // from clapsing.cc
3301 #if 0
3302 BOOLEAN jjIS_SQR_FREE(leftv res, leftv u)
3303 {
3304  BOOLEAN b=singclap_factorize((poly)(u->CopyD()), &v, 0);
3305  res->data=(void *)b;
3306 }
3307 #endif
3308 
3310 {
3311  res->data=singclap_resultant((poly)u->CopyD(),(poly)v->CopyD(),
3312  (poly)w->CopyD(), currRing);
3313  return errorreported;
3314 }
3315 
3317 {
3318  res->data=singclap_irrCharSeries((ideal)u->Data(), currRing);
3319  return (res->data==NULL);
3320 }
3321 
3322 // from semic.cc
3323 #ifdef HAVE_SPECTRUM
3324 
3325 // ----------------------------------------------------------------------------
3326 // Initialize a spectrum deep from a singular lists
3327 // ----------------------------------------------------------------------------
3328 
3329 void copy_deep( spectrum& spec, lists l )
3330 {
3331  spec.mu = (int)(long)(l->m[0].Data( ));
3332  spec.pg = (int)(long)(l->m[1].Data( ));
3333  spec.n = (int)(long)(l->m[2].Data( ));
3334 
3335  spec.copy_new( spec.n );
3336 
3337  intvec *num = (intvec*)l->m[3].Data( );
3338  intvec *den = (intvec*)l->m[4].Data( );
3339  intvec *mul = (intvec*)l->m[5].Data( );
3340 
3341  for( int i=0; i<spec.n; i++ )
3342  {
3343  spec.s[i] = (Rational)((*num)[i])/(Rational)((*den)[i]);
3344  spec.w[i] = (*mul)[i];
3345  }
3346 }
3347 
3348 // ----------------------------------------------------------------------------
3349 // singular lists constructor for spectrum
3350 // ----------------------------------------------------------------------------
3351 
3352 spectrum /*former spectrum::spectrum ( lists l )*/
3354 {
3355  spectrum result;
3356  copy_deep( result, l );
3357  return result;
3358 }
3359 
3360 // ----------------------------------------------------------------------------
3361 // generate a Singular lists from a spectrum
3362 // ----------------------------------------------------------------------------
3363 
3364 /* former spectrum::thelist ( void )*/
3366 {
3368 
3369  L->Init( 6 );
3370 
3371  intvec *num = new intvec( spec.n );
3372  intvec *den = new intvec( spec.n );
3373  intvec *mult = new intvec( spec.n );
3374 
3375  for( int i=0; i<spec.n; i++ )
3376  {
3377  (*num) [i] = spec.s[i].get_num_si( );
3378  (*den) [i] = spec.s[i].get_den_si( );
3379  (*mult)[i] = spec.w[i];
3380  }
3381 
3382  L->m[0].rtyp = INT_CMD; // milnor number
3383  L->m[1].rtyp = INT_CMD; // geometrical genus
3384  L->m[2].rtyp = INT_CMD; // # of spectrum numbers
3385  L->m[3].rtyp = INTVEC_CMD; // numerators
3386  L->m[4].rtyp = INTVEC_CMD; // denomiantors
3387  L->m[5].rtyp = INTVEC_CMD; // multiplicities
3388 
3389  L->m[0].data = (void*)(long)spec.mu;
3390  L->m[1].data = (void*)(long)spec.pg;
3391  L->m[2].data = (void*)(long)spec.n;
3392  L->m[3].data = (void*)num;
3393  L->m[4].data = (void*)den;
3394  L->m[5].data = (void*)mult;
3395 
3396  return L;
3397 }
3398 // from spectrum.cc
3399 // ----------------------------------------------------------------------------
3400 // print out an error message for a spectrum list
3401 // ----------------------------------------------------------------------------
3402 
3403 typedef enum
3404 {
3407 
3410 
3417 
3422 
3428 
3431 
3434 
3436 
3437 void list_error( semicState state )
3438 {
3439  switch( state )
3440  {
3441  case semicListTooShort:
3442  WerrorS( "the list is too short" );
3443  break;
3444  case semicListTooLong:
3445  WerrorS( "the list is too long" );
3446  break;
3447 
3449  WerrorS( "first element of the list should be int" );
3450  break;
3452  WerrorS( "second element of the list should be int" );
3453  break;
3455  WerrorS( "third element of the list should be int" );
3456  break;
3458  WerrorS( "fourth element of the list should be intvec" );
3459  break;
3461  WerrorS( "fifth element of the list should be intvec" );
3462  break;
3464  WerrorS( "sixth element of the list should be intvec" );
3465  break;
3466 
3467  case semicListNNegative:
3468  WerrorS( "first element of the list should be positive" );
3469  break;
3471  WerrorS( "wrong number of numerators" );
3472  break;
3474  WerrorS( "wrong number of denominators" );
3475  break;
3477  WerrorS( "wrong number of multiplicities" );
3478  break;
3479 
3480  case semicListMuNegative:
3481  WerrorS( "the Milnor number should be positive" );
3482  break;
3483  case semicListPgNegative:
3484  WerrorS( "the geometrical genus should be nonnegative" );
3485  break;
3486  case semicListNumNegative:
3487  WerrorS( "all numerators should be positive" );
3488  break;
3489  case semicListDenNegative:
3490  WerrorS( "all denominators should be positive" );
3491  break;
3492  case semicListMulNegative:
3493  WerrorS( "all multiplicities should be positive" );
3494  break;
3495 
3496  case semicListNotSymmetric:
3497  WerrorS( "it is not symmetric" );
3498  break;
3500  WerrorS( "it is not monotonous" );
3501  break;
3502 
3503  case semicListMilnorWrong:
3504  WerrorS( "the Milnor number is wrong" );
3505  break;
3506  case semicListPGWrong:
3507  WerrorS( "the geometrical genus is wrong" );
3508  break;
3509 
3510  default:
3511  WerrorS( "unspecific error" );
3512  break;
3513  }
3514 }
3515 // ----------------------------------------------------------------------------
3516 // this is the main spectrum computation function
3517 // ----------------------------------------------------------------------------
3518 
3520 {
3530 };
3531 
3532 // from splist.cc
3533 // ----------------------------------------------------------------------------
3534 // Compute the spectrum of a spectrumPolyList
3535 // ----------------------------------------------------------------------------
3536 
3537 /* former spectrumPolyList::spectrum ( lists*, int) */
3539 {
3540  spectrumPolyNode **node = &speclist.root;
3542 
3543  poly f,tmp;
3544  int found,cmp;
3545 
3546  Rational smax( ( fast==0 ? 0 : rVar(currRing) ),
3547  ( fast==2 ? 2 : 1 ) );
3548 
3549  Rational weight_prev( 0,1 );
3550 
3551  int mu = 0; // the milnor number
3552  int pg = 0; // the geometrical genus
3553  int n = 0; // number of different spectral numbers
3554  int z = 0; // number of spectral number equal to smax
3555 
3556  while( (*node)!=(spectrumPolyNode*)NULL &&
3557  ( fast==0 || (*node)->weight<=smax ) )
3558  {
3559  // ---------------------------------------
3560  // determine the first normal form which
3561  // contains the monomial node->mon
3562  // ---------------------------------------
3563 
3564  found = FALSE;
3565  search = *node;
3566 
3567  while( search!=(spectrumPolyNode*)NULL && found==FALSE )
3568  {
3569  if( search->nf!=(poly)NULL )
3570  {
3571  f = search->nf;
3572 
3573  do
3574  {
3575  // --------------------------------
3576  // look for (*node)->mon in f
3577  // --------------------------------
3578 
3579  cmp = pCmp( (*node)->mon,f );
3580 
3581  if( cmp<0 )
3582  {
3583  f = pNext( f );
3584  }
3585  else if( cmp==0 )
3586  {
3587  // -----------------------------
3588  // we have found a normal form
3589  // -----------------------------
3590 
3591  found = TRUE;
3592 
3593  // normalize coefficient
3594 
3595  number inv = nInvers( pGetCoeff( f ) );
3596  search->nf=__p_Mult_nn( search->nf,inv,currRing );
3597  nDelete( &inv );
3598 
3599  // exchange normal forms
3600 
3601  tmp = (*node)->nf;
3602  (*node)->nf = search->nf;
3603  search->nf = tmp;
3604  }
3605  }
3606  while( cmp<0 && f!=(poly)NULL );
3607  }
3608  search = search->next;
3609  }
3610 
3611  if( found==FALSE )
3612  {
3613  // ------------------------------------------------
3614  // the weight of node->mon is a spectrum number
3615  // ------------------------------------------------
3616 
3617  mu++;
3618 
3619  if( (*node)->weight<=(Rational)1 ) pg++;
3620  if( (*node)->weight==smax ) z++;
3621  if( (*node)->weight>weight_prev ) n++;
3622 
3623  weight_prev = (*node)->weight;
3624  node = &((*node)->next);
3625  }
3626  else
3627  {
3628  // -----------------------------------------------
3629  // determine all other normal form which contain
3630  // the monomial node->mon
3631  // replace for node->mon its normal form
3632  // -----------------------------------------------
3633 
3634  while( search!=(spectrumPolyNode*)NULL )
3635  {
3636  if( search->nf!=(poly)NULL )
3637  {
3638  f = search->nf;
3639 
3640  do
3641  {
3642  // --------------------------------
3643  // look for (*node)->mon in f
3644  // --------------------------------
3645 
3646  cmp = pCmp( (*node)->mon,f );
3647 
3648  if( cmp<0 )
3649  {
3650  f = pNext( f );
3651  }
3652  else if( cmp==0 )
3653  {
3654  search->nf = pSub( search->nf,
3655  __pp_Mult_nn( (*node)->nf,pGetCoeff( f ),currRing ) );
3656  pNorm( search->nf );
3657  }
3658  }
3659  while( cmp<0 && f!=(poly)NULL );
3660  }
3661  search = search->next;
3662  }
3663  speclist.delete_node( node );
3664  }
3665 
3666  }
3667 
3668  // --------------------------------------------------------
3669  // fast computation exploits the symmetry of the spectrum
3670  // --------------------------------------------------------
3671 
3672  if( fast==2 )
3673  {
3674  mu = 2*mu - z;
3675  n = ( z > 0 ? 2*n - 1 : 2*n );
3676  }
3677 
3678  // --------------------------------------------------------
3679  // compute the spectrum numbers with their multiplicities
3680  // --------------------------------------------------------
3681 
3682  intvec *nom = new intvec( n );
3683  intvec *den = new intvec( n );
3684  intvec *mult = new intvec( n );
3685 
3686  int count = 0;
3687  int multiplicity = 1;
3688 
3689  for( search=speclist.root; search!=(spectrumPolyNode*)NULL &&
3690  ( fast==0 || search->weight<=smax );
3691  search=search->next )
3692  {
3693  if( search->next==(spectrumPolyNode*)NULL ||
3694  search->weight<search->next->weight )
3695  {
3696  (*nom) [count] = search->weight.get_num_si( );
3697  (*den) [count] = search->weight.get_den_si( );
3698  (*mult)[count] = multiplicity;
3699 
3700  multiplicity=1;
3701  count++;
3702  }
3703  else
3704  {
3705  multiplicity++;
3706  }
3707  }
3708 
3709  // --------------------------------------------------------
3710  // fast computation exploits the symmetry of the spectrum
3711  // --------------------------------------------------------
3712 
3713  if( fast==2 )
3714  {
3715  int n1,n2;
3716  for( n1=0, n2=n-1; n1<n2; n1++, n2-- )
3717  {
3718  (*nom) [n2] = rVar(currRing)*(*den)[n1]-(*nom)[n1];
3719  (*den) [n2] = (*den)[n1];
3720  (*mult)[n2] = (*mult)[n1];
3721  }
3722  }
3723 
3724  // -----------------------------------
3725  // test if the spectrum is symmetric
3726  // -----------------------------------
3727 
3728  if( fast==0 || fast==1 )
3729  {
3730  int symmetric=TRUE;
3731 
3732  for( int n1=0, n2=n-1 ; n1<n2 && symmetric==TRUE; n1++, n2-- )
3733  {
3734  if( (*mult)[n1]!=(*mult)[n2] ||
3735  (*den) [n1]!= (*den)[n2] ||
3736  (*nom)[n1]+(*nom)[n2]!=rVar(currRing)*(*den) [n1] )
3737  {
3738  symmetric = FALSE;
3739  }
3740  }
3741 
3742  if( symmetric==FALSE )
3743  {
3744  // ---------------------------------------------
3745  // the spectrum is not symmetric => degenerate
3746  // principal part
3747  // ---------------------------------------------
3748 
3749  *L = (lists)omAllocBin( slists_bin);
3750  (*L)->Init( 1 );
3751  (*L)->m[0].rtyp = INT_CMD; // milnor number
3752  (*L)->m[0].data = (void*)(long)mu;
3753 
3754  return spectrumDegenerate;
3755  }
3756  }
3757 
3758  *L = (lists)omAllocBin( slists_bin);
3759 
3760  (*L)->Init( 6 );
3761 
3762  (*L)->m[0].rtyp = INT_CMD; // milnor number
3763  (*L)->m[1].rtyp = INT_CMD; // geometrical genus
3764  (*L)->m[2].rtyp = INT_CMD; // number of spectrum values
3765  (*L)->m[3].rtyp = INTVEC_CMD; // nominators
3766  (*L)->m[4].rtyp = INTVEC_CMD; // denomiantors
3767  (*L)->m[5].rtyp = INTVEC_CMD; // multiplicities
3768 
3769  (*L)->m[0].data = (void*)(long)mu;
3770  (*L)->m[1].data = (void*)(long)pg;
3771  (*L)->m[2].data = (void*)(long)n;
3772  (*L)->m[3].data = (void*)nom;
3773  (*L)->m[4].data = (void*)den;
3774  (*L)->m[5].data = (void*)mult;
3775 
3776  return spectrumOK;
3777 }
3778 
3780 {
3781  int i;
3782 
3783  #ifdef SPECTRUM_DEBUG
3784  #ifdef SPECTRUM_PRINT
3785  #ifdef SPECTRUM_IOSTREAM
3786  cout << "spectrumCompute\n";
3787  if( fast==0 ) cout << " no optimization" << endl;
3788  if( fast==1 ) cout << " weight optimization" << endl;
3789  if( fast==2 ) cout << " symmetry optimization" << endl;
3790  #else
3791  fputs( "spectrumCompute\n",stdout );
3792  if( fast==0 ) fputs( " no optimization\n", stdout );
3793  if( fast==1 ) fputs( " weight optimization\n", stdout );
3794  if( fast==2 ) fputs( " symmetry optimization\n", stdout );
3795  #endif
3796  #endif
3797  #endif
3798 
3799  // ----------------------
3800  // check if h is zero
3801  // ----------------------
3802 
3803  if( h==(poly)NULL )
3804  {
3805  return spectrumZero;
3806  }
3807 
3808  // ----------------------------------
3809  // check if h has a constant term
3810  // ----------------------------------
3811 
3812  if( hasConstTerm( h, currRing ) )
3813  {
3814  return spectrumBadPoly;
3815  }
3816 
3817  // --------------------------------
3818  // check if h has a linear term
3819  // --------------------------------
3820 
3821  if( hasLinearTerm( h, currRing ) )
3822  {
3823  *L = (lists)omAllocBin( slists_bin);
3824  (*L)->Init( 1 );
3825  (*L)->m[0].rtyp = INT_CMD; // milnor number
3826  /* (*L)->m[0].data = (void*)0;a -- done by Init */
3827 
3828  return spectrumNoSingularity;
3829  }
3830 
3831  // ----------------------------------
3832  // compute the jacobi ideal of (h)
3833  // ----------------------------------
3834 
3835  ideal J = NULL;
3836  J = idInit( rVar(currRing),1 );
3837 
3838  #ifdef SPECTRUM_DEBUG
3839  #ifdef SPECTRUM_PRINT
3840  #ifdef SPECTRUM_IOSTREAM
3841  cout << "\n computing the Jacobi ideal...\n";
3842  #else
3843  fputs( "\n computing the Jacobi ideal...\n",stdout );
3844  #endif
3845  #endif
3846  #endif
3847 
3848  for( i=0; i<rVar(currRing); i++ )
3849  {
3850  J->m[i] = pDiff( h,i+1); //j );
3851 
3852  #ifdef SPECTRUM_DEBUG
3853  #ifdef SPECTRUM_PRINT
3854  #ifdef SPECTRUM_IOSTREAM
3855  cout << " ";
3856  #else
3857  fputs(" ", stdout );
3858  #endif
3859  pWrite( J->m[i] );
3860  #endif
3861  #endif
3862  }
3863 
3864  // --------------------------------------------
3865  // compute a standard basis stdJ of jac(h)
3866  // --------------------------------------------
3867 
3868  #ifdef SPECTRUM_DEBUG
3869  #ifdef SPECTRUM_PRINT
3870  #ifdef SPECTRUM_IOSTREAM
3871  cout << endl;
3872  cout << " computing a standard basis..." << endl;
3873  #else
3874  fputs( "\n", stdout );
3875  fputs( " computing a standard basis...\n", stdout );
3876  #endif
3877  #endif
3878  #endif
3879 
3880  ideal stdJ = kStd(J,currRing->qideal,isNotHomog,NULL);
3881  idSkipZeroes( stdJ );
3882 
3883  #ifdef SPECTRUM_DEBUG
3884  #ifdef SPECTRUM_PRINT
3885  for( i=0; i<IDELEMS(stdJ); i++ )
3886  {
3887  #ifdef SPECTRUM_IOSTREAM
3888  cout << " ";
3889  #else
3890  fputs( " ",stdout );
3891  #endif
3892 
3893  pWrite( stdJ->m[i] );
3894  }
3895  #endif
3896  #endif
3897 
3898  idDelete( &J );
3899 
3900  // ------------------------------------------
3901  // check if the h has a singularity
3902  // ------------------------------------------
3903 
3904  if( hasOne( stdJ, currRing ) )
3905  {
3906  // -------------------------------
3907  // h is smooth in the origin
3908  // return only the Milnor number
3909  // -------------------------------
3910 
3911  *L = (lists)omAllocBin( slists_bin);
3912  (*L)->Init( 1 );
3913  (*L)->m[0].rtyp = INT_CMD; // milnor number
3914  /* (*L)->m[0].data = (void*)0;a -- done by Init */
3915 
3916  return spectrumNoSingularity;
3917  }
3918 
3919  // ------------------------------------------
3920  // check if the singularity h is isolated
3921  // ------------------------------------------
3922 
3923  for( i=rVar(currRing); i>0; i-- )
3924  {
3925  if( hasAxis( stdJ,i, currRing )==FALSE )
3926  {
3927  return spectrumNotIsolated;
3928  }
3929  }
3930 
3931  // ------------------------------------------
3932  // compute the highest corner hc of stdJ
3933  // ------------------------------------------
3934 
3935  #ifdef SPECTRUM_DEBUG
