
AutoGen - The Automated Program Generator
For version 5.5, June 2003

Bruce Korb
bkorb@gnu.org

mailto:bkorb@gnu.org

AutoGen copyright c© 1992-2003 Bruce Korb

This is the second edition of the GNU AutoGen documentation,

Published by Bruce Korb, 910 Redwood Dr., Santa Cruz, CA 95060
AutoGen is free software.
You may redistribute it and/or modify it under the terms of the GNU General Public
License, as published by the Free Software Foundation; either version 2, or (at your option)
any later version.
AutoGen is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with AutoGen.
See the file "COPYING". If not, write to: The Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.

Chapter 1: Introduction 1

1 Introduction

AutoGen is a tool designed for generating program files that contain repetitive text with
varied substitutions. Its goal is to simplify the maintenance of programs that contain large
amounts of repetitious text. This is especially valuable if there are several blocks of such
text that must be kept synchronized in parallel tables.

One common example is the problem of maintaining the code required for processing
program options. Processing options requires a minimum of four different constructs be
kept in proper order in different places in your program. You need at least:
1. The flag character in the flag string,
2. code to process the flag when it is encountered,
3. a global state variable or two, and
4. a line in the usage text.

You will need more things besides this if you choose to implement long option names, rc/ini
file processing, environment variables and so on. All of this can be done mechanically; with
the proper templates and this program. In fact, it has already been done and AutoGen itself
uses it See Chapter 7 [AutoOpts], page 66. For a simple example of Automated Option
processing, See Section 7.2 [Quick Start], page 69. For a full list of the Automated Option
features, See Section 7.1 [Features], page 66.

1.1 The Purpose of AutoGen

The idea of this program is to have a text file, a template if you will, that contains
the general text of the desired output file. That file includes substitution expressions and
sections of text that are replicated under the control of separate definition files.

AutoGen was designed with the following features:
1. The definitions are completely separate from the template. By completely isolating

the definitions from the template it greatly increases the flexibility of the template
implementation. A secondary goal is that a template user only needs to specify those
data that are necessary to describe his application of a template.

2. Each datum in the definitions is named. Thus, the definitions can be rearranged,
augmented and become obsolete without it being necessary to go back and clean up
older definition files. Reduce incompatibilities!

3. Every definition name defines an array of values, even when there is only one entry.
These arrays of values are used to control the replication of sections of the template.

4. There are named collections of definitions. They form a nested hierarchy. Associated
values are collected and associated with a group name. These associated data are used
collectively in sets of substitutions.

5. The template has special markers to indicate where substitutions are required, much
like the ${VAR} construct in a shell here doc. These markers are not fixed strings.
They are specified at the start of each template. Template designers know best what
fits into their syntax and can avoid marker conflicts.
We did this because it is burdensome and difficult to avoid conflicts using either M4
tokenizaion or C preprocessor substitution rules. It also makes it easier to specify

Chapter 1: Introduction 2

expressions that transform the value. Of course, our expressions are less cryptic than
the shell methods.

6. These same markers are used, in conjunction with enclosed keywords, to indicate sec-
tions of text that are to be skipped and for sections of text that are to be repeated.
This is a major improvement over using C preprocessing macros. With the C prepro-
cessor, you have no way of selecting output text because it is an unvarying, mechanical
substitution process.

7. Finally, we supply methods for carefully controlling the output. Sometimes, it is just
simply easier and clearer to compute some text or a value in one context when its
application needs to be later. So, functions are available for saving text or values for
later use.

1.2 A Simple Example

This is just one simple example that shows a few basic features. If you are interested, you
also may run "make check" with the VERBOSE enviornment variable set and see a number
of other examples in the ‘agen5/test/testdir’ directory.

Assume you have an enumeration of names and you wish to associate some string with
each name. Assume also, for the sake of this example, that it is either too complex or too
large to maintain easily by hand. We will start by writing an abbreviated version of what
the result is supposed to be. We will use that to construct our output templates.
In a header file, ‘list.h’, you define the enumeration and the global array containing the
associated strings:

typedef enum {
IDX_ALPHA,
IDX_BETA,
IDX_OMEGA } list_enum;

extern const char* az_name_list[3];

Then you also have ‘list.c’ that defines the actual strings:
#include "list.h"
const char* az_name_list[] = {

"some alpha stuff",
"more beta stuff",
"final omega stuff" };

First, we will define the information that is unique for each enumeration name/string pair.
This would be placed in a file named, ‘list.def’, for example.

autogen definitions list;
list = { list_element = alpha;

list_info = "some alpha stuff"; };
list = { list_info = "more beta stuff";

list_element = beta; };
list = { list_element = omega;

list_info = "final omega stuff"; };

The autogen definitions list; entry defines the file as an AutoGen definition file
that uses a template named list. That is followed by three list entries that define the

Chapter 1: Introduction 3

associations between the enumeration names and the strings. The order of the differently
named elements inside of list is unimportant. They are reversed inside of the beta entry
and the output is unaffected.

