permlib  0.2.9
Library for permutation computations
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 123]
 Npermlib
 Nclassic
 Nexports
 Nhelpers
 Npartition
 CAbstractBSGSA high level interface implementing a group represented by a BSGS data structure
 CAbstractPermutationGroupA high level interface for a permutation group
 CAbstractSymmetricProductA high level interface implementing a direct product of symmetric groups
 CBSGSRepresents a base and strong generating set (BSGS)
 CStrongGeneratingSetSorterClass that can be used to sort a strong generating set
 CBSGSCoreCore data of a base and strong generating set (BSGS)
 CBaseChangeAbstract base class for base change algorithms
 CBaseTransposeAbstract base class for base transposition
 CSymmetricGroupRepresentation of a symmetric group
 CConjugatingBaseChangeBase change by conjugation and, if necessary, transpositions
 CDeterministicBaseTransposeImplementation of a deterministic base transposition algorithm
 CNewBaseChangeBase change by constructing a new base with random schreier sims
 CRandomBaseTransposeImplementation of a randomized base transposition algorithm
 CSimpleBaseChangeBase change by a sequence of point insertions and transpositions
 Cdelete_objectCallable object to delete a pointer
 CBaseConstructionBase class for BSGS construction algorithms
 CCyclicGroupConstructionBSGS construction for a cyclic group of given order
 CKnownBSGSConstructionBSGS construction from a known base and strong generating set
 CRandomSchreierSimsConstructionBSGS construction with Random Schreier-Sims algorithm
 CSchreierSimsConstructionBSGS construction with classic Schreier-Sims algorithm
 CBSGSGeneratorStateful generator of BSGS elements
 CBSGSRandomGeneratorGenerates uniformly distributed random group elements based on an existing BSGS
 CGeneratorInterface for group element generators
 CProductReplacementGeneratorGenerates nearly-uniformly distributed random group elements using the product replacement algorithm
 CRandomGeneratorAbstract base class for random group element generators
 CRandomSchreierGeneratorGenerates a uniformly distributed random element of $G^{[i]}_\alpha$
 CSchreierGeneratorStateful generator of Schreier generators
 CPermutationPermutation class storing all values explicitly
 CPermutationWordPermutation class storing permutations as words of elementary Permutation 's
 CGroupIntersectionPredicatePredicate for the subgroup that arises as the intersection of two given groups
 CIdentityPredicatePredicate matching a permutation if it stabilizes a given list of points pointwise
 CLexSmallerImagePredicateCoset-type predicate for group elements that map one set of zeros and ones to a lex-smaller set (w.r.t. to the indices)
 CMatrixAutomorphismPredicatePredicate for the automorphisms of a symmetric matrix
 CPointwiseStabilizerPredicatePredicate matching a permutation if it stabilizes a given list of points pointwise
 CSetImagePredicateCoset-type predicate for group elements that map one set of points onto another given set of points
 CSetwiseStabilizerPredicatePredicate for the subgroup that stabilizes a given point set
 CStabilizesPointPredicatePredicate matching points that are stabilized by given permutations
 CRefinementFamily
 CSubgroupPredicateAbstract base class for subgroup (and coset) predicates
 CVectorStabilizerPredicatePredicate for the subgroup that stabilizes a given integer vector
 CPrimeHelperHelper class for primality checks
 CRedundantBasePointInsertionStrategyStrategy for redundant base point insertion
 CTrivialRedundantBasePointInsertionStrategyInsertion position after first non-trivial transversal
 CFirstRedundantBasePointInsertionStrategyInsertion position at first position i such that $G^{[i]}$ stabilizes beta
 CBaseSearchBase class for searching in a group
 CDSetActionAction of a permutation on a dynamic bitset
 COrbitLexMinSearchAlgorithm to find the lexicographically minimal set in an orbit
 COrderedSorterA sorter that sorts a sequence with respect to a given input ordering
 CBaseSorterA sorter that sorts a sequence (e.g. $\Omega$) with respect to a given input ordering (e.g. a base)
 CBaseSorterByReferenceA sorter that sorts a sequence (e.g. $\Omega$) with respect to a given input ordering (e.g. a base)
 CGroupSorterA sorter that sorts a sequence of permutations with respect to a ordering induced by a base
 CTrivialSorterA sorter that sorts a sequence in natural numerical order (1 < 2 < 3 < ...)
 CGiantTestBase
 CGiantTestTests a group given by generators for being an Alternating Group or a Symmetric Group
 CGroupTypeAbstract base class for permutation group types
 CTrivialGroupTypeGroup type for a trivial permutation group
 CAnonymousGroupTypeGroup type for a permutation group whose type could not be determined
 CNamedGroupTypeAbstract base class for named groups (such as cyclic and symmetric groups)
 CSymmetricGroupTypeGroup type for symmetric groups
 CAlternatingGroupTypeGroup type for alternating groups
 CCyclicGroupTypeGroup type for cyclic groups
 CWreathSymmetricGroupTypeGroup type for a wreath product of symmetric groups
 CDirectProductGroupTypeGroup type for a direct product of two groups
 CPrimitivitySGSTestTests a transitive group for which a strong generating set is availble for primitivity
 CPrimitivityTestTests a transitive group is availble for primitivity
 CTypeRecognitionClass for a basic type recognition of permutation groups
 CBlockVectorAction
 CSymmetricGroupRecognitionHeuristicFast recognition of symmetric group subgroups
 CExplicitTransversalTransversal class that stores all transversal elements explicitly
 COrbitAbstract base class for orbit computation
 COrbitListStores an orbit in a sorted list
 COrbitSetStores an orbit in a set for fast contains() operation
 CSchreierTreeTransversalTransversal class that stores transversal elements in a Schreier tree
 CShallowSchreierTreeTransversalTransversal class that stores elements in a shallow Schreier tree
 CSymmetricGroupTransversalTransversal of a symmetric group
 CTransversalTransversal base class corresponding to a base element $\alpha$