3936  #ifdef SPECTRUM_PRINT
3937  #ifdef SPECTRUM_IOSTREAM
3938  cout << "\n computing the highest corner...\n";
3939  #else
3940  fputs( "\n computing the highest corner...\n", stdout );
3941  #endif
3942  #endif
3943  #endif
3944 
3945  poly hc = (poly)NULL;
3946 
3947  scComputeHC( stdJ,currRing->qideal, 0,hc );
3948 
3949  if( hc!=(poly)NULL )
3950  {
3951  pGetCoeff(hc) = nInit(1);
3952 
3953  for( i=rVar(currRing); i>0; i-- )
3954  {
3955  if( pGetExp( hc,i )>0 ) pDecrExp( hc,i );
3956  }
3957  pSetm( hc );
3958  }
3959  else
3960  {
3961  return spectrumNoHC;
3962  }
3963 
3964  #ifdef SPECTRUM_DEBUG
3965  #ifdef SPECTRUM_PRINT
3966  #ifdef SPECTRUM_IOSTREAM
3967  cout << " ";
3968  #else
3969  fputs( " ", stdout );
3970  #endif
3971  pWrite( hc );
3972  #endif
3973  #endif
3974 
3975  // ----------------------------------------
3976  // compute the Newton polygon nph of h
3977  // ----------------------------------------
3978 
3979  #ifdef SPECTRUM_DEBUG
3980  #ifdef SPECTRUM_PRINT
3981  #ifdef SPECTRUM_IOSTREAM
3982  cout << "\n computing the newton polygon...\n";
3983  #else
3984  fputs( "\n computing the newton polygon...\n", stdout );
3985  #endif
3986  #endif
3987  #endif
3988 
3989  newtonPolygon nph( h, currRing );
3990 
3991  #ifdef SPECTRUM_DEBUG
3992  #ifdef SPECTRUM_PRINT
3993  cout << nph;
3994  #endif
3995  #endif
3996 
3997  // -----------------------------------------------
3998  // compute the weight corner wc of (stdj,nph)
3999  // -----------------------------------------------
4000 
4001  #ifdef SPECTRUM_DEBUG
4002  #ifdef SPECTRUM_PRINT
4003  #ifdef SPECTRUM_IOSTREAM
4004  cout << "\n computing the weight corner...\n";
4005  #else
4006  fputs( "\n computing the weight corner...\n", stdout );
4007  #endif
4008  #endif
4009  #endif
4010 
4011  poly wc = ( fast==0 ? pCopy( hc ) :
4012  ( fast==1 ? computeWC( nph,(Rational)rVar(currRing), currRing ) :
4013  /* fast==2 */computeWC( nph,
4014  ((Rational)rVar(currRing))/(Rational)2, currRing ) ) );
4015 
4016  #ifdef SPECTRUM_DEBUG
4017  #ifdef SPECTRUM_PRINT
4018  #ifdef SPECTRUM_IOSTREAM
4019  cout << " ";
4020  #else
4021  fputs( " ", stdout );
4022  #endif
4023  pWrite( wc );
4024  #endif
4025  #endif
4026 
4027  // -------------
4028  // compute NF
4029  // -------------
4030 
4031  #ifdef SPECTRUM_DEBUG
4032  #ifdef SPECTRUM_PRINT
4033  #ifdef SPECTRUM_IOSTREAM
4034  cout << "\n computing NF...\n" << endl;
4035  #else
4036  fputs( "\n computing NF...\n", stdout );
4037  #endif
4038  #endif
4039  #endif
4040 
4041  spectrumPolyList NF( &nph );
4042 
4043  computeNF( stdJ,hc,wc,&NF, currRing );
4044 
4045  #ifdef SPECTRUM_DEBUG
4046  #ifdef SPECTRUM_PRINT
4047  cout << NF;
4048  #ifdef SPECTRUM_IOSTREAM
4049  cout << endl;
4050  #else
4051  fputs( "\n", stdout );
4052  #endif
4053  #endif
4054  #endif
4055 
4056  // ----------------------------
4057  // compute the spectrum of h
4058  // ----------------------------
4059 // spectrumState spectrumStateFromList( spectrumPolyList& speclist, lists *L, int fast );
4060 
4061  return spectrumStateFromList(NF, L, fast );
4062 }
4063 
4064 // ----------------------------------------------------------------------------
4065 // this procedure is called from the interpreter
4066 // ----------------------------------------------------------------------------
4067 // first = polynomial
4068 // result = list of spectrum numbers
4069 // ----------------------------------------------------------------------------
4070 
4072 {
4073  switch( state )
4074  {
4075  case spectrumZero:
4076  WerrorS( "polynomial is zero" );
4077  break;
4078  case spectrumBadPoly:
4079  WerrorS( "polynomial has constant term" );
4080  break;
4081  case spectrumNoSingularity:
4082  WerrorS( "not a singularity" );
4083  break;
4084  case spectrumNotIsolated:
4085  WerrorS( "the singularity is not isolated" );
4086  break;
4087  case spectrumNoHC:
4088  WerrorS( "highest corner cannot be computed" );
4089  break;
4090  case spectrumDegenerate:
4091  WerrorS( "principal part is degenerate" );
4092  break;
4093  case spectrumOK:
4094  break;
4095 
4096  default:
4097  WerrorS( "unknown error occurred" );
4098  break;
4099  }
4100 }
4101 
4103 {
4104  spectrumState state = spectrumOK;
4105 
4106  // -------------------
4107  // check consistency
4108  // -------------------
4109 
4110  // check for a local ring
4111 
4112  if( !ringIsLocal(currRing ) )
4113  {
4114  WerrorS( "only works for local orderings" );
4115  state = spectrumWrongRing;
4116  }
4117 
4118  // no quotient rings are allowed
4119 
4120  else if( currRing->qideal != NULL )
4121  {
4122  WerrorS( "does not work in quotient rings" );
4123  state = spectrumWrongRing;
4124  }
4125  else
4126  {
4127  lists L = (lists)NULL;
4128  int flag = 1; // weight corner optimization is safe
4129 
4130  state = spectrumCompute( (poly)first->Data( ),&L,flag );
4131 
4132  if( state==spectrumOK )
4133  {
4134  result->rtyp = LIST_CMD;
4135  result->data = (char*)L;
4136  }
4137  else
4138  {
4139  spectrumPrintError(state);
4140  }
4141  }
4142 
4143  return (state!=spectrumOK);
4144 }
4145 
4146 // ----------------------------------------------------------------------------
4147 // this procedure is called from the interpreter
4148 // ----------------------------------------------------------------------------
4149 // first = polynomial
4150 // result = list of spectrum numbers
4151 // ----------------------------------------------------------------------------
4152 
4154 {
4155  spectrumState state = spectrumOK;
4156 
4157  // -------------------
4158  // check consistency
4159  // -------------------
4160 
4161  // check for a local polynomial ring
4162 
4163  if( currRing->OrdSgn != -1 )
4164  // ?? HS: the test above is also true for k[x][[y]], k[[x]][y]
4165  // or should we use:
4166  //if( !ringIsLocal( ) )
4167  {
4168  WerrorS( "only works for local orderings" );
4169  state = spectrumWrongRing;
4170  }
4171  else if( currRing->qideal != NULL )
4172  {
4173  WerrorS( "does not work in quotient rings" );
4174  state = spectrumWrongRing;
4175  }
4176  else
4177  {
4178  lists L = (lists)NULL;
4179  int flag = 2; // symmetric optimization
4180 
4181  state = spectrumCompute( (poly)first->Data( ),&L,flag );
4182 
4183  if( state==spectrumOK )
4184  {
4185  result->rtyp = LIST_CMD;
4186  result->data = (char*)L;
4187  }
4188  else
4189  {
4190  spectrumPrintError(state);
4191  }
4192  }
4193 
4194  return (state!=spectrumOK);
4195 }
4196 
4197 // ----------------------------------------------------------------------------
4198 // check if a list is a spectrum
4199 // check for:
4200 // list has 6 elements
4201 // 1st element is int (mu=Milnor number)
4202 // 2nd element is int (pg=geometrical genus)
4203 // 3rd element is int (n =number of different spectrum numbers)
4204 // 4th element is intvec (num=numerators)
4205 // 5th element is intvec (den=denomiantors)
4206 // 6th element is intvec (mul=multiplicities)
4207 // exactly n numerators
4208 // exactly n denominators
4209 // exactly n multiplicities
4210 // mu>0
4211 // pg>=0
4212 // n>0
4213 // num>0
4214 // den>0
4215 // mul>0
4216 // symmetriy with respect to numberofvariables/2
4217 // monotony
4218 // mu = sum of all multiplicities
4219 // pg = sum of all multiplicities where num/den<=1
4220 // ----------------------------------------------------------------------------
4221 
4223 {
4224  // -------------------
4225  // check list length
4226  // -------------------
4227 
4228  if( l->nr < 5 )
4229  {
4230  return semicListTooShort;
4231  }
4232  else if( l->nr > 5 )
4233  {
4234  return semicListTooLong;
4235  }
4236 
4237  // -------------
4238  // check types
4239  // -------------
4240 
4241  if( l->m[0].rtyp != INT_CMD )
4242  {
4244  }
4245  else if( l->m[1].rtyp != INT_CMD )
4246  {
4248  }
4249  else if( l->m[2].rtyp != INT_CMD )
4250  {
4252  }
4253  else if( l->m[3].rtyp != INTVEC_CMD )
4254  {
4256  }
4257  else if( l->m[4].rtyp != INTVEC_CMD )
4258  {
4260  }
4261  else if( l->m[5].rtyp != INTVEC_CMD )
4262  {
4264  }
4265 
4266  // -------------------------
4267  // check number of entries
4268  // -------------------------
4269 
4270  int mu = (int)(long)(l->m[0].Data( ));
4271  int pg = (int)(long)(l->m[1].Data( ));
4272  int n = (int)(long)(l->m[2].Data( ));
4273 
4274  if( n <= 0 )
4275  {
4276  return semicListNNegative;
4277  }
4278 
4279  intvec *num = (intvec*)l->m[3].Data( );
4280  intvec *den = (intvec*)l->m[4].Data( );
4281  intvec *mul = (intvec*)l->m[5].Data( );
4282 
4283  if( n != num->length( ) )
4284  {
4286  }
4287  else if( n != den->length( ) )
4288  {
4290  }
4291  else if( n != mul->length( ) )
4292  {
4294  }
4295 
4296  // --------
4297  // values
4298  // --------
4299 
4300  if( mu <= 0 )
4301  {
4302  return semicListMuNegative;
4303  }
4304  if( pg < 0 )
4305  {
4306  return semicListPgNegative;
4307  }
4308 
4309  int i;
4310 
4311  for( i=0; i<n; i++ )
4312  {
4313  if( (*num)[i] <= 0 )
4314  {
4315  return semicListNumNegative;
4316  }
4317  if( (*den)[i] <= 0 )
4318  {
4319  return semicListDenNegative;
4320  }
4321  if( (*mul)[i] <= 0 )
4322  {
4323  return semicListMulNegative;
4324  }
4325  }
4326 
4327  // ----------------
4328  // check symmetry
4329  // ----------------
4330 
4331  int j;
4332 
4333  for( i=0, j=n-1; i<=j; i++,j-- )
4334  {
4335  if( (*num)[i] != rVar(currRing)*((*den)[i]) - (*num)[j] ||
4336  (*den)[i] != (*den)[j] ||
4337  (*mul)[i] != (*mul)[j] )
4338  {
4339  return semicListNotSymmetric;
4340  }
4341  }
4342 
4343  // ----------------
4344  // check monotony
4345  // ----------------
4346 
4347  for( i=0, j=1; i<n/2; i++,j++ )
4348  {
4349  if( (*num)[i]*(*den)[j] >= (*num)[j]*(*den)[i] )
4350  {
4351  return semicListNotMonotonous;
4352  }
4353  }
4354 
4355  // ---------------------
4356  // check Milnor number
4357  // ---------------------
4358 
4359  for( mu=0, i=0; i<n; i++ )
4360  {
4361  mu += (*mul)[i];
4362  }
4363 
4364  if( mu != (int)(long)(l->m[0].Data( )) )
4365  {
4366  return semicListMilnorWrong;
4367  }
4368 
4369  // -------------------------
4370  // check geometrical genus
4371  // -------------------------
4372 
4373  for( pg=0, i=0; i<n; i++ )
4374  {
4375  if( (*num)[i]<=(*den)[i] )
4376  {
4377  pg += (*mul)[i];
4378  }
4379  }
4380 
4381  if( pg != (int)(long)(l->m[1].Data( )) )
4382  {
4383  return semicListPGWrong;
4384  }
4385 
4386  return semicOK;
4387 }
4388 
4389 // ----------------------------------------------------------------------------
4390 // this procedure is called from the interpreter
4391 // ----------------------------------------------------------------------------
4392 // first = list of spectrum numbers
4393 // second = list of spectrum numbers
4394 // result = sum of the two lists
4395 // ----------------------------------------------------------------------------
4396 
4398 {
4399  semicState state;
4400 
4401  // -----------------
4402  // check arguments
4403  // -----------------
4404 
4405  lists l1 = (lists)first->Data( );
4406  lists l2 = (lists)second->Data( );
4407 
4408  if( (state=list_is_spectrum( l1 )) != semicOK )
4409  {
4410  WerrorS( "first argument is not a spectrum:" );
4411  list_error( state );
4412  }
4413  else if( (state=list_is_spectrum( l2 )) != semicOK )
4414  {
4415  WerrorS( "second argument is not a spectrum:" );
4416  list_error( state );
4417  }
4418  else
4419  {
4420  spectrum s1= spectrumFromList ( l1 );
4421  spectrum s2= spectrumFromList ( l2 );
4422  spectrum sum( s1+s2 );
4423 
4424  result->rtyp = LIST_CMD;
4425  result->data = (char*)(getList(sum));
4426  }
4427 
4428  return (state!=semicOK);
4429 }
4430 
4431 // ----------------------------------------------------------------------------
4432 // this procedure is called from the interpreter
4433 // ----------------------------------------------------------------------------
4434 // first = list of spectrum numbers
4435 // second = integer
4436 // result = the multiple of the first list by the second factor
4437 // ----------------------------------------------------------------------------
4438 
4440 {
4441  semicState state;
4442 
4443  // -----------------
4444  // check arguments
4445  // -----------------
4446 
4447  lists l = (lists)first->Data( );
4448  int k = (int)(long)second->Data( );
4449 
4450  if( (state=list_is_spectrum( l ))!=semicOK )
4451  {
4452  WerrorS( "first argument is not a spectrum" );
4453  list_error( state );
4454  }
4455  else if( k < 0 )
4456  {
4457  WerrorS( "second argument should be positive" );
4458  state = semicMulNegative;
4459  }
4460  else
4461  {
4463  spectrum product( k*s );
4464 
4465  result->rtyp = LIST_CMD;
4466  result->data = (char*)getList(product);
4467  }
4468 
4469  return (state!=semicOK);
4470 }
4471 
4472 // ----------------------------------------------------------------------------
4473 // this procedure is called from the interpreter
4474 // ----------------------------------------------------------------------------
4475 // first = list of spectrum numbers
4476 // second = list of spectrum numbers
4477 // result = semicontinuity index
4478 // ----------------------------------------------------------------------------
4479 
4481 {
4482  semicState state;
4483  BOOLEAN qh=(((int)(long)w->Data())==1);
4484 
4485  // -----------------
4486  // check arguments
4487  // -----------------
4488 
4489  lists l1 = (lists)u->Data( );
4490  lists l2 = (lists)v->Data( );
4491 
4492  if( (state=list_is_spectrum( l1 ))!=semicOK )
4493  {
4494  WerrorS( "first argument is not a spectrum" );
4495  list_error( state );
4496  }
4497  else if( (state=list_is_spectrum( l2 ))!=semicOK )
4498  {
4499  WerrorS( "second argument is not a spectrum" );
4500  list_error( state );
4501  }
4502  else
4503  {
4504  spectrum s1= spectrumFromList( l1 );
4505  spectrum s2= spectrumFromList( l2 );
4506 
4507  res->rtyp = INT_CMD;
4508  if (qh)
4509  res->data = (void*)(long)(s1.mult_spectrumh( s2 ));
4510  else
4511  res->data = (void*)(long)(s1.mult_spectrum( s2 ));
4512  }
4513 
4514  // -----------------
4515  // check status
4516  // -----------------
4517 
4518  return (state!=semicOK);
4519 }
4521 {
4522  sleftv tmp;
4523  memset(&tmp,0,sizeof(tmp));
4524  tmp.rtyp=INT_CMD;
4525  /* tmp.data = (void *)0; -- done by memset */
4526 
4527  return semicProc3(res,u,v,&tmp);
4528 }
4529 
4530 #endif
4531 
4533 {
4534  res->data= (void*)loNewtonPolytope( (ideal)arg1->Data() );
4535  return FALSE;
4536 }
4537 
4539 {
4540  if ( !(rField_is_long_R(currRing)) )
4541  {
4542  WerrorS("Ground field not implemented!");
4543  return TRUE;
4544  }
4545 
4546  simplex * LP;
4547  matrix m;
4548 
4549  leftv v= args;
4550  if ( v->Typ() != MATRIX_CMD ) // 1: matrix
4551  return TRUE;
4552  else
4553  m= (matrix)(v->CopyD());
4554 
4555  LP = new simplex(MATROWS(m),MATCOLS(m));
4556  LP->mapFromMatrix(m);
4557 
4558  v= v->next;
4559  if ( v->Typ() != INT_CMD ) // 2: m = number of constraints
4560  return TRUE;
4561  else
4562  LP->m= (int)(long)(v->Data());
4563 
4564  v= v->next;
4565  if ( v->Typ() != INT_CMD ) // 3: n = number of variables
4566  return TRUE;
4567  else
4568  LP->n= (int)(long)(v->Data());
4569 
4570  v= v->next;
4571  if ( v->Typ() != INT_CMD ) // 4: m1 = number of <= constraints
4572  return TRUE;
4573  else
4574  LP->m1= (int)(long)(v->Data());
4575 
4576  v= v->next;
4577  if ( v->Typ() != INT_CMD ) // 5: m2 = number of >= constraints
4578  return TRUE;
4579  else
4580  LP->m2= (int)(long)(v->Data());
4581 
4582  v= v->next;
4583  if ( v->Typ() != INT_CMD ) // 6: m3 = number of == constraints
4584  return TRUE;
4585  else
4586  LP->m3= (int)(long)(v->Data());
4587 
4588 #ifdef mprDEBUG_PROT
4589  Print("m (constraints) %d\n",LP->m);
4590  Print("n (columns) %d\n",LP->n);
4591  Print("m1 (<=) %d\n",LP->m1);
4592  Print("m2 (>=) %d\n",LP->m2);
4593  Print("m3 (==) %d\n",LP->m3);
4594 #endif
4595 
4596  LP->compute();
4597 
4598  lists lres= (lists)omAlloc( sizeof(slists) );
4599  lres->Init( 6 );
4600 
4601  lres->m[0].rtyp= MATRIX_CMD; // output matrix
4602  lres->m[0].data=(void*)LP->mapToMatrix(m);
4603 
4604  lres->m[1].rtyp= INT_CMD; // found a solution?