Now, to actually create the output, we need a template or two that can be expanded
into the files you want. In this program, we use a single template that is capable of multiple
output files. The definitions above refer to a ‘list’ template, so it would normally be
named, ‘list.tpl’.

It looks something like this. (For a full description, See Chapter 3 [Template File],
page 17.)

[+ AutoGen5 template h c +]
[+ CASE (suffix) +][+

== h +]
typedef enum {[+

FOR list "," +]
IDX_[+ (string-upcase! (get "list_element")) +][+

ENDFOR list +] } list_enum;

extern const char* az_name_list[[+ (count "list") +]];
[+

== c +]
#include "list.h"
const char* az_name_list[] = {[+

FOR list "," +]
"[+list_info+]"[+

ENDFOR list +] };[+

ESAC +]

The [+ AutoGen5 template h c +] text tells AutoGen that this is an AutoGen version
5 template file; that it is to be processed twice; that the start macro marker is [+; and the
end marker is +]. The template will be processed first with a suffix value of h and then
with c. Normally, the suffix values are appended to the ‘base-name’ to create the output
file name.

The [+ == h +] and [+ == c +] CASE selection clauses select different text for the two
different passes. In this example, the output is nearly disjoint and could have been put in
two separate templates. However, sometimes there are common sections and this is just an
example.

The [+FOR list "," +] and [+ ENDFOR list +] clauses delimit a block of text that will
be repeated for every definition of list. Inside of that block, the definition name-value
pairs that are members of each list are available for substitutions.

The remainder of the macros are expressions. Some of these contain special expres-
sion functions that are dependent on AutoGen named values; others are simply Scheme
expressions, the result of which will be inserted into the output text. Other expressions are
names of AutoGen values. These values will be inserted into the output text. For example,
[+list_info+] will result in the value associated with the name list_info being inserted
between the double quotes and (string-upcase! (get "list_element")) will first "get"

Chapter 1: Introduction 4

the value associated with the name list_element, then change the case of all the letters
to upper case. The result will be inserted into the output document.

If you have compiled AutoGen, you can copy out the template and definitions as de-
scribed above and run autogen list.def. This will produce exactly the hypothesized
desired output.

One more point, too. Lets say you decided it was too much trouble to figure out how
to use AutoGen, so you created this enumeration and string list with thousands of entries.
Now, requirements have changed and it has become necessary to map a string containing
the enumeration name into the enumeration number. With AutoGen, you just alter the
template to emit the table of names. It will be guaranteed to be in the correct order, missing
none of the entries. If you want to do that by hand, well, good luck.

1.3 csh/zsh caveat

AutoGen tries to use your normal shell so that you can supply shell code in a manner
you are accustomed to using. If, however, you use csh or zsh, you cannot do this. Csh is
sufficiently difficult to program that it is unsupported. Zsh, though largely programmable,
also has some anomolies that make it incompatible with AutoGen usage. Therefore, when
invoking AutoGen from these environments, you must be certain to set the SHELL envi-
ronment variable to a Bourne-derived shell. e.g., sh, ksh or bash.

Any shell you choose for your own scripts need to follow these basic requirements:
1. It handles trap $sig ":" without output to standard out. This is done when the server

shell is first started. If your shell does not handle this, then it may be able to by loading
functions from its start up files.

2. At the beginning of each scriptlet, the command \\cd $PWD is inserted. This ensures
that cd is not aliased to something peculiar and each scriptlet starts life in the execution
directory.

3. At the end of each scriptlet, the command echo mumble is appended. The program
you use as a shell must emit the single argument mumble on a line by itself.

1.4 A User’s Perspective

Alexandre wrote:
>
> I’d appreciate opinions from others about advantages/disadvantages of
> each of these macro packages.