4605  lres->m[1].data=(void*)(long)LP->icase;
4606 
4607  lres->m[2].rtyp= INTVEC_CMD;
4608  lres->m[2].data=(void*)LP->posvToIV();
4609 
4610  lres->m[3].rtyp= INTVEC_CMD;
4611  lres->m[3].data=(void*)LP->zrovToIV();
4612 
4613  lres->m[4].rtyp= INT_CMD;
4614  lres->m[4].data=(void*)(long)LP->m;
4615 
4616  lres->m[5].rtyp= INT_CMD;
4617  lres->m[5].data=(void*)(long)LP->n;
4618 
4619  res->data= (void*)lres;
4620 
4621  return FALSE;
4622 }
4623 
4625 {
4626  ideal gls = (ideal)(arg1->Data());
4627  int imtype= (int)(long)arg2->Data();
4628 
4629  uResultant::resMatType mtype= determineMType( imtype );
4630 
4631  // check input ideal ( = polynomial system )
4632  if ( mprIdealCheck( gls, arg1->Name(), mtype, true ) != mprOk )
4633  {
4634  return TRUE;
4635  }
4636 
4637  uResultant *resMat= new uResultant( gls, mtype, false );
4638  if (resMat!=NULL)
4639  {
4640  res->rtyp = MODUL_CMD;
4641  res->data= (void*)resMat->accessResMat()->getMatrix();
4642  if (!errorreported) delete resMat;
4643  }
4644  return errorreported;
4645 }
4646 
4648 {
4649 
4650  poly gls;
4651  gls= (poly)(arg1->Data());
4652  int howclean= (int)(long)arg3->Data();
4653 
4654  if ( !(rField_is_R(currRing) ||
4655  rField_is_Q(currRing) ||
4658  {
4659  WerrorS("Ground field not implemented!");
4660  return TRUE;
4661  }
4662 
4665  {
4666  unsigned long int ii = (unsigned long int)arg2->Data();
4667  setGMPFloatDigits( ii, ii );
4668  }
4669 
4670  if ( gls == NULL || pIsConstant( gls ) )
4671  {
4672  WerrorS("Input polynomial is constant!");
4673  return TRUE;
4674  }
4675 
4676  int ldummy;
4677  int deg= currRing->pLDeg( gls, &ldummy, currRing );
4678  int i,vpos=0;
4679  poly piter;
4680  lists elist;
4681  lists rlist;
4682 
4683  elist= (lists)omAlloc( sizeof(slists) );
4684  elist->Init( 0 );
4685 
4686  if ( rVar(currRing) > 1 )
4687  {
4688  piter= gls;
4689  for ( i= 1; i <= rVar(currRing); i++ )
4690  if ( pGetExp( piter, i ) )
4691  {
4692  vpos= i;
4693  break;
4694  }
4695  while ( piter )
4696  {
4697  for ( i= 1; i <= rVar(currRing); i++ )
4698  if ( (vpos != i) && (pGetExp( piter, i ) != 0) )
4699  {
4700  WerrorS("The input polynomial must be univariate!");
4701  return TRUE;
4702  }
4703  pIter( piter );
4704  }
4705  }
4706 
4707  rootContainer * roots= new rootContainer();
4708  number * pcoeffs= (number *)omAlloc( (deg+1) * sizeof( number ) );
4709  piter= gls;
4710  for ( i= deg; i >= 0; i-- )
4711  {
4712  if ( piter && pTotaldegree(piter) == i )
4713  {
4714  pcoeffs[i]= nCopy( pGetCoeff( piter ) );
4715  //nPrint( pcoeffs[i] );PrintS(" ");
4716  pIter( piter );
4717  }
4718  else
4719  {
4720  pcoeffs[i]= nInit(0);
4721  }
4722  }
4723 
4724 #ifdef mprDEBUG_PROT
4725  for (i=deg; i >= 0; i--)
4726  {
4727  nPrint( pcoeffs[i] );PrintS(" ");
4728  }
4729  PrintLn();
4730 #endif
4731 
4732  roots->fillContainer( pcoeffs, NULL, 1, deg, rootContainer::onepoly, 1 );
4733  roots->solver( howclean );
4734 
4735  int elem= roots->getAnzRoots();
4736  char *dummy;
4737  int j;
4738 
4739  rlist= (lists)omAlloc( sizeof(slists) );
4740  rlist->Init( elem );
4741 
4743  {
4744  for ( j= 0; j < elem; j++ )
4745  {
4746  rlist->m[j].rtyp=NUMBER_CMD;
4747  rlist->m[j].data=(void *)nCopy((number)(roots->getRoot(j)));
4748  //rlist->m[j].data=(void *)(number)(roots->getRoot(j));
4749  }
4750  }
4751  else
4752  {
4753  for ( j= 0; j < elem; j++ )
4754  {
4755  dummy = complexToStr( (*roots)[j], gmp_output_digits, currRing->cf );
4756  rlist->m[j].rtyp=STRING_CMD;
4757  rlist->m[j].data=(void *)dummy;
4758  }
4759  }
4760 
4761  elist->Clean();
4762  //omFreeSize( (ADDRESS) elist, sizeof(slists) );
4763 
4764  // this is (via fillContainer) the same data as in root
4765  //for ( i= deg; i >= 0; i-- ) nDelete( &pcoeffs[i] );
4766  //omFreeSize( (ADDRESS) pcoeffs, (deg+1) * sizeof( number ) );
4767 
4768  delete roots;
4769 
4770  res->rtyp= LIST_CMD;
4771  res->data= (void*)rlist;
4772 
4773  return FALSE;
4774 }
4775 
4777 {
4778  int i;
4779  ideal p,w;
4780  p= (ideal)arg1->Data();
4781  w= (ideal)arg2->Data();
4782 
4783  // w[0] = f(p^0)
4784  // w[1] = f(p^1)
4785  // ...
4786  // p can be a vector of numbers (multivariate polynom)
4787  // or one number (univariate polynom)
4788  // tdg = deg(f)
4789 
4790  int n= IDELEMS( p );
4791  int m= IDELEMS( w );
4792  int tdg= (int)(long)arg3->Data();
4793 
4794  res->data= (void*)NULL;
4795 
4796  // check the input
4797  if ( tdg < 1 )
4798  {
4799  WerrorS("Last input parameter must be > 0!");
4800  return TRUE;
4801  }
4802  if ( n != rVar(currRing) )
4803  {
4804  Werror("Size of first input ideal must be equal to %d!",rVar(currRing));
4805  return TRUE;
4806  }
4807  if ( m != (int)pow((double)tdg+1,(double)n) )
4808  {
4809  Werror("Size of second input ideal must be equal to %d!",
4810  (int)pow((double)tdg+1,(double)n));
4811  return TRUE;
4812  }
4813  if ( !(rField_is_Q(currRing) /* ||
4814  rField_is_R() || rField_is_long_R() ||
4815  rField_is_long_C()*/ ) )
4816  {
4817  WerrorS("Ground field not implemented!");
4818  return TRUE;
4819  }
4820 
4821  number tmp;
4822  number *pevpoint= (number *)omAlloc( n * sizeof( number ) );
4823  for ( i= 0; i < n; i++ )
4824  {
4825  pevpoint[i]=nInit(0);
4826  if ( (p->m)[i] )
4827  {
4828  tmp = pGetCoeff( (p->m)[i] );
4829  if ( nIsZero(tmp) || nIsOne(tmp) || nIsMOne(tmp) )
4830  {
4831  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4832  WerrorS("Elements of first input ideal must not be equal to -1, 0, 1!");
4833  return TRUE;
4834  }
4835  } else tmp= NULL;
4836  if ( !nIsZero(tmp) )
4837  {
4838  if ( !pIsConstant((p->m)[i]))
4839  {
4840  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4841  WerrorS("Elements of first input ideal must be numbers!");
4842  return TRUE;
4843  }
4844  pevpoint[i]= nCopy( tmp );
4845  }
4846  }
4847 
4848  number *wresults= (number *)omAlloc( m * sizeof( number ) );
4849  for ( i= 0; i < m; i++ )
4850  {
4851  wresults[i]= nInit(0);
4852  if ( (w->m)[i] && !nIsZero(pGetCoeff((w->m)[i])) )
4853  {
4854  if ( !pIsConstant((w->m)[i]))
4855  {
4856  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4857  omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4858  WerrorS("Elements of second input ideal must be numbers!");
4859  return TRUE;
4860  }
4861  wresults[i]= nCopy(pGetCoeff((w->m)[i]));
4862  }
4863  }
4864 
4865  vandermonde vm( m, n, tdg, pevpoint, FALSE );
4866  number *ncpoly= vm.interpolateDense( wresults );
4867  // do not free ncpoly[]!!
4868  poly rpoly= vm.numvec2poly( ncpoly );
4869 
4870  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4871  omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4872 
4873  res->data= (void*)rpoly;
4874  return FALSE;
4875 }
4876 
4878 {
4879  leftv v= args;
4880 
4881  ideal gls;
4882  int imtype;
4883  int howclean;
4884 
4885  // get ideal
4886  if ( v->Typ() != IDEAL_CMD )
4887  return TRUE;
4888  else gls= (ideal)(v->Data());
4889  v= v->next;
4890 
4891  // get resultant matrix type to use (0,1)
4892  if ( v->Typ() != INT_CMD )
4893  return TRUE;
4894  else imtype= (int)(long)v->Data();
4895  v= v->next;
4896 
4897  if (imtype==0)
4898  {
4899  ideal test_id=idInit(1,1);
4900  int j;
4901  for(j=IDELEMS(gls)-1;j>=0;j--)
4902  {
4903  if (gls->m[j]!=NULL)
4904  {
4905  test_id->m[0]=gls->m[j];
4906  intvec *dummy_w=id_QHomWeight(test_id, currRing);
4907  if (dummy_w!=NULL)
4908  {
4909  WerrorS("Newton polytope not of expected dimension");
4910  delete dummy_w;
4911  return TRUE;
4912  }
4913  }
4914  }
4915  }
4916 
4917  // get and set precision in digits ( > 0 )
4918  if ( v->Typ() != INT_CMD )
4919  return TRUE;
4920  else if ( !(rField_is_R(currRing) || rField_is_long_R(currRing) || \
4922  {
4923  unsigned long int ii=(unsigned long int)v->Data();
4924  setGMPFloatDigits( ii, ii );
4925  }
4926  v= v->next;
4927 
4928  // get interpolation steps (0,1,2)
4929  if ( v->Typ() != INT_CMD )
4930  return TRUE;
4931  else howclean= (int)(long)v->Data();
4932 
4933  uResultant::resMatType mtype= determineMType( imtype );
4934  int i,count;
4935  lists listofroots= NULL;
4936  number smv= NULL;
4937  BOOLEAN interpolate_det= (mtype==uResultant::denseResMat)?TRUE:FALSE;
4938 
4939  //emptylist= (lists)omAlloc( sizeof(slists) );
4940  //emptylist->Init( 0 );
4941 
4942  //res->rtyp = LIST_CMD;
4943  //res->data= (void *)emptylist;
4944 
4945  // check input ideal ( = polynomial system )
4946  if ( mprIdealCheck( gls, args->Name(), mtype ) != mprOk )
4947  {
4948  return TRUE;
4949  }
4950 
4951  uResultant * ures;
4952  rootContainer ** iproots;
4953  rootContainer ** muiproots;
4954  rootArranger * arranger;
4955 
4956  // main task 1: setup of resultant matrix
4957  ures= new uResultant( gls, mtype );
4958  if ( ures->accessResMat()->initState() != resMatrixBase::ready )
4959  {
4960  WerrorS("Error occurred during matrix setup!");
4961  return TRUE;
4962  }
4963 
4964  // if dense resultant, check if minor nonsingular
4965  if ( mtype == uResultant::denseResMat )
4966  {
4967  smv= ures->accessResMat()->getSubDet();
4968 #ifdef mprDEBUG_PROT
4969  PrintS("// Determinant of submatrix: ");nPrint(smv);PrintLn();
4970 #endif
4971  if ( nIsZero(smv) )
4972  {
4973  WerrorS("Unsuitable input ideal: Minor of resultant matrix is singular!");
4974  return TRUE;
4975  }
4976  }
4977 
4978  // main task 2: Interpolate specialized resultant polynomials
4979  if ( interpolate_det )
4980  iproots= ures->interpolateDenseSP( false, smv );
4981  else
4982  iproots= ures->specializeInU( false, smv );
4983 
4984  // main task 3: Interpolate specialized resultant polynomials
4985  if ( interpolate_det )
4986  muiproots= ures->interpolateDenseSP( true, smv );
4987  else
4988  muiproots= ures->specializeInU( true, smv );
4989 
4990 #ifdef mprDEBUG_PROT
4991  int c= iproots[0]->getAnzElems();
4992  for (i=0; i < c; i++) pWrite(iproots[i]->getPoly());
4993  c= muiproots[0]->getAnzElems();
4994  for (i=0; i < c; i++) pWrite(muiproots[i]->getPoly());
4995 #endif
4996 
4997  // main task 4: Compute roots of specialized polys and match them up
4998  arranger= new rootArranger( iproots, muiproots, howclean );
4999  arranger->solve_all();
5000 
5001  // get list of roots
5002  if ( arranger->success() )
5003  {
5004  arranger->arrange();
5005  listofroots= listOfRoots(arranger, gmp_output_digits );
5006  }
5007  else
5008  {
5009  WerrorS("Solver was unable to find any roots!");
5010  return TRUE;
5011  }
5012 
5013  // free everything
5014  count= iproots[0]->getAnzElems();
5015  for (i=0; i < count; i++) delete iproots[i];
5016  omFreeSize( (ADDRESS) iproots, count * sizeof(rootContainer*) );
5017  count= muiproots[0]->getAnzElems();
5018  for (i=0; i < count; i++) delete muiproots[i];
5019  omFreeSize( (ADDRESS) muiproots, count * sizeof(rootContainer*) );
5020 
5021  delete ures;
5022  delete arranger;
5023  nDelete( &smv );
5024 
5025  res->data= (void *)listofroots;
5026 
5027  //emptylist->Clean();
5028  // omFreeSize( (ADDRESS) emptylist, sizeof(slists) );
5029 
5030  return FALSE;
5031 }
5032 
5033 // from mpr_numeric.cc
5034 lists listOfRoots( rootArranger* self, const unsigned int oprec )
5035 {
5036  int i,j;
5037  int count= self->roots[0]->getAnzRoots(); // number of roots
5038  int elem= self->roots[0]->getAnzElems(); // number of koordinates per root
5039 
5040  lists listofroots= (lists)omAlloc( sizeof(slists) ); // must be done this way!
5041 
5042  if ( self->found_roots )
5043  {
5044  listofroots->Init( count );
5045 
5046  for (i=0; i < count; i++)
5047  {
5048  lists onepoint= (lists)omAlloc(sizeof(slists)); // must be done this way!
5049  onepoint->Init(elem);
5050  for ( j= 0; j < elem; j++ )
5051  {
5052  if ( !rField_is_long_C(currRing) )
5053  {
5054  onepoint->m[j].rtyp=STRING_CMD;
5055  onepoint->m[j].data=(void *)complexToStr((*self->roots[j])[i],oprec, currRing->cf);
5056  }
5057  else
5058  {
5059  onepoint->m[j].rtyp=NUMBER_CMD;
5060  onepoint->m[j].data=(void *)n_Copy((number)(self->roots[j]->getRoot(i)), currRing->cf);
5061  }
5062  onepoint->m[j].next= NULL;
5063  onepoint->m[j].name= NULL;
5064  }
5065  listofroots->m[i].rtyp=LIST_CMD;
5066  listofroots->m[i].data=(void *)onepoint;
5067  listofroots->m[j].next= NULL;
5068  listofroots->m[j].name= NULL;
5069  }
5070 
5071  }
5072  else
5073  {
5074  listofroots->Init( 0 );
5075  }
5076 
5077  return listofroots;
5078 }
5079 
5080 // from ring.cc
5082 {
5083  ring rg = NULL;
5084  if (h!=NULL)
5085  {
5086 // Print(" new ring:%s (l:%d)\n",IDID(h),IDLEV(h));
5087  rg = IDRING(h);
5088  if (rg==NULL) return; //id <>NULL, ring==NULL
5089  omCheckAddrSize((ADDRESS)h,sizeof(idrec));
5090  if (IDID(h)) // OB: ????
5092  rTest(rg);
5093  }
5094  else return;
5095 
5096  // clean up history
5097  if (currRing!=NULL)
5098  {
5100  {
5102  //memset(&sLastPrinted,0,sizeof(sleftv)); // done by Cleanup,Init
5103  }
5104 
5105  if (rg!=currRing)/*&&(currRing!=NULL)*/
5106  {
5107  if (rg->cf!=currRing->cf)
5108  {
5110  if (DENOMINATOR_LIST!=NULL)
5111  {
5112  if (TEST_V_ALLWARN)
5113  Warn("deleting denom_list for ring change to %s",IDID(h));
5114  do
5115  {
5116  n_Delete(&(dd->n),currRing->cf);
5117  dd=dd->next;
5119  DENOMINATOR_LIST=dd;
5120  } while(DENOMINATOR_LIST!=NULL);
5121  }
5122  }
5123  }
5124  }
5125 
5126  // test for valid "currRing":
5127  if ((rg!=NULL) && (rg->idroot==NULL))
5128  {
5129  ring old=rg;
5130  rg=rAssure_HasComp(rg);
5131  if (old!=rg)
5132  {
5133  rKill(old);
5134  IDRING(h)=rg;
5135  }
5136  }
5137  /*------------ change the global ring -----------------------*/
5138  rChangeCurrRing(rg);
5139  currRingHdl = h;
5140 }
5141 
5143 {
5144  // change some bad orderings/combination into better ones
5145  leftv h=ord;
5146  while(h!=NULL)
5147  {
5148  BOOLEAN change=FALSE;
5149  intvec *iv = (intvec *)(h->data);
5150  // ws(-i) -> wp(i)
5151  if ((*iv)[1]==ringorder_ws)
5152  {
5153  BOOLEAN neg=TRUE;
5154  for(int i=2;i<iv->length();i++)
5155  if((*iv)[i]>=0) { neg=FALSE; break; }
5156  if (neg)
5157  {
5158  (*iv)[1]=ringorder_wp;
5159  for(int i=2;i<iv->length();i++)
5160  (*iv)[i]= - (*iv)[i];
5161  change=TRUE;
5162  }
5163  }
5164  // Ws(-i) -> Wp(i)
5165  if ((*iv)[1]==ringorder_Ws)
5166  {
5167  BOOLEAN neg=TRUE;
5168  for(int i=2;i<iv->length();i++)
5169  if((*iv)[i]>=0) { neg=FALSE; break; }
5170  if (neg)
5171  {
5172  (*iv)[1]=ringorder_Wp;
5173  for(int i=2;i<iv->length();i++)
5174  (*iv)[i]= -(*iv)[i];
5175  change=TRUE;
5176  }
5177  }
5178  // wp(1) -> dp
5179  if ((*iv)[1]==ringorder_wp)
5180  {
5181  BOOLEAN all_one=TRUE;
5182  for(int i=2;i<iv->length();i++)
5183  if((*iv)[i]!=1) { all_one=FALSE; break; }
5184  if (all_one)
5185  {
5186  intvec *iv2=new intvec(3);
5187  (*iv2)[0]=1;
5188  (*iv2)[1]=ringorder_dp;
5189  (*iv2)[2]=iv->length()-2;
5190  delete iv;
5191  iv=iv2;
5192  h->data=iv2;
5193  change=TRUE;
5194  }
5195  }
5196  // Wp(1) -> Dp
5197  if ((*iv)[1]==ringorder_Wp)
5198  {
5199  BOOLEAN all_one=TRUE;
5200  for(int i=2;i<iv->length();i++)
5201  if((*iv)[i]!=1) { all_one=FALSE; break; }
5202  if (all_one)
5203  {
5204  intvec *iv2=new intvec(3);
5205  (*iv2)[0]=1;
5206  (*iv2)[1]=ringorder_Dp;
5207  (*iv2)[2]=iv->length()-2;
5208  delete iv;
5209  iv=iv2;
5210  h->data=iv2;
5211  change=TRUE;
5212  }
5213  }
5214  // dp(1)/Dp(1)/rp(1) -> lp(1)
5215  if (((*iv)[1]==ringorder_dp)
5216  || ((*iv)[1]==ringorder_Dp)
5217  || ((*iv)[1]==ringorder_rp))
5218  {
5219  if (iv->length()==3)
5220  {
5221  if ((*iv)[2]==1)
5222  {
5223  (*iv)[1]=ringorder_lp;
5224  change=TRUE;
5225  }
5226  }
5227  }
5228  // lp(i),lp(j) -> lp(i+j)
5229  if(((*iv)[1]==ringorder_lp)
5230  && (h->next!=NULL))
5231  {
5232  intvec *iv2 = (intvec *)(h->next->data);
5233  if ((*iv2)[1]==ringorder_lp)
5234  {
5235  leftv hh=h->next;
5236  h->next=hh->next;
5237  hh->next=NULL;
5238  if ((*iv2)[0]==1)
5239  (*iv)[2] += 1; // last block unspecified, at least 1
5240  else
5241  (*iv)[2] += (*iv2)[2];
5242  hh->CleanUp();
5243  omFree(hh);
5244  change=TRUE;
5245  }
5246  }
5247  // -------------------
5248  if (!change) h=h->next;
5249  }
5250  return ord;
5251 }
5252 
5253 
5255 {
5256  int last = 0, o=0, n = 1, i=0, typ = 1, j;
5257  ord=rOptimizeOrdAsSleftv(ord);
5258  sleftv *sl = ord;
5259 
5260  // determine nBlocks
5261  while (sl!=NULL)
5262  {
5263  intvec *iv = (intvec *)(sl->data);
5264  if (((*iv)[1]==ringorder_c)||((*iv)[1]==ringorder_C))
5265  i++;
5266  else if ((*iv)[1]==ringorder_L)
5267  {
5268  R->bitmask=(*iv)[2]*2+1;
5269  n--;
5270  }
5271  else if (((*iv)[1]!=ringorder_a)
5272  && ((*iv)[1]!=ringorder_a64)
5273  && ((*iv)[1]!=ringorder_am))
5274  o++;
5275  n++;
5276  sl=sl->next;
5277  }
5278  // check whether at least one real ordering
5279  if (o==0)
5280  {
5281  WerrorS("invalid combination of orderings");
5282  return TRUE;
5283  }
5284  // if no c/C ordering is given, increment n
5285  if (i==0) n++;
5286  else if (i != 1)
5287  {
5288  // throw error if more than one is given
5289  WerrorS("more than one ordering c/C specified");
5290  return TRUE;
5291  }
5292 
5293  // initialize fields of R
5294  R->order=(rRingOrder_t *)omAlloc0(n*sizeof(rRingOrder_t));
5295  R->block0=(int *)omAlloc0(n*sizeof(int));
5296  R->block1=(int *)omAlloc0(n*sizeof(int));
5297  R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
5298 
5299  int *weights=(int*)omAlloc0((R->N+1)*sizeof(int));
5300 
5301  // init order, so that rBlocks works correctly
5302  for (j=0; j < n-1; j++)
5303  R->order[j] = ringorder_unspec;
5304  // set last _C order, if no c/C order was given
5305  if (i == 0) R->order[n-2] = ringorder_C;
5306 
5307  /* init orders */
5308  sl=ord;
5309  n=-1;
5310  while (sl!=NULL)
5311  {
5312  intvec *iv;
5313  iv = (intvec *)(sl->data);
5314  if ((*iv)[1]!=ringorder_L)
5315  {
5316  n++;
5317 
5318  /* the format of an ordering:
5319  * iv[0]: factor
5320  * iv[1]: ordering
5321  * iv[2..end]: weights
5322  */
5323  R->order[n] = (rRingOrder_t)((*iv)[1]);
5324  typ=1;
5325  switch ((*iv)[1])
5326  {
5327  case ringorder_ws:
5328  case ringorder_Ws:
5329  typ=-1;
5330  case ringorder_wp:
5331  case ringorder_Wp:
5332  R->wvhdl[n]=(int*)omAlloc((iv->length()-1)*sizeof(int));
5333  R->block0[n] = last+1;
5334  for (i=2; i<iv->length(); i++)
5335  {
5336  R->wvhdl[n][i-2] = (*iv)[i];
5337  last++;
5338  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5339  }
5340  R->block1[n] = si_min(last,R->N);
5341  break;
5342  case ringorder_ls:
5343  case ringorder_ds:
5344  case ringorder_Ds:
5345  case ringorder_rs:
5346  typ=-1;
5347  case ringorder_lp:
5348  case ringorder_dp:
5349  case ringorder_Dp:
5350  case ringorder_rp:
5351  R->block0[n] = last+1;
5352  if (iv->length() == 3) last+=(*iv)[2];
5353  else last += (*iv)[0];
5354  R->block1[n] = si_min(last,R->N);
5355  if (rCheckIV(iv)) return TRUE;
5356  for(i=si_min(rVar(R),R->block1[n]);i>=R->block0[n];i--)
5357  {
5358  if (weights[i]==0) weights[i]=typ;
5359  }
5360  break;
5361 
5362  case ringorder_s: // no 'rank' params!
5363  {
5364 
5365  if(iv->length() > 3)
5366  return TRUE;
5367 
5368  if(iv->length() == 3)
5369  {
5370  const int s = (*iv)[2];
5371  R->block0[n] = s;
5372  R->block1[n] = s;
5373  }
5374  break;
5375  }
5376  case ringorder_IS:
5377  {
5378  if(iv->length() != 3) return TRUE;
5379 
5380  const int s = (*iv)[2];
5381 
5382  if( 1 < s || s < -1 ) return TRUE;
5383 
5384  R->block0[n] = s;
5385  R->block1[n] = s;
5386  break;
5387  }
5388  case ringorder_S:
5389  case ringorder_c:
5390  case ringorder_C:
5391  {
5392  if (rCheckIV(iv)) return TRUE;
5393  break;
5394  }
5395  case ringorder_aa:
5396  case ringorder_a:
5397  {
5398  R->block0[n] = last+1;
5399  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5400  R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int));
5401  for (i=2; i<iv->length(); i++)
5402  {
5403  R->wvhdl[n][i-2]=(*iv)[i];
5404  last++;
5405  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5406  }
5407  last=R->block0[n]-1;
5408  break;
5409  }
5410  case ringorder_am:
5411  {
5412  R->block0[n] = last+1;
5413  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5414  R->wvhdl[n] = (int*)omAlloc(iv->length()*sizeof(int));
5415  if (R->block1[n]- R->block0[n]+2>=iv->length())
5416  WarnS("missing module weights");
5417  for (i=2; i<=(R->block1[n]-R->block0[n]+2); i++)
5418  {
5419  R->wvhdl[n][i-2]=(*iv)[i];
5420  last++;
5421  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5422  }
5423  R->wvhdl[n][i-2]=iv->length() -3 -(R->block1[n]- R->block0[n]);
5424  for (; i<iv->length(); i++)
5425  {
5426  R->wvhdl[n][i-1]=(*iv)[i];
5427  }
5428  last=R->block0[n]-1;
5429  break;
5430  }
5431  case ringorder_a64:
5432  {
5433  R->block0[n] = last+1;
5434  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5435  R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int64));
5436  int64 *w=(int64 *)R->wvhdl[n];
5437  for (i=2; i<iv->length(); i++)
5438  {
5439  w[i-2]=(*iv)[i];
5440  last++;
5441  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5442  }
5443  last=R->block0[n]-1;
5444  break;
5445  }
5446  case ringorder_M:
5447  {
5448  int Mtyp=rTypeOfMatrixOrder(iv);
5449  if (Mtyp==0) return TRUE;
5450  if (Mtyp==-1) typ = -1;
5451 
5452  R->wvhdl[n] =( int *)omAlloc((iv->length()-1)*sizeof(int));
5453  for (i=2; i<iv->length();i++)
5454  R->wvhdl[n][i-2]=(*iv)[i];
5455 
5456  R->block0[n] = last+1;
5457  last += (int)sqrt((double)(iv->length()-2));
5458  R->block1[n] = si_min(last,R->N);
5459  for(i=R->block1[n];i>=R->block0[n];i--)
5460  {
5461  if (weights[i]==0) weights[i]=typ;
5462  }
5463  break;
5464  }
5465 
5466  case ringorder_no:
5467  R->order[n] = ringorder_unspec;
5468  return TRUE;
5469 
5470  default:
5471  Werror("Internal Error: Unknown ordering %d", (*iv)[1]);
5472  R->order[n] = ringorder_unspec;
5473  return TRUE;
5474  }
5475  }
5476  if (last>R->N)
5477  {
5478  Werror("mismatch of number of vars (%d) and ordering (>=%d vars)",
5479  R->N,last);
5480  return TRUE;
5481  }
5482  sl=sl->next;
5483  }
5484  // find OrdSgn:
5485  R->OrdSgn = 1;
5486  for(i=1;i<=R->N;i++)
5487  { if (weights[i]<0) { R->OrdSgn=-1;break; }}
5488  omFree(weights);
5489 
5490  // check for complete coverage
5491  while ( n >= 0 && (
5492  (R->order[n]==ringorder_c)
5493  || (R->order[n]==ringorder_C)
5494  || (R->order[n]==ringorder_s)
5495  || (R->order[n]==ringorder_S)
5496  || (R->order[n]==ringorder_IS)
5497  )) n--;
5498 
5499  assume( n >= 0 );
5500 
5501  if (R->block1[n] != R->N)
5502  {
5503  if (((R->order[n]==ringorder_dp) ||
5504  (R->order[n]==ringorder_ds) ||
5505  (R->order[n]==ringorder_Dp) ||
5506  (R->order[n]==ringorder_Ds) ||
5507  (R->order[n]==ringorder_rp) ||
5508  (R->order[n]==ringorder_rs) ||
5509  (R->order[n]==ringorder_lp) ||
5510  (R->order[n]==ringorder_ls))
5511  &&
5512  R->block0[n] <= R->N)
5513  {
5514  R->block1[n] = R->N;
5515  }
5516  else
5517  {
5518  Werror("mismatch of number of vars (%d) and ordering (%d vars)",
5519  R->N,R->block1[n]);
5520  return TRUE;
5521  }
5522  }
5523  return FALSE;
5524 }
5525 
5527 {
5528 
5529  while(sl!=NULL)
5530  {
5531  if ((sl->rtyp == IDHDL)||(sl->rtyp==ALIAS_CMD))
5532  {
5533  *p = omStrDup(sl->Name());
5534  }
5535  else if (sl->name!=NULL)
5536  {
5537  *p = (char*)sl->name;
5538  sl->name=NULL;
5539  }
5540  else if (sl->rtyp==POLY_CMD)
5541  {
5542  sleftv s_sl;
5543  iiConvert(POLY_CMD,ANY_TYPE,-1,sl,&s_sl);
5544  if (s_sl.name != NULL)
5545  {
5546  *p = (char*)s_sl.name; s_sl.name=NULL;
5547  }
5548  else
5549  *p = NULL;
5550  sl->next = s_sl.next;
5551  s_sl.next = NULL;
5552  s_sl.CleanUp();
5553  if (*p == NULL) return TRUE;
5554  }
5555  else return TRUE;
5556  p++;
5557  sl=sl->next;
5558  }
5559  return FALSE;
5560 }
5561 
5562 const short MAX_SHORT = 32767; // (1 << (sizeof(short)*8)) - 1;
5563 
5564 ////////////////////
5565 //
5566 // rInit itself:
5567 //
5568 // INPUT: pn: ch & parameter (names), rv: variable (names)
5569 // ord: ordering (all !=NULL)
5570 // RETURN: currRingHdl on success
5571 // NULL on error
5572 // NOTE: * makes new ring to current ring, on success
5573 // * considers input sleftv's as read-only
5574 ring rInit(leftv pn, leftv rv, leftv ord)
5575 {
5576  int float_len=0;
5577  int float_len2=0;
5578  ring R = NULL;
5579  //BOOLEAN ffChar=FALSE;
5580 
5581  /* ch -------------------------------------------------------*/
5582  // get ch of ground field
5583 
5584  // allocated ring
5585  R = (ring) omAlloc0Bin(sip_sring_bin);
5586 
5587  coeffs cf = NULL;
5588 
5589  assume( pn != NULL );
5590  const int P = pn->listLength();
5591 
5592  if (pn->Typ()==CRING_CMD)
5593  {
5594  cf=(coeffs)pn->CopyD();
5595  leftv pnn=pn;
5596  if(P>1) /*parameter*/
5597  {
5598  pnn = pnn->next;
5599  const int pars = pnn->listLength();
5600  assume( pars > 0 );
5601  char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5602 
5603  if (rSleftvList2StringArray(pnn, names))
5604  {
5605  WerrorS("parameter expected");
5606  goto rInitError;
5607  }
5608 
5609  TransExtInfo extParam;
5610 
5611  extParam.r = rDefault( cf, pars, names); // Q/Zp [ p_1, ... p_pars ]
5612  for(int i=pars-1; i>=0;i--)
5613  {
5614  omFree(names[i]);
5615  }
5616  omFree(names);
5617 
5618  cf = nInitChar(n_transExt, &extParam);
5619  }
5620  assume( cf != NULL );
5621  }
5622  else if (pn->Typ()==INT_CMD)
5623  {
5624  int ch = (int)(long)pn->Data();
5625  leftv pnn=pn;
5626 
5627  /* parameter? -------------------------------------------------------*/
5628  pnn = pnn->next;
5629 
5630  if (pnn == NULL) // no params!?
5631  {
5632  if (ch!=0)
5633  {
5634  int ch2=IsPrime(ch);
5635  if ((ch<2)||(ch!=ch2))
5636  {
5637  Warn("%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5638  ch=32003;
5639  }
5640  #ifndef TEST_ZN_AS_ZP
5641  cf = nInitChar(n_Zp, (void*)(long)ch);
5642  #else
5643  mpz_t modBase;
5644  mpz_init_set_ui(modBase, (long)ch);
5645  ZnmInfo info;
5646  info.base= modBase;
5647  info.exp= 1;
5648  cf=nInitChar(n_Zn,(void*) &info);
5649  cf->is_field=1;
5650  cf->is_domain=1;
5651  cf->has_simple_Inverse=1;
5652  #endif
5653  }
5654  else
5655  cf = nInitChar(n_Q, (void*)(long)ch);
5656  }
5657  else
5658  {
5659  const int pars = pnn->listLength();
5660 
5661  assume( pars > 0 );
5662 
5663  // predefined finite field: (p^k, a)
5664  if ((ch!=0) && (ch!=IsPrime(ch)) && (pars == 1))
5665  {
5666  GFInfo param;
5667 
5668  param.GFChar = ch;
5669  param.GFDegree = 1;
5670  param.GFPar_name = pnn->name;
5671 
5672  cf = nInitChar(n_GF, &param);
5673  }
5674  else // (0/p, a, b, ..., z)
5675  {
5676  if ((ch!=0) && (ch!=IsPrime(ch)))
5677  {
5678  WerrorS("too many parameters");
5679  goto rInitError;
5680  }
5681 
5682  char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5683 
5684  if (rSleftvList2StringArray(pnn, names))
5685  {
5686  WerrorS("parameter expected");
5687  goto rInitError;
5688  }
5689 
5690  TransExtInfo extParam;
5691 
5692  extParam.r = rDefault( ch, pars, names); // Q/Zp [ p_1, ... p_pars ]
5693  for(int i=pars-1; i>=0;i--)
5694  {
5695  omFree(names[i]);
5696  }
5697  omFree(names);
5698 
5699  cf = nInitChar(n_transExt, &extParam);
5700  }
5701  }
5702 
5703  //if (cf==NULL) ->Error: Invalid ground field specification
5704  }
5705  else if ((pn->name != NULL)
5706  && ((strcmp(pn->name,"real")==0) || (strcmp(pn->name,"complex")==0)))
5707  {
5708  leftv pnn=pn->next;
5709  BOOLEAN complex_flag=(strcmp(pn->name,"complex")==0);
5710  if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5711  {
5712  float_len=(int)(long)pnn->Data();
5713  float_len2=float_len;
5714  pnn=pnn->next;
5715  if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5716  {
5717  float_len2=(int)(long)pnn->Data();
5718  pnn=pnn->next;
5719  }
5720  }
5721 
5722  if (!complex_flag)
5723  complex_flag= (pnn!=NULL) && (pnn->name!=NULL);
5724  if( !complex_flag && (float_len2 <= (short)SHORT_REAL_LENGTH))
5725  cf=nInitChar(n_R, NULL);
5726  else // longR or longC?
5727  {
5728  LongComplexInfo param;
5729 
5730  param.float_len = si_min (float_len, 32767);
5731  param.float_len2 = si_min (float_len2, 32767);
5732 
5733  // set the parameter name
5734  if (complex_flag)
5735  {
5736  if (param.float_len < SHORT_REAL_LENGTH)
5737  {
5740  }
5741  if ((pnn == NULL) || (pnn->name == NULL))
5742  param.par_name=(const char*)"i"; //default to i
5743  else
5744  param.par_name = (const char*)pnn->name;
5745  }
5746 
5747  cf = nInitChar(complex_flag ? n_long_C: n_long_R, (void*)&param);
5748  }
5749  assume( cf != NULL );
5750  }
5751 #ifdef HAVE_RINGS
5752  else if ((pn->name != NULL) && (strcmp(pn->name, "integer") == 0))
5753  {
5754  // TODO: change to use coeffs_BIGINT!?
5755  mpz_t modBase;
5756  unsigned int modExponent = 1;
5757  mpz_init_set_si(modBase, 0);
5758  if (pn->next!=NULL)
5759  {
5760  leftv pnn=pn;
5761  if (pnn->next->Typ()==INT_CMD)
5762  {
5763  pnn=pnn->next;
5764  mpz_set_ui(modBase, (long) pnn->Data());
5765  if ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5766  {
5767  pnn=pnn->next;
5768  modExponent = (long) pnn->Data();
5769  }
5770  while ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5771  {
5772  pnn=pnn->next;
5773  mpz_mul_ui(modBase, modBase, (int)(long) pnn->Data());
5774  }
5775  }
5776  else if (pnn->next->Typ()==BIGINT_CMD)
5777  {
5778  number p=(number)pnn->next->CopyD();
5779  nlGMP(p,modBase,coeffs_BIGINT); // TODO? // extern void nlGMP(number &i, mpz_t n, const coeffs r); // FIXME: n_MPZ( modBase, p, coeffs_BIGINT); ?
5781  }
5782  }
5783  else
5784  cf=nInitChar(n_Z,NULL);
5785 
5786  if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
5787  {
5788  WerrorS("Wrong ground ring specification (module is 1)");
5789  goto rInitError;
5790  }
5791  if (modExponent < 1)
5792  {
5793  WerrorS("Wrong ground ring specification (exponent smaller than 1");
5794  goto rInitError;
5795  }
5796  // module is 0 ---> integers ringtype = 4;
5797  // we have an exponent
5798  if (modExponent > 1 && cf == NULL)
5799  {
5800  if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
5801  {
5802  /* this branch should be active for modExponent = 2..32 resp. 2..64,
5803  depending on the size of a long on the respective platform */
5804  //ringtype = 1; // Use Z/2^ch
5805  cf=nInitChar(n_Z2m,(void*)(long)modExponent);
5806  }
5807  else
5808  {
5809  if (mpz_sgn1(modBase)==0)
5810  {
5811  WerrorS("modulus must not be 0 or parameter not allowed");
5812  goto rInitError;
5813  }
5814  //ringtype = 3;
5815  ZnmInfo info;
5816  info.base= modBase;
5817  info.exp= modExponent;
5818  cf=nInitChar(n_Znm,(void*) &info); //exponent is missing
5819  }
5820  }
5821  // just a module m > 1
5822  else if (cf == NULL)
5823  {
5824  if (mpz_sgn1(modBase)==0)
5825  {
5826  WerrorS("modulus must not be 0 or parameter not allowed");
5827  goto rInitError;
5828  }
5829  //ringtype = 2;
5830  ZnmInfo info;
5831  info.base= modBase;
5832  info.exp= modExponent;
5833  cf=nInitChar(n_Zn,(void*) &info);
5834  }
5835  assume( cf != NULL );
5836  mpz_clear(modBase);
5837  }
5838 #endif
5839  // ring NEW = OLD, (), (); where OLD is a polynomial ring...
5840  else if ((pn->Typ()==RING_CMD) && (P == 1))
5841  {
5842  TransExtInfo extParam;
5843  extParam.r = (ring)pn->Data();
5844  cf = nInitChar(n_transExt, &extParam);
5845  }
5846  //else if ((pn->Typ()==QRING_CMD) && (P == 1)) // same for qrings - which should be fields!?
5847  //{
5848  // AlgExtInfo extParam;
5849  // extParam.r = (ring)pn->Data();
5850 
5851  // cf = nInitChar(n_algExt, &extParam); // Q[a]/<minideal>
5852  //}
5853  else
5854  {
5855  WerrorS("Wrong or unknown ground field specification");
5856 #if 0
5857 // debug stuff for unknown cf descriptions:
5858  sleftv* p = pn;
5859  while (p != NULL)
5860  {
5861  Print( "pn[%p]: type: %d [%s]: %p, name: %s", (void*)p, p->Typ(), Tok2Cmdname(p->Typ()), p->Data(), (p->name == NULL? "NULL" : p->name) );
5862  PrintLn();
5863  p = p->next;
5864  }
5865 #endif
5866  goto rInitError;
5867  }
5868 
5869  /*every entry in the new ring is initialized to 0*/
5870 
5871  /* characteristic -----------------------------------------------*/
5872  /* input: 0 ch=0 : Q parameter=NULL ffChar=FALSE float_len
5873  * 0 1 : Q(a,...) *names FALSE
5874  * 0 -1 : R NULL FALSE 0
5875  * 0 -1 : R NULL FALSE prec. >6
5876  * 0 -1 : C *names FALSE prec. 0..?
5877  * p p : Fp NULL FALSE
5878  * p -p : Fp(a) *names FALSE
5879  * q q : GF(q=p^n) *names TRUE
5880  */
5881  if (cf==NULL)
5882  {
5883  WerrorS("Invalid ground field specification");
5884  goto rInitError;
5885 // const int ch=32003;
5886 // cf=nInitChar(n_Zp, (void*)(long)ch);
5887  }
5888 
5889  assume( R != NULL );
5890 
5891  R->cf = cf;
5892 
5893  /* names and number of variables-------------------------------------*/
5894  {
5895  int l=rv->listLength();
5896 
5897  if (l>MAX_SHORT)
5898  {
5899  Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
5900  goto rInitError;
5901  }
5902  R->N = l; /*rv->listLength();*/
5903  }
5904  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
5905  if (rSleftvList2StringArray(rv, R->names))
5906  {
5907  WerrorS("name of ring variable expected");
5908  goto rInitError;
5909  }
5910 
5911  /* check names and parameters for conflicts ------------------------- */
5912  rRenameVars(R); // conflicting variables will be renamed
5913  /* ordering -------------------------------------------------------------*/
5914  if (rSleftvOrdering2Ordering(ord, R))
5915  goto rInitError;
5916 
5917  // Complete the initialization
5918  if (rComplete(R,1))
5919  goto rInitError;
5920 
5921 /*#ifdef HAVE_RINGS
5922 // currently, coefficients which are ring elements require a global ordering:
5923  if (rField_is_Ring(R) && (R->OrdSgn==-1))
5924  {
5925  WerrorS("global ordering required for these coefficients");
5926  goto rInitError;
5927  }
5928 #endif*/
5929 
5930  rTest(R);
5931 
5932  // try to enter the ring into the name list
5933  // need to clean up sleftv here, before this ring can be set to
5934  // new currRing or currRing can be killed beacuse new ring has
5935  // same name
5936  pn->CleanUp();
5937  rv->CleanUp();
5938  ord->CleanUp();
5939  //if ((tmp = enterid(s, myynest, RING_CMD, &IDROOT))==NULL)
5940  // goto rInitError;
5941 
5942  //memcpy(IDRING(tmp),R,sizeof(*R));
5943  // set current ring
5944  //omFreeBin(R, ip_sring_bin);
5945  //return tmp;
5946  return R;
5947 
5948  // error case:
5949  rInitError:
5950  if ((R != NULL)&&(R->cf!=NULL)) rDelete(R);
5951  pn->CleanUp();
5952  rv->CleanUp();
5953  ord->CleanUp();
5954  return NULL;
5955 }
5956 
5957 ring rSubring(ring org_ring, sleftv* rv)
5958 {
5959  ring R = rCopy0(org_ring);
5960  int *perm=(int *)omAlloc0((org_ring->N+1)*sizeof(int));
5961  int n = rBlocks(org_ring), i=0, j;
5962 
5963  /* names and number of variables-------------------------------------*/
5964  {
5965  int l=rv->listLength();
5966  if (l>MAX_SHORT)
5967  {
5968  Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
5969  goto rInitError;
5970  }
5971  R->N = l; /*rv->listLength();*/
5972  }
5973  omFree(R->names);
5974  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
5975  if (rSleftvList2StringArray(rv, R->names))
5976  {
5977  WerrorS("name of ring variable expected");
5978  goto rInitError;
5979  }
5980 
5981  /* check names for subring in org_ring ------------------------- */
5982  {
5983  i=0;
5984 
5985  for(j=0;j<R->N;j++)
5986  {
5987  for(;i<org_ring->N;i++)
5988  {
5989  if (strcmp(org_ring->names[i],R->names[j])==0)
5990  {
5991  perm[i+1]=j+1;
5992  break;
5993  }
5994  }
5995  if (i>org_ring->N)
5996  {
5997  Werror("variable %d (%s) not in basering",j+1,R->names[j]);
5998  break;
5999  }
6000  }
6001  }
6002  //Print("perm=");
6003  //for(i=1;i<org_ring->N;i++) Print("v%d -> v%d\n",i,perm[i]);
6004  /* ordering -------------------------------------------------------------*/
6005 
6006  for(i=0;i<n;i++)
6007  {
6008  int min_var=-1;
6009  int max_var=-1;
6010  for(j=R->block0[i];j<=R->block1[i];j++)
6011  {
6012  if (perm[j]>0)
6013  {
6014  if (min_var==-1) min_var=perm[j];
6015  max_var=perm[j];
6016  }
6017  }
6018  if (min_var!=-1)
6019  {
6020  //Print("block %d: old %d..%d, now:%d..%d\n",
6021  // i,R->block0[i],R->block1[i],min_var,max_var);
6022  R->block0[i]=min_var;
6023  R->block1[i]=max_var;
6024  if (R->wvhdl[i]!=NULL)
6025  {
6026  omFree(R->wvhdl[i]);
6027  R->wvhdl[i]=(int*)omAlloc0((max_var-min_var+1)*sizeof(int));
6028  for(j=org_ring->block0[i];j<=org_ring->block1[i];j++)
6029  {
6030  if (perm[j]>0)
6031  {
6032  R->wvhdl[i][perm[j]-R->block0[i]]=
6033  org_ring->wvhdl[i][j-org_ring->block0[i]];
6034  //Print("w%d=%d (orig_w%d)\n",perm[j],R->wvhdl[i][perm[j]-R->block0[i]],j);
6035  }
6036  }
6037  }
6038  }
6039  else
6040  {
6041  if(R->block0[i]>0)
6042  {
6043  //Print("skip block %d\n",i);
6044  R->order[i]=ringorder_unspec;
6045  if (R->wvhdl[i] !=NULL) omFree(R->wvhdl[i]);
6046  R->wvhdl[i]=NULL;
6047  }
6048  //else Print("keep block %d\n",i);
6049  }
6050  }
6051  i=n-1;
6052  while(i>0)
6053  {
6054  // removed unneded blocks
6055  if(R->order[i-1]==ringorder_unspec)
6056  {
6057  for(j=i;j<=n;j++)
6058  {
6059  R->order[j-1]=R->order[j];
6060  R->block0[j-1]=R->block0[j];
6061  R->block1[j-1]=R->block1[j];
6062  if (R->wvhdl[j-1] !=NULL) omFree(R->wvhdl[j-1]);
6063  R->wvhdl[j-1]=R->wvhdl[j];
6064  }
6065  R->order[n]=ringorder_unspec;
6066  n--;
6067  }
6068  i--;
6069  }
6070  n=rBlocks(org_ring)-1;
6071  while (R->order[n]==0) n--;
6072  while (R->order[n]==ringorder_unspec) n--;
6073  if ((R->order[n]==ringorder_c) || (R->order[n]==ringorder_C)) n--;
6074  if (R->block1[n] != R->N)
6075  {
6076  if (((R->order[n]==ringorder_dp) ||
6077  (R->order[n]==ringorder_ds) ||
6078  (R->order[n]==ringorder_Dp) ||
6079  (R->order[n]==ringorder_Ds) ||
6080  (R->order[n]==ringorder_rp) ||
6081  (R->order[n]==ringorder_rs) ||
6082  (R->order[n]==ringorder_lp) ||
6083  (R->order[n]==ringorder_ls))
6084  &&
6085  R->block0[n] <= R->N)
6086  {
6087  R->block1[n] = R->N;
6088  }
6089  else
6090  {
6091  Werror("mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6092  R->N,R->block1[n],n);
6093  return NULL;
6094  }
6095  }
6096  omFree(perm);
6097  // find OrdSgn:
6098  R->OrdSgn = org_ring->OrdSgn; // IMPROVE!
6099  //for(i=1;i<=R->N;i++)
6100  //{ if (weights[i]<0) { R->OrdSgn=-1;break; }}
6101  //omFree(weights);
6102  // Complete the initialization
6103  if (rComplete(R,1))
6104  goto rInitError;
6105 
6106  rTest(R);
6107 
6108  if (rv != NULL) rv->CleanUp();
6109 
6110  return R;
6111 
6112  // error case:
6113  rInitError:
6114  if (R != NULL) rDelete(R);
6115  if (rv != NULL) rv->CleanUp();
6116  return NULL;
6117 }
6118 
6119 void rKill(ring r)
6120 {
6121  if ((r->ref<=0)&&(r->order!=NULL))
6122  {
6123 #ifdef RDEBUG
6124  if (traceit &TRACE_SHOW_RINGS) Print("kill ring %lx\n",(long)r);
6125 #endif
6126  int j;
6127  for (j=0;j<myynest;j++)
6128  {
6129  if (iiLocalRing[j]==r)
6130  {
6131  if (j==0) WarnS("killing the basering for level 0");
6132  iiLocalRing[j]=NULL;
6133  }
6134  }
6135 // any variables depending on r ?
6136  while (r->idroot!=NULL)
6137  {
6138  r->idroot->lev=myynest; // avoid warning about kill global objects
6139  killhdl2(r->idroot,&(r->idroot),r);
6140  }
6141  if (r==currRing)
6142  {
6143  // all dependend stuff is done, clean global vars:
6144  if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
6146  {
6148  }
6149  //if ((myynest>0) && (iiRETURNEXPR.RingDependend()))
6150  //{
6151  // WerrorS("return value depends on local ring variable (export missing ?)");
6152  // iiRETURNEXPR.CleanUp();
6153  //}
6154  currRing=NULL;
6155  currRingHdl=NULL;
6156  }
6157 
6158  /* nKillChar(r); will be called from inside of rDelete */
6159  rDelete(r);
6160  return;
6161  }
6162  r->ref--;
6163 }
6164 
6166 {
6167  ring r = IDRING(h);
6168  int ref=0;
6169  if (r!=NULL)
6170  {
6171  // avoid, that sLastPrinted is the last reference to the base ring:
6172  // clean up before killing the last "named" refrence:
6173  if ((sLastPrinted.rtyp==RING_CMD)
6174  && (sLastPrinted.data==(void*)r))
6175  {
6176  sLastPrinted.CleanUp(r);
6177  }
6178  ref=r->ref;
6179  if ((ref<=0)&&(r==currRing))
6180  {
6181  // cleanup DENOMINATOR_LIST
6182  if (DENOMINATOR_LIST!=NULL)
6183  {
6185  if (TEST_V_ALLWARN)
6186  Warn("deleting denom_list for ring change from %s",IDID(h));
6187  do
6188  {
6189  n_Delete(&(dd->n),currRing->cf);
6190  dd=dd->next;
6192  DENOMINATOR_LIST=dd;
6193  } while(DENOMINATOR_LIST!=NULL);
6194  }
6195  }
6196  rKill(r);
6197  }
6198  if (h==currRingHdl)
6199  {
6200  if (ref<=0) { currRing=NULL; currRingHdl=NULL;}
6201  else
6202  {
6204  }
6205  }
6206 }
6207 
6209 {
6210  idhdl h=root;
6211  while (h!=NULL)
6212  {
6213  if ((IDTYP(h)==RING_CMD)
6214  && (h!=n)
6215  && (IDRING(h)==r)
6216  )
6217  {
6218  return h;
6219  }
6220  h=IDNEXT(h);
6221  }
6222  return NULL;
6223 }
6224 
6225 extern BOOLEAN jjPROC(leftv res, leftv u, leftv v);
6226 ideal kGroebner(ideal F, ideal Q)
6227 {
6228  //test|=Sy_bit(OPT_PROT);
6229  idhdl save_ringhdl=currRingHdl;
6230  ideal resid;
6231  idhdl new_ring=NULL;
6232  if ((currRingHdl==NULL) || (IDRING(currRingHdl)!=currRing))
6233  {
6234  currRingHdl=enterid(" GROEBNERring",0,RING_CMD,&IDROOT,FALSE);
6235  new_ring=currRingHdl;
6237  }
6238  sleftv v; memset(&v,0,sizeof(v)); v.rtyp=IDEAL_CMD; v.data=(char *) F;
6239  idhdl h=ggetid("groebner");
6240  sleftv u; memset(&u,0,sizeof(u)); u.rtyp=IDHDL; u.data=(char *) h;
6241  u.name=IDID(h);
6242 
6243  sleftv res; memset(&res,0,sizeof(res));
6244  if(jjPROC(&res,&u,&v))
6245  {
6246  resid=kStd(F,Q,testHomog,NULL);
6247  }
6248  else
6249  {
6250  //printf("typ:%d\n",res.rtyp);
6251  resid=(ideal)(res.data);
6252  }
6253  // cleanup GROEBNERring, save_ringhdl, u,v,(res )
6254  if (new_ring!=NULL)
6255  {
6256  idhdl h=IDROOT;
6257  if (h==new_ring) IDROOT=h->next;
6258  else
6259  {
6260  while ((h!=NULL) &&(h->next!=new_ring)) h=h->next;
6261  if (h!=NULL) h->next=h->next->next;
6262  }
6263  if (h!=NULL) omFreeSize(h,sizeof(*h));
6264  }
6265  currRingHdl=save_ringhdl;
6266  u.CleanUp();
6267  v.CleanUp();
6268  return resid;
6269 }
6270 
6271 static void jjINT_S_TO_ID(int n,int *e, leftv res)
6272 {
6273  if (n==0) n=1;
6274  ideal l=idInit(n,1);
6275  int i;
6276  poly p;
6277  for(i=rVar(currRing);i>0;i--)
6278  {
6279  if (e[i]>0)
6280  {
6281  n--;
6282  p=pOne();
6283  pSetExp(p,i,1);
6284  pSetm(p);
6285  l->m[n]=p;
6286  if (n==0) break;
6287  }
6288  }
6289  res->data=(char*)l;
6290  setFlag(res,FLAG_STD);
6291  omFreeSize((ADDRESS)e,(rVar(currRing)+1)*sizeof(int));
6292 }
6294 {
6295  int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6296  int n=pGetVariables((poly)u->Data(),e);
6297  jjINT_S_TO_ID(n,e,res);
6298  return FALSE;
6299 }
6300 
6302 {
6303  int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6304  ideal I=(ideal)u->Data();
6305  int i;
6306  int n=0;
6307  for(i=I->nrows*I->ncols-1;i>=0;i--)
6308  {
6309  int n0=pGetVariables(I->m[i],e);
6310  if (n0>n) n=n0;
6311  }
6312  jjINT_S_TO_ID(n,e,res);
6313  return FALSE;
6314 }
6315 
6316 void paPrint(const char *n,package p)
6317 {
6318  Print(" %s (",n);
6319  switch (p->language)
6320  {
6321  case LANG_SINGULAR: PrintS("S"); break;
6322  case LANG_C: PrintS("C"); break;
6323  case LANG_TOP: PrintS("T"); break;
6324  case LANG_MAX: PrintS("M"); break;
6325  case LANG_NONE: PrintS("N"); break;
6326  default: PrintS("U");
6327  }
6328  if(p->libname!=NULL)
6329  Print(",%s", p->libname);
6330  PrintS(")");
6331 }
6332 
6334 {
6335  intvec *aa=(intvec*)a->Data();
6336  sleftv tmp_out;
6337  sleftv tmp_in;
6338  leftv curr=res;
6339  BOOLEAN bo=FALSE;
6340  for(int i=0;i<aa->length(); i++)
6341  {
6342  memset(&tmp_in,0,sizeof(tmp_in));
6343  tmp_in.rtyp=INT_CMD;
6344  tmp_in.data=(void*)(long)(*aa)[i];
6345  if (proc==NULL)
6346  bo=iiExprArith1(&tmp_out,&tmp_in,op);
6347  else
6348  bo=jjPROC(&tmp_out,proc,&tmp_in);
6349  if (bo)
6350  {
6351  res->CleanUp(currRing);
6352  Werror("apply fails at index %d",i+1);
6353  return TRUE;
6354  }
6355  if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6356  else
6357  {
6358  curr->next=(leftv)omAllocBin(sleftv_bin);
6359  curr=curr->next;
6360  memcpy(curr,&tmp_out,sizeof(tmp_out));
6361  }
6362  }
6363  return FALSE;
6364 }
6366 {
6367  WerrorS("not implemented");
6368  return TRUE;
6369 }
6371 {
6372  WerrorS("not implemented");
6373  return TRUE;
6374 }
6376 {
6377  lists aa=(lists)a->Data();
6378  sleftv tmp_out;
6379  sleftv tmp_in;
6380  leftv curr=res;
6381  BOOLEAN bo=FALSE;
6382  for(int i=0;i<=aa->nr; i++)
6383  {
6384  memset(&tmp_in,0,sizeof(tmp_in));
6385  tmp_in.Copy(&(aa->m[i]));
6386  if (proc==NULL)
6387  bo=iiExprArith1(&tmp_out,&tmp_in,op);
6388  else
6389  bo=jjPROC(&tmp_out,proc,&tmp_in);
6390  tmp_in.CleanUp();
6391  if (bo)
6392  {
6393  res->CleanUp(currRing);
6394  Werror("apply fails at index %d",i+1);
6395  return TRUE;
6396  }
6397  if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6398  else
6399  {
6400  curr->next=(leftv)omAllocBin(sleftv_bin);
6401  curr=curr->next;
6402  memcpy(curr,&tmp_out,sizeof(tmp_out));
6403  }
6404  }
6405  return FALSE;
6406 }
6408 {
6409  memset(res,0,sizeof(sleftv));
6410  res->rtyp=a->Typ();
6411  switch (res->rtyp /*a->Typ()*/)
6412  {
6413  case INTVEC_CMD:
6414  case INTMAT_CMD:
6415  return iiApplyINTVEC(res,a,op,proc);
6416  case BIGINTMAT_CMD:
6417  return iiApplyBIGINTMAT(res,a,op,proc);
6418  case IDEAL_CMD:
6419  case MODUL_CMD:
6420  case MATRIX_CMD:
6421  return iiApplyIDEAL(res,a,op,proc);
6422  case LIST_CMD:
6423  return iiApplyLIST(res,a,op,proc);
6424  }
6425  WerrorS("first argument to `apply` must allow an index");
6426  return TRUE;
6427 }
6428 
6430 {
6431  // assume a: level
6432  if ((a->Typ()==INT_CMD)&&((long)a->Data()>=0))
6433  {
6434  if ((TEST_V_ALLWARN) && (myynest==0)) WarnS("ASSUME at top level is of no use: see documentation");
6435  char assume_yylinebuf[80];
6436  strncpy(assume_yylinebuf,my_yylinebuf,79);
6437  int lev=(long)a->Data();
6438  int startlev=0;
6439  idhdl h=ggetid("assumeLevel");
6440  if ((h!=NULL)&&(IDTYP(h)==INT_CMD)) startlev=(long)IDINT(h);
6441  if(lev <=startlev)
6442  {
6443  BOOLEAN bo=b->Eval();
6444  if (bo) { WerrorS("syntax error in ASSUME");return TRUE;}
6445  if (b->Typ()!=INT_CMD) { WerrorS("ASUMME(<level>,<int expr>)");return TRUE; }
6446  if (b->Data()==NULL) { Werror("ASSUME failed:%s",assume_yylinebuf);return TRUE;}
6447  }
6448  }
6449  b->CleanUp();
6450  a->CleanUp();
6451  return FALSE;
6452 }
6453 
6454 #include "libparse.h"
6455 
6456 BOOLEAN iiARROW(leftv r, char* a, char *s)
6457 {
6458  char *ss=(char*)omAlloc(strlen(a)+strlen(s)+30); /* max. 27 currently */
6459  // find end of s:
6460  int end_s=strlen(s);
6461  while ((end_s>0) && ((s[end_s]<=' ')||(s[end_s]==';'))) end_s--;
6462  s[end_s+1]='\0';
6463  char *name=(char *)omAlloc(strlen(a)+strlen(s)+30);
6464  sprintf(name,"%s->%s",a,s);
6465  // find start of last expression
6466  int start_s=end_s-1;
6467  while ((start_s>=0) && (s[start_s]!=';')) start_s--;
6468  if (start_s<0) // ';' not found
6469  {
6470  sprintf(ss,"parameter def %s;return(%s);\n",a,s);
6471  }
6472  else // s[start_s] is ';'
6473  {
6474  s[start_s]='\0';
6475  sprintf(ss,"parameter def %s;%s;return(%s);\n",a,s,s+start_s+1);
6476  }
6477  memset(r,0,sizeof(*r));
6478  // now produce procinfo for PROC_CMD:
6479  r->data = (void *)omAlloc0Bin(procinfo_bin);
6480  ((procinfo *)(r->data))->language=LANG_NONE;
6481  iiInitSingularProcinfo((procinfo *)r->data,"",name,0,0);
6482  ((procinfo *)r->data)->data.s.body=ss;
6483  omFree(name);
6484  r->rtyp=PROC_CMD;
6485  //r->rtyp=STRING_CMD;
6486  //r->data=ss;
6487  return FALSE;
6488 }
6489 
6491 {
6492  char* ring_name=omStrDup((char*)r->Name());
6493  int t=arg->Typ();
6494  if (t==RING_CMD)
6495  {
6496  sleftv tmp;
6497  memset(&tmp,0,sizeof(tmp));
6498  tmp.rtyp=IDHDL;
6499  tmp.data=(char*)rDefault(ring_name);
6500  if (tmp.data!=NULL)
6501  {
6502  BOOLEAN b=iiAssign(&tmp,arg);
6503  if (b) return TRUE;
6504  rSetHdl(ggetid(ring_name));
6505  omFree(ring_name);
6506  return FALSE;
6507  }
6508  else
6509  return TRUE;
6510  }
6511  else if (t==CRING_CMD)
6512  {
6513  sleftv tmp;
6514  sleftv n;
6515  memset(&n,0,sizeof(n));
6516  n.name=ring_name;
6517  if (iiDeclCommand(&tmp,&n,myynest,CRING_CMD,&IDROOT)) return TRUE;
6518  if (iiAssign(&tmp,arg)) return TRUE;
6519  //Print("create %s\n",r->Name());
6520  //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6521  return FALSE;
6522  }
6523  //Print("create %s\n",r->Name());
6524  //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6525  return TRUE;// not handled -> error for now
6526 }
6527 
6528 static void iiReportTypes(int nr,int t,const short *T)
6529 {
6530  char buf[250];
6531  buf[0]='\0';
6532  if (nr==0)
6533  sprintf(buf,"wrong length of parameters(%d), expected ",t);
6534  else
6535  sprintf(buf,"par. %d is of type `%s`, expected ",nr,Tok2Cmdname(t));
6536  for(int i=1;i<=T[0];i++)
6537  {
6538  strcat(buf,"`");
6539  strcat(buf,Tok2Cmdname(T[i]));
6540  strcat(buf,"`");
6541  if (i<T[0]) strcat(buf,",");
6542  }
6543  WerrorS(buf);
6544 }
6545 
6546 BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
6547 {
6548  int l=0;
6549  if (args==NULL)
6550  {
6551  if (type_list[0]==0) return TRUE;
6552  }
6553  else l=args->listLength();
6554  if (l!=(int)type_list[0])
6555  {
6556  if (report) iiReportTypes(0,l,type_list);
6557  return FALSE;
6558  }
6559  for(int i=1;i<=l;i++,args=args->next)
6560  {
6561  short t=type_list[i];
6562  if (t!=ANY_TYPE)
6563  {
6564  if (((t==IDHDL)&&(args->rtyp!=IDHDL))
6565  || (t!=args->Typ()))
6566  {
6567  if (report) iiReportTypes(i,args->Typ(),type_list);
6568  return FALSE;
6569  }
6570  }
6571  }
6572  return TRUE;
6573 }
Rational pow(const Rational &a, int e)
Definition: GMPrat.cc:414
ring r
Definition: algext.h:37
struct for passing initialization parameters to naInitChar
Definition: algext.h:37
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
Definition: attrib.cc:131
void atSet(idhdl root, char *name, void *data, int typ)
Definition: attrib.cc:152
long int64
Definition: auxiliary.h:66
static int si_max(const int a, const int b)
Definition: auxiliary.h:138
int BOOLEAN
Definition: auxiliary.h:85
#define TRUE
Definition: auxiliary.h:98
#define FALSE
Definition: auxiliary.h:94
void * ADDRESS
Definition: auxiliary.h:133
static int si_min(const int a, const int b)
Definition: auxiliary.h:139
CanonicalForm num(const CanonicalForm &f)
CanonicalForm den(const CanonicalForm &f)
CanonicalForm Lc(const CanonicalForm &f)
int l
Definition: cfEzgcd.cc:93
int m
Definition: cfEzgcd.cc:121
for(int i=0;i<=n;i++) degsf[i]
Definition: cfEzgcd.cc:65
int i
Definition: cfEzgcd.cc:125
int k
Definition: cfEzgcd.cc:92
Variable x
Definition: cfModGcd.cc:4023
int p
Definition: cfModGcd.cc:4019
CanonicalForm cf
Definition: cfModGcd.cc:4024
CanonicalForm b
Definition: cfModGcd.cc:4044
void mu(int **points, int sizePoints)
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
Definition: cf_map_ext.cc:400
FILE * f
Definition: checklibs.c:9
unsigned char * proc[NUM_PROC]
Definition: checklibs.c:16
poly singclap_resultant(poly f, poly g, poly x, const ring r)
Definition: clapsing.cc:278
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
Definition: clapsing.cc:838
matrix singclap_irrCharSeries(ideal I, const ring r)
Definition: clapsing.cc:1449
int get_num_si()
Definition: GMPrat.cc:141
int get_den_si()
Definition: GMPrat.cc:155
char name() const
Definition: variable.cc:122
Variable next() const
Definition: factory.h:137
char * buffer
Definition: fevoices.h:69
char * filename
Definition: fevoices.h:63
long fptr
Definition: fevoices.h:70
Matrices of numbers.
Definition: bigintmat.h:52
Definition: idrec.h:35
idhdl get(const char *s, int lev)
Definition: ipid.cc:86
int typ
Definition: idrec.h:43
idhdl next
Definition: idrec.h:38
attr attribute
Definition: idrec.h:41
Definition: intvec.h:21
int min_in()
Definition: intvec.h:119
int length() const
Definition: intvec.h:92
int rows() const
Definition: intvec.h:94
int & rows()
Definition: matpol.h:23
int & cols()
Definition: matpol.h:24
Definition: ipid.h:55
virtual number getSubDet()
Definition: mpr_base.h:37
virtual ideal getMatrix()
Definition: mpr_base.h:31
virtual IStateType initState() const
Definition: mpr_base.h:41
void solve_all()
Definition: mpr_numeric.cc:862
bool success()
Definition: mpr_numeric.h:162
void arrange()
Definition: mpr_numeric.cc:887
complex root finder for univariate polynomials based on laguers algorithm
Definition: mpr_numeric.h:66
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
Definition: mpr_numeric.cc:304
gmp_complex * getRoot(const int i)
Definition: mpr_numeric.h:88
int getAnzRoots()
Definition: mpr_numeric.h:97
bool solver(const int polishmode=PM_NONE)
Definition: mpr_numeric.cc:441
int getAnzElems()
Definition: mpr_numeric.h:95
Definition: attrib.h:21
attr get(const char *s)
Definition: attrib.cc:92
void * CopyA()
Definition: subexpr.cc:2031
int atyp
Definition: attrib.h:27
Linear Programming / Linear Optimization using Simplex - Algorithm.
Definition: mpr_numeric.h:195
intvec * zrovToIV()
BOOLEAN mapFromMatrix(matrix m)
int icase
Definition: mpr_numeric.h:201
void compute()
matrix mapToMatrix(matrix m)
intvec * posvToIV()
Class used for (list of) interpreter objects.
Definition: subexpr.h:83
void * CopyD(int t)
Definition: subexpr.cc:745
int Typ()
Definition: subexpr.cc:1039
const char * name
Definition: subexpr.h:87
int rtyp
Definition: subexpr.h:91
void * Data()
Definition: subexpr.cc:1182
void Init()
Definition: subexpr.h:107
BOOLEAN RingDependend()
Definition: subexpr.cc:424
leftv next
Definition: subexpr.h:86
int listLength()
Definition: subexpr.cc:57
void Copy(leftv e)
Definition: subexpr.cc:720
void * data
Definition: subexpr.h:88
void CleanUp(ring r=currRing)
Definition: subexpr.cc:354
attr * Attribute()
Definition: subexpr.cc:1476
const char * Name()
Definition: subexpr.h:120
attr attribute
Definition: subexpr.h:89
Definition: lists.h:23
sleftv * m
Definition: lists.h:45
void Clean(ring r=currRing)
Definition: lists.h:25
INLINE_THIS void Init(int l=0)
int nr
Definition: lists.h:43
spectrumPolyNode * root
Definition: splist.h:60
void delete_node(spectrumPolyNode **)
Definition: splist.cc:256
Definition: semic.h:64
int mu
Definition: semic.h:67
void copy_new(int)
Definition: semic.cc:54
Rational * s
Definition: semic.h:70
int mult_spectrum(spectrum &)
Definition: semic.cc:396
int n
Definition: semic.h:69
int pg
Definition: semic.h:68
int mult_spectrumh(spectrum &)
Definition: semic.cc:425
int * w
Definition: semic.h:71
Base class for solving 0-dim poly systems using u-resultant.
Definition: mpr_base.h:63
rootContainer ** specializeInU(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:3061
rootContainer ** interpolateDenseSP(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:2923
resMatrixBase * accessResMat()
Definition: mpr_base.h:78
@ denseResMat
Definition: mpr_base.h:65
vandermonde system solver for interpolating polynomials from their values
Definition: mpr_numeric.h:29
poly numvec2poly(const number *q)
Definition: mpr_numeric.cc:98
number * interpolateDense(const number *q)
Solves the Vandermode linear system \sum_{i=1}^{n} x_i^k-1 w_i = q_k, k=1,..,n.
Definition: mpr_numeric.cc:151
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
Definition: coeffs.h:547
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:451
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:861
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition: coeffs.h:838
static FORCE_INLINE char * nCoeffName(const coeffs cf)
Definition: coeffs.h:985
int GFDegree
Definition: coeffs.h:95
@ n_R
single prescision (6,6) real numbers
Definition: coeffs.h:32
@ n_GF
\GF{p^n < 2^16}
Definition: coeffs.h:33
@ n_Q
rational (GMP) numbers
Definition: coeffs.h:31
@ n_Znm
only used if HAVE_RINGS is defined
Definition: coeffs.h:46
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition: coeffs.h:36
@ n_Zn
only used if HAVE_RINGS is defined
Definition: coeffs.h:45
@ n_long_R
real floating point (GMP) numbers
Definition: coeffs.h:34
@ n_Z2m
only used if HAVE_RINGS is defined
Definition: coeffs.h:47
@ n_Zp
\F{p < 2^31}
Definition: coeffs.h:30
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:39
@ n_Z
only used if HAVE_RINGS is defined
Definition: coeffs.h:44
@ n_long_C
complex floating point (GMP) numbers
Definition: coeffs.h:42
short float_len2
additional char-flags, rInit
Definition: coeffs.h:102
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
Definition: coeffs.h:854
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
Definition: coeffs.h:551
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:721
const char * par_name
parameter name
Definition: coeffs.h:103
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition: numbers.cc:350
const unsigned short fftable[]
Definition: ffields.cc:31
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
Definition: coeffs.h:436
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
Definition: coeffs.h:800
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:752
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:455
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:932
short float_len
additional char-flags, rInit
Definition: coeffs.h:101
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
const char * GFPar_name
Definition: coeffs.h:96
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
Definition: coeffs.h:916
int GFChar
Definition: coeffs.h:94
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:940
Creation data needed for finite fields.
Definition: coeffs.h:93
#define Print
Definition: emacs.cc:80
#define Warn
Definition: emacs.cc:77
#define WarnS
Definition: emacs.cc:78
return result
Definition: facAbsBiFact.cc:76
const CanonicalForm int s
Definition: facAbsFact.cc:55
CanonicalForm res
Definition: facAbsFact.cc:64
const CanonicalForm & w
Definition: facAbsFact.cc:55
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
bool found
Definition: facFactorize.cc:56
CanonicalForm buf2
Definition: facFqBivar.cc:71
CFList tmp2
Definition: facFqBivar.cc:70
const ExtensionInfo & info
< [in] sqrfree poly
int j
Definition: facHensel.cc:105
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
char name(const Variable &v)
Definition: factory.h:180
void WerrorS(const char *s)
Definition: feFopen.cc:24
short errorreported
Definition: feFopen.cc:23
int myynest
Definition: febase.cc:41
int yylineno
Definition: febase.cc:40
char my_yylinebuf[80]
Definition: febase.cc:43
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
Definition: feread.cc:34
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
Definition: fevoices.cc:157
const char * VoiceName()
Definition: fevoices.cc:57
const char sNoName_fe[]
Definition: fevoices.cc:56
Voice * currentVoice
Definition: fevoices.cc:48
void VoiceBackTrack()
Definition: fevoices.cc:68
@ BT_execute
Definition: fevoices.h:23
@ BT_proc
Definition: fevoices.h:20
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
Definition: gen_maps.cc:88
const char * Tok2Cmdname(int tok)
Definition: gentable.cc:140
int iiTestConvert(int inputType, int outputType)
Definition: gentable.cc:301
int RingDependend(int t)
Definition: gentable.cc:28
@ PLUSPLUS
Definition: grammar.cc:274
@ MINUSMINUS
Definition: grammar.cc:271
@ IDEAL_CMD
Definition: grammar.cc:284
@ MATRIX_CMD
Definition: grammar.cc:286
@ BIGINTMAT_CMD
Definition: grammar.cc:278
@ GE
Definition: grammar.cc:269
@ EQUAL_EQUAL
Definition: grammar.cc:268
@ MAP_CMD
Definition: grammar.cc:285
@ PROC_CMD
Definition: grammar.cc:280
@ LE
Definition: grammar.cc:270
@ INTMAT_CMD
Definition: grammar.cc:279
@ MODUL_CMD
Definition: grammar.cc:287
@ SMATRIX_CMD
Definition: grammar.cc:291
@ VECTOR_CMD
Definition: grammar.cc:292
@ NOTEQUAL
Definition: grammar.cc:273
@ DOTDOT
Definition: grammar.cc:267
@ COLONCOLON
Definition: grammar.cc:275
@ NUMBER_CMD
Definition: grammar.cc:288
@ POLY_CMD
Definition: grammar.cc:289
@ RING_CMD
Definition: grammar.cc:281
const char * currid
Definition: grammar.cc:171
int yyparse(void)
Definition: grammar.cc:2111
int hMu
Definition: hdegree.cc:22
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:313
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge, ring tailRing)
Definition: hdegree.cc:1005
static poly last
Definition: hdegree.cc:1077
int hMu2
Definition: hdegree.cc:22
indset ISet
Definition: hdegree.cc:279
omBin indlist_bin
Definition: hdegree.cc:23
indset JSet
Definition: hdegree.cc:279
int hCo
Definition: hdegree.cc:22
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:29
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:496
monf hCreate(int Nvar)
Definition: hutil.cc:1002
scfmon hInit(ideal S, ideal Q, int *Nexist, ring tailRing)
Definition: hutil.cc:34
void hKill(monf xmem, int Nvar)
Definition: hutil.cc:1016
scmon hpure
Definition: hutil.cc:20
void hDelete(scfmon ev, int ev_length)
Definition: hutil.cc:146
int hNexist
Definition: hutil.cc:22
int hNpure
Definition: hutil.cc:22
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
Definition: hutil.cc:627
scfmon hrad
Definition: hutil.cc:19
int hNrad
Definition: hutil.cc:22
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
Definition: hutil.cc:180
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
Definition: hutil.cc:571
monf radmem
Definition: hutil.cc:24
int hNvar
Definition: hutil.cc:22
void hRadical(scfmon rad, int *Nrad, int Nvar)
Definition: hutil.cc:417
varset hvar
Definition: hutil.cc:21
scfmon hexist
Definition: hutil.cc:19
int hisModule
Definition: hutil.cc:23
scfmon hwork
Definition: hutil.cc:19
scmon * scfmon
Definition: hutil.h:15
indlist * indset
Definition: hutil.h:28
int * varset
Definition: hutil.h:16
int * scmon
Definition: hutil.h:14
int binom(int n, int r)
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
static BOOLEAN idIsZeroDim(ideal i)
Definition: ideals.h:178
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
ideal idCopy(ideal A)
Definition: ideals.h:60
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
Definition: ideals.h:33
ideal * resolvente
Definition: ideals.h:18
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
static int * multiplicity
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:263
#define IMATELEM(M, I, J)
Definition: intvec.h:83
intvec * ivCopy(const intvec *o)
Definition: intvec.h:133
int IsCmd(const char *n, int &tok)
Definition: iparith.cc:8860
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
Definition: iparith.cc:8448
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
Definition: ipassign.cc:1819
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
Definition: ipconv.cc:436
idhdl ggetid(const char *n)
Definition: ipid.cc:523
void killhdl2(idhdl h, idhdl *ih, ring r)
Definition: ipid.cc:417
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
Definition: ipid.cc:267
idhdl currPackHdl
Definition: ipid.cc:57
void ipListFlag(idhdl h)
Definition: ipid.cc:538
coeffs coeffs_BIGINT
Definition: ipid.cc:52
package basePack
Definition: ipid.cc:60
idhdl currRingHdl
Definition: ipid.cc:61
package currPack
Definition: ipid.cc:59
idhdl packFindHdl(package r)
Definition: ipid.cc:752
proclevel * procstack
Definition: ipid.cc:54
#define IDMAP(a)
Definition: ipid.h:130
#define IDMATRIX(a)
Definition: ipid.h:129
#define IDSTRING(a)
Definition: ipid.h:131
#define IDNEXT(a)
Definition: ipid.h:113
#define IDDATA(a)
Definition: ipid.h:121
#define IDPROC(a)
Definition: ipid.h:135
#define setFlag(A, F)
Definition: ipid.h:108
#define IDINTVEC(a)
Definition: ipid.h:123
#define IDIDEAL(a)
Definition: ipid.h:128
#define IDPOLY(a)
Definition: ipid.h:125
omBin sleftv_bin
Definition: subexpr.cc:47
#define IDID(a)
Definition: ipid.h:117
#define IDROOT
Definition: ipid.h:18
#define IDINT(a)
Definition: ipid.h:120
#define IDPACKAGE(a)
Definition: ipid.h:134
#define IDLEV(a)
Definition: ipid.h:116
#define IDRING(a)
Definition: ipid.h:122
#define IDTYP(a)
Definition: ipid.h:114
#define FLAG_STD
Definition: ipid.h:104
#define IDLIST(a)
Definition: ipid.h:132
ring * iiLocalRing
Definition: iplib.cc:454
int iiRETURNEXPR_len
Definition: iplib.cc:456
sleftv iiRETURNEXPR
Definition: iplib.cc:455
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
Definition: iplib.cc:991
char * iiGetLibProcBuffer(procinfo *pi, int part)
Definition: iplib.cc:192
lists rDecompose(const ring r)
Definition: ipshell.cc:2058
semicState
Definition: ipshell.cc:3404
@ semicListWrongNumberOfNumerators
Definition: ipshell.cc:3419
@ semicListPGWrong
Definition: ipshell.cc:3433
@ semicListFirstElementWrongType
Definition: ipshell.cc:3411
@ semicListPgNegative
Definition: ipshell.cc:3424
@ semicListSecondElementWrongType
Definition: ipshell.cc:3412
@ semicListMilnorWrong
Definition: ipshell.cc:3432
@ semicListMulNegative
Definition: ipshell.cc:3427
@ semicListFourthElementWrongType
Definition: ipshell.cc:3414
@ semicListWrongNumberOfDenominators
Definition: ipshell.cc:3420
@ semicListNotMonotonous
Definition: ipshell.cc:3430
@ semicListNotSymmetric
Definition: ipshell.cc:3429
@ semicListNNegative
Definition: ipshell.cc:3418
@ semicListDenNegative
Definition: ipshell.cc:3426
@ semicListTooShort
Definition: ipshell.cc:3408
@ semicListTooLong
Definition: ipshell.cc:3409
@ semicListThirdElementWrongType
Definition: ipshell.cc:3413
@ semicListMuNegative
Definition: ipshell.cc:3423
@ semicListNumNegative
Definition: ipshell.cc:3425
@ semicMulNegative
Definition: ipshell.cc:3406
@ semicListWrongNumberOfMultiplicities
Definition: ipshell.cc:3421
@ semicOK
Definition: ipshell.cc:3405
@ semicListFifthElementWrongType
Definition: ipshell.cc:3415
@ semicListSixthElementWrongType
Definition: ipshell.cc:3416
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6333
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
Definition: ipshell.cc:6293
lists rDecompose_list_cf(const ring r)
Definition: ipshell.cc:1927
int iiOpsTwoChar(const char *s)
Definition: ipshell.cc:119
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4397
BOOLEAN jjMINRES(leftv res, leftv v)
Definition: ipshell.cc:870
idhdl iiCurrProc
Definition: ipshell.cc:79
BOOLEAN killlocals_list(int v, lists L)
Definition: ipshell.cc:363
BOOLEAN iiParameter(leftv p)
Definition: ipshell.cc:1285
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
Definition: ipshell.cc:1127
static void rRenameVars(ring R)
Definition: ipshell.cc:2408
static BOOLEAN iiNoKeepRing
Definition: ipshell.cc:82
void iiCheckPack(package &p)
Definition: ipshell.cc:1541
void rKill(ring r)
Definition: ipshell.cc:6119
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
Definition: ipshell.cc:6546
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6407
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
Definition: ipshell.cc:422
BOOLEAN iiDebugMarker
Definition: ipshell.cc:987
ring rInit(leftv pn, leftv rv, leftv ord)
Definition: ipshell.cc:5574
leftv iiMap(map theMap, const char *what)
Definition: ipshell.cc:612
int iiRegularity(lists L)
Definition: ipshell.cc:961
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
Definition: ipshell.cc:4647
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
Definition: ipshell.cc:1856
static void rDecomposeC_41(leftv h, const coeffs C)
Definition: ipshell.cc:1726
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
Definition: ipshell.cc:771
BOOLEAN iiARROW(leftv r, char *a, char *s)
Definition: ipshell.cc:6456
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:4480
BOOLEAN syBetti1(leftv res, leftv u)
Definition: ipshell.cc:3141
void killlocals(int v)
Definition: ipshell.cc:383
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6375
idhdl rDefault(const char *s)
Definition: ipshell.cc:1555
static void rDecomposeC(leftv h, const ring R)
Definition: ipshell.cc:1760
int exprlist_length(leftv v)
Definition: ipshell.cc:549
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
Definition: ipshell.cc:3062
poly iiHighCorner(ideal I, int ak)
Definition: ipshell.cc:1517
BOOLEAN spectrumfProc(leftv result, leftv first)
Definition: ipshell.cc:4153
lists listOfRoots(rootArranger *self, const unsigned int oprec)
Definition: ipshell.cc:5034
static void jjINT_S_TO_ID(int n, int *e, leftv res)
Definition: ipshell.cc:6271
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
Definition: ipshell.cc:1027
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
Definition: ipshell.cc:4776
BOOLEAN jjCHARSERIES(leftv res, leftv u)
Definition: ipshell.cc:3316
void rDecomposeCF(leftv h, const ring r, const ring R)
Definition: ipshell.cc:1638
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
Definition: ipshell.cc:6370
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
Definition: ipshell.cc:147
void list_error(semicState state)
Definition: ipshell.cc:3437
BOOLEAN mpJacobi(leftv res, leftv a)
Definition: ipshell.cc:3040
ideal kGroebner(ideal F, ideal Q)
Definition: ipshell.cc:6226
BOOLEAN iiBranchTo(leftv, leftv args)
Definition: ipshell.cc:1184
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
Definition: ipshell.cc:904
spectrumState
Definition: ipshell.cc:3520
@ spectrumWrongRing
Definition: ipshell.cc:3527
@ spectrumOK
Definition: ipshell.cc:3521
@ spectrumDegenerate
Definition: ipshell.cc:3526
@ spectrumUnspecErr
Definition: ipshell.cc:3529
@ spectrumNotIsolated
Definition: ipshell.cc:3525
@ spectrumBadPoly
Definition: ipshell.cc:3523
@ spectrumNoSingularity
Definition: ipshell.cc:3524
@ spectrumZero
Definition: ipshell.cc:3522
@ spectrumNoHC
Definition: ipshell.cc:3528
BOOLEAN iiTestAssume(leftv a, leftv b)
Definition: ipshell.cc:6429
BOOLEAN iiAssignCR(leftv r, leftv arg)
Definition: ipshell.cc:6490
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4439
spectrumState spectrumCompute(poly h, lists *L, int fast)
Definition: ipshell.cc:3779
idhdl rFindHdl(ring r, idhdl n)
Definition: ipshell.cc:1612
void iiDebug()
Definition: ipshell.cc:989
syStrategy syConvList(lists li)
Definition: ipshell.cc:3225
BOOLEAN spectrumProc(leftv result, leftv first)
Definition: ipshell.cc:4102
BOOLEAN iiDefaultParameter(leftv p)
Definition: ipshell.cc:1171
void rComposeC(lists L, ring R)
Definition: ipshell.cc:2244
BOOLEAN iiCheckRing(int i)
Definition: ipshell.cc:1497
#define BREAK_LINE_LENGTH
Definition: ipshell.cc:988
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
Definition: ipshell.cc:3538
const short MAX_SHORT
Definition: ipshell.cc:5562
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
Definition: ipshell.cc:3118
ring rSubring(ring org_ring, sleftv *rv)
Definition: ipshell.cc:5957
BOOLEAN kWeight(leftv res, leftv id)
Definition: ipshell.cc:3270
static leftv rOptimizeOrdAsSleftv(leftv ord)
Definition: ipshell.cc:5142
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
Definition: ipshell.cc:5254
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
Definition: ipshell.cc:2494
spectrum spectrumFromList(lists l)
Definition: ipshell.cc:3353
idhdl rSimpleFindHdl(ring r, idhdl root, idhdl n)
Definition: ipshell.cc:6208
void test_cmd(int i)
Definition: ipshell.cc:511
syStrategy syForceMin(lists li)
Definition: ipshell.cc:3254
static void iiReportTypes(int nr, int t, const short *T)
Definition: ipshell.cc:6528
void rDecomposeRing(leftv h, const ring R)
Definition: ipshell.cc:1824
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:3309
static BOOLEAN iiInternalExport(leftv v, int toLev)
Definition: ipshell.cc:1321
void copy_deep(spectrum &spec, lists l)
Definition: ipshell.cc:3329
void killlocals_rec(idhdl *root, int v, ring r)
Definition: ipshell.cc:327
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i,...
Definition: ipshell.cc:4624
semicState list_is_spectrum(lists l)
Definition: ipshell.cc:4222
static void killlocals0(int v, idhdl *localhdl, const ring r)
Definition: ipshell.cc:292
BOOLEAN semicProc(leftv res, leftv u, leftv v)
Definition: ipshell.cc:4520
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
Definition: ipshell.cc:4538
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
Definition: iparith.cc:1618
ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask, const int isLetterplace)
Definition: ipshell.cc:2760
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
Definition: ipshell.cc:4532
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
Definition: ipshell.cc:6365
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
Definition: ipshell.cc:925
const char * lastreserved
Definition: ipshell.cc:80
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
Definition: ipshell.cc:5526
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
Definition: ipshell.cc:3153
void type_cmd(leftv v)
Definition: ipshell.cc:251
BOOLEAN iiWRITE(leftv, leftv v)
Definition: ipshell.cc:585
leftv iiCurrArgs
Definition: ipshell.cc:78
void paPrint(const char *n, package p)
Definition: ipshell.cc:6316
static resolvente iiCopyRes(resolvente r, int l)
Definition: ipshell.cc:860
void rSetHdl(idhdl h)
Definition: ipshell.cc:5081
const char * iiTwoOps(int t)
Definition: ipshell.cc:86
BOOLEAN kQHWeight(leftv res, leftv v)
Definition: ipshell.cc:3292
void rComposeRing(lists L, ring R)
Definition: ipshell.cc:2315
BOOLEAN iiExport(leftv v, int toLev)
Definition: ipshell.cc:1419
BOOLEAN jjBETTI(leftv res, leftv u)
Definition: ipshell.cc:891
void spectrumPrintError(spectrumState state)
Definition: ipshell.cc:4071
lists getList(spectrum &spec)
Definition: ipshell.cc:3365
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
Definition: ipshell.cc:4877
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
Definition: ipshell.cc:6301
void rDecomposeRing_41(leftv h, const coeffs C)
Definition: ipshell.cc:1796
static BOOLEAN rComposeVar(const lists L, ring R)
Definition: ipshell.cc:2449
static Poly * h
Definition: janet.cc:972
static jList * T
Definition: janet.cc:31
BITSET validOpts
Definition: kstd1.cc:59
BITSET kOptions
Definition: kstd1.cc:44
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2087
denominator_list DENOMINATOR_LIST
Definition: kutil.cc:87
denominator_list next
Definition: kutil.h:61
#define pi
Definition: libparse.cc:1143
if(yy_init)
Definition: libparse.cc:1418
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type,...
Definition: old.gring.cc:2682
BOOLEAN lRingDependend(lists L)
Definition: lists.cc:199
omBin slists_bin
Definition: lists.cc:23
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
Definition: lists.cc:315
char * lString(lists l, BOOLEAN typed, int dim)
Definition: lists.cc:380
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
Definition: lists.cc:216
number nlMapGMP(number from, const coeffs src, const coeffs dst)
Definition: longrat.cc:201
void nlGMP(number &i, mpz_t n, const coeffs r)
Definition: longrat.cc:1478
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
Definition: maps.cc:165
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
Definition: maps_ip.cc:46
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:37
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
Definition: matpol.cc:64
#define MATELEM(mat, i, j)
Definition: matpol.h:28
ip_smatrix * matrix
Definition: matpol.h:31
#define MATROWS(i)
Definition: matpol.h:26
#define MATCOLS(i)
Definition: matpol.h:27
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition: minpoly.cc:647
#define assume(x)
Definition: mod2.h:390
#define pIter(p)
Definition: monomials.h:38
#define pNext(p)
Definition: monomials.h:37
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:45
#define pSetCoeff0(p, n)
Definition: monomials.h:60
ideal loNewtonPolytope(const ideal id)
Definition: mpr_base.cc:3192
@ mprOk
Definition: mpr_base.h:98
size_t gmp_output_digits
Definition: mpr_complex.cc:43
uResultant::resMatType determineMType(int imtype)
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
gmp_float sqrt(const gmp_float &a)
Definition: mpr_complex.cc:328
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
Definition: mpr_complex.cc:705
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
Definition: mpr_complex.cc:61
slists * lists
Definition: mpr_numeric.h:146
The main handler for Singular numbers which are suitable for Singular polynomials.
#define nDelete(n)
Definition: numbers.h:17
#define nIsZero(n)
Definition: numbers.h:20
#define nSetMap(R)
Definition: numbers.h:44
#define nIsMOne(n)
Definition: numbers.h:27
#define nCopy(n)
Definition: numbers.h:16
#define nPrint(a)
only for debug, over any initalized currRing
Definition: numbers.h:47
#define nInvers(a)
Definition: numbers.h:34
#define SHORT_REAL_LENGTH
Definition: numbers.h:58
#define nIsOne(n)
Definition: numbers.h:26
#define nInit(i)
Definition: numbers.h:25
#define omStrDup(s)
Definition: omAllocDecl.h:263
#define omfree(addr)
Definition: omAllocDecl.h:237
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omCheckAddr(addr)
Definition: omAllocDecl.h:328
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220
#define omAllocBin(bin)
Definition: omAllocDecl.h:205
#define omCheckAddrSize(addr, size)
Definition: omAllocDecl.h:327
#define omAlloc0Bin(bin)
Definition: omAllocDecl.h:206
#define omFree(addr)
Definition: omAllocDecl.h:261
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define omRealloc0Size(addr, o_size, size)
Definition: omAllocDecl.h:221
#define NULL
Definition: omList.c:10
unsigned si_opt_2
Definition: options.c:6
unsigned si_opt_1
Definition: options.c:5
#define V_DEF_RES
Definition: options.h:50
#define BVERBOSE(a)
Definition: options.h:35
#define TEST_V_ALLWARN
Definition: options.h:140
#define Sy_bit(x)
Definition: options.h:32
#define V_REDEFINE
Definition: options.h:45
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4028
#define __pp_Mult_nn(p, n, r)
Definition: p_polys.h:959
static unsigned pLength(poly a)
Definition: p_polys.h:193
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1257
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1444
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:928
ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
void rChangeCurrRing(ring r)
Definition: polys.cc:15
Compatiblity layer for legacy polynomial operations (over currRing)
static long pTotaldegree(poly p)
Definition: polys.h:276
#define pTest(p)
Definition: polys.h:409
#define pDelete(p_ptr)
Definition: polys.h:181
#define pSetm(p)
Definition: polys.h:265
#define pIsConstant(p)
like above, except that Comp might be != 0
Definition: polys.h:233
#define pNeg(p)
Definition: polys.h:193
#define pDiff(a, b)
Definition: polys.h:290
#define pSub(a, b)
Definition: polys.h:281
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
Definition: polys.h:115
#define pGetVariables(p, e)
Definition: polys.h:246
#define pSetComp(p, v)
Definition: polys.h:38
void wrp(poly p)
Definition: polys.h:304
void pWrite(poly p)
Definition: polys.h:302
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
void pNorm(poly p, const ring R=currRing)
Definition: polys.h:357
#define pIsPurePower(p)
Definition: polys.h:243
#define pSetExp(p, i, v)
Definition: polys.h:42
#define pCopy(p)
return a copy of the poly
Definition: polys.h:180
#define pOne()
Definition: polys.h:309
poly * polyset
Definition: polys.h:254
#define pDecrExp(p, i)
Definition: polys.h:44
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:192
int IsPrime(int p)
Definition: prime.cc:61
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310
void Werror(const char *fmt,...)
Definition: reporter.cc:189
int traceit
Definition: febase.cc:42
#define TRACE_SHOW_RINGS
Definition: reporter.h:35
omBin sip_sring_bin
Definition: ring.cc:44
const char * rSimpleOrdStr(int ord)
Definition: ring.cc:78
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition: ring.cc:3369
int rTypeOfMatrixOrder(const intvec *order)
Definition: ring.cc:186
ring rAssure_HasComp(const ring r)
Definition: ring.cc:4558
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition: ring.cc:1340
BOOLEAN rCheckIV(const intvec *iv)
Definition: ring.cc:176
rRingOrder_t rOrderName(char *ordername)
Definition: ring.cc:497
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:437
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
Definition: ring.cc:1635
void rSetSyzComp(int k, const ring r)
Definition: ring.cc:4991
static int sign(int x)
Definition: ring.cc:3346
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:475
static BOOLEAN rField_is_R(const ring r)
Definition: ring.h:509
static int rBlocks(ring r)
Definition: ring.h:558
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:520
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:500
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:491
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:398
static BOOLEAN rField_is_long_C(const ring r)
Definition: ring.h:536
static char const ** rParameter(const ring r)
(r->cf->parameter)
Definition: ring.h:615
static BOOLEAN rField_is_Zn(const ring r)
Definition: ring.h:503
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:589
static int rInternalChar(const ring r)
Definition: ring.h:679
rRingOrder_t
order stuff
Definition: ring.h:69
@ ringorder_lp
Definition: ring.h:78
@ ringorder_a
Definition: ring.h:71
@ ringorder_am
Definition: ring.h:89
@ ringorder_a64
for int64 weights
Definition: ring.h:72
@ ringorder_rs
opposite of ls
Definition: ring.h:93
@ ringorder_C
Definition: ring.h:74
@ ringorder_S
S?
Definition: ring.h:76
@ ringorder_ds
Definition: ring.h:85
@ ringorder_Dp
Definition: ring.h:81
@ ringorder_unspec
Definition: ring.h:95
@ ringorder_L
Definition: ring.h:90
@ ringorder_Ds
Definition: ring.h:86
@ ringorder_dp
Definition: ring.h:79
@ ringorder_c
Definition: ring.h:73
@ ringorder_rp
Definition: ring.h:80
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:92
@ ringorder_no
Definition: ring.h:70
@ ringorder_Wp
Definition: ring.h:83
@ ringorder_ws
Definition: ring.h:87
@ ringorder_Ws
Definition: ring.h:88
@ ringorder_IS
Induced (Schreyer) ordering.
Definition: ring.h:94
@ ringorder_ls
Definition: ring.h:84
@ ringorder_s
s?
Definition: ring.h:77
@ ringorder_wp
Definition: ring.h:82
@ ringorder_M
Definition: ring.h:75
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:530
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:497
static BOOLEAN rField_is_long_R(const ring r)
Definition: ring.h:533
static BOOLEAN rField_is_numeric(const ring r)
Definition: ring.h:506
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:512
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:582
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition: ring.h:751
#define rTest(r)
Definition: ring.h:776
idrec * idhdl
Definition: ring.h:22
void myychangebuffer()
Definition: scanner.cc:2330
int sdb_flags
Definition: sdb.cc:32
#define mpz_sgn1(A)
Definition: si_gmp.h:13
int status int void size_t count
Definition: si_signals.h:59
int status int void * buf
Definition: si_signals.h:59
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:37
intvec * id_QHomWeight(ideal id, const ring r)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
#define IDELEMS(i)
Definition: simpleideals.h:24
#define R
Definition: sirandom.c:26
#define Q
Definition: sirandom.c:25
BOOLEAN hasAxis(ideal J, int k, const ring r)
Definition: spectrum.cc:81
int hasOne(ideal J, const ring r)
Definition: spectrum.cc:96
BOOLEAN ringIsLocal(const ring r)
Definition: spectrum.cc:461
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
Definition: spectrum.cc:142
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
Definition: spectrum.cc:309
BOOLEAN hasLinearTerm(poly h, const ring r)
Definition: spectrum.h:30
BOOLEAN hasConstTerm(poly h, const ring r)
Definition: spectrum.h:28
ip_package * package
Definition: structs.h:46
sleftv * leftv
Definition: structs.h:60
char * char_ptr
Definition: structs.h:56
@ testHomog
Definition: structs.h:41
@ isNotHomog
Definition: structs.h:39
#define BITSET
Definition: structs.h:18
#define loop
Definition: structs.h:78
int * int_ptr
Definition: structs.h:57
sleftv sLastPrinted
Definition: subexpr.cc:52
BOOLEAN siq
Definition: subexpr.cc:54
omBin procinfo_bin
Definition: subexpr.cc:48
@ LANG_MAX
Definition: subexpr.h:22
@ LANG_SINGULAR
Definition: subexpr.h:22
@ LANG_NONE
Definition: subexpr.h:22
@ LANG_C
Definition: subexpr.h:22
@ LANG_TOP
Definition: subexpr.h:22
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
Definition: syz.cc:771
void syMinimizeResolvente(resolvente res, int length, int first)
Definition: syz.cc:356
intvec ** hilb_coeffs
Definition: syz.h:46
resolvente minres
Definition: syz.h:58
void syKillComputation(syStrategy syzstr, ring r=currRing)
Definition: syz1.cc:1496
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
Definition: syz1.cc:1642
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
Definition: syz1.cc:1756
void syKillEmptyEntres(resolvente res, int length)
Definition: syz1.cc:2201
short list_length
Definition: syz.h:62
resolvente res
Definition: syz.h:47
resolvente fullres
Definition: syz.h:57
intvec ** weights
Definition: syz.h:45
ssyStrategy * syStrategy
Definition: syz.h:35
resolvente orderedRes
Definition: syz.h:48
int length
Definition: syz.h:60
#define IDHDL
Definition: tok.h:31
@ ALIAS_CMD
Definition: tok.h:34
@ BIGINT_CMD
Definition: tok.h:38
@ CRING_CMD
Definition: tok.h:56
@ LIST_CMD
Definition: tok.h:118
@ INTVEC_CMD
Definition: tok.h:101
@ PACKAGE_CMD
Definition: tok.h:149
@ CMATRIX_CMD
Definition: tok.h:46
@ DEF_CMD
Definition: tok.h:58
@ CNUMBER_CMD
Definition: tok.h:47
@ LINK_CMD
Definition: tok.h:117
@ QRING_CMD
Definition: tok.h:158
@ STRING_CMD
Definition: tok.h:183
@ INT_CMD
Definition: tok.h:96
#define ANY_TYPE
Definition: tok.h:30
struct for passing initialization parameters to naInitChar
Definition: transext.h:88
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
Definition: weight.cc:114
double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight.cc:26
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight0.c:78