I am using AutoGen in my pet project, and find one of its best points to be that it
separates the operational data from the implementation.

Indulge me for a few paragraphs, and all will be revealed: In the manual, Bruce cites the
example of maintaining command line flags inside the source code; traditionally spreading
usage information, flag names, letters and processing across several functions (if not files).
Investing the time in writing a sort of boiler plate (a template in AutoGen terminology)
pays by moving all of the option details (usage, flags names etc.) into a well structured
table (a definition file if you will), so that adding a new command line option becomes a
simple matter of adding a set of details to the table.

Chapter 1: Introduction 5

So far so good! Of course, now that there is a template, writing all of that tedious optargs
processing and usage functions is no longer an issue. Creating a table of the options needed
for the new project and running AutoGen generates all of the option processing code in
C automatically from just the tabular data. AutoGen in fact already ships with such a
template... AutoOpts.

One final consequence of the good separation in the design of AutoGen is that it is
retargetable to a greater extent. The egcs/gcc/fixinc/inclhack.def can equally be used (with
different templates) to create a shell script (inclhack.sh) or a c program (fixincl.c).

This is just the tip of the iceberg. AutoGen is far more powerful than these examples
might indicate, and has many other varied uses. I am certain Bruce or I could supply you
with many and varied examples, and I would heartily recommend that you try it for your
project and see for yourself how it compares to m4.

As an aside, I would be interested to see whether someone might be persuaded to ratio-
nalise autoconf with AutoGen in place of m4... Ben, are you listening? autoconf-3.0! ‘kay?
=)O|

Sincerely,
Gary V. Vaughan

Chapter 2: AutoGen Definitions File 6

2 AutoGen Definitions File

This chapter describes the syntax and semantics of the AutoGen definition file. In order
to instantiate a template, you normally must provide a definitions file that identifies itself
and contains some value definitions. Consequently, we keep it very simple. For "advanced"
users, there are preprocessing directives, sparse arrays, named indexes and comments that
may be used as well.

The definitions file is used to associate values with names. Every value is implicitly
an array of values, even if there is only one value. Values may be either simple strings
or compound collections of name-value pairs. An array may not contain both simple and
compound members. Fundamentally, it is as simple as:

prog_name = "autogen";
flag = {

name = templ_dirs;
value = L;
descrip = "Template search directory list";

};

For purposes of commenting and controlling the processing of the definitions, C-style
comments and most C preprocessing directives are honored. The major exception is that
the #if directive is ignored, along with all following text through the matching #endif
directive. The C preprocessor is not actually invoked, so C macro substitution is not
performed.

2.1 The Identification Definition

The first definition in this file is used to identify it as a AutoGen file. It consists of the
two keywords, ‘autogen’ and ‘definitions’ followed by the default template name and a
terminating semi-colon (;). That is:

AutoGen Definitions template-name;

Note that, other than the name template-name, the words ‘AutoGen’ and ‘Definitions’
are searched for without case sensitivity. Most lookups in this program are case insensitive.

Also, if the input contains more identification definitions, they will be ignored. This is done
so that you may include (see Section 2.5 [Directives], page 10) other definition files without
an identification conflict.

AutoGen uses the name of the template to find the corresponding template file. It searches
for the file in the following way, stopping when it finds the file:

1. It tries to open ‘./template-name’. If it fails,

2. it tries ‘./template-name.tpl’.

3. It searches for either of these files in the directories listed in the templ-dirs command
line option.

If AutoGen fails to find the template file in one of these places, it prints an error message
and exits.

Chapter 2: AutoGen Definitions File 7

2.2 Named Definitions

Any name may have multiple values associated with it in the definition file. If there is
more than one instance, the only way to expand all of the copies of it is by using the FOR
(see Section 3.6.13 [FOR], page 47) text function on it, as described in the next chapter.

There are two kinds of definitions, ‘simple’ and ‘compound’. They are defined thus (see
Section 2.9 [Full Syntax], page 14):

compound_name ’=’ ’{’ definition-list ’}’ ’;’

simple_name ’=’ string ’;’

no_text_name ’;’

No_text_name is a simple definition with a shorthand empty string value. The string values
for definitions may be specified in any of several formation rules.

2.2.1 Definition List

definition-list is a list of definitions that may or may not contain nested compound
definitions. Any such definitions may only be expanded within a FOR block iterating over
the containing compound definition. See Section 3.6.13 [FOR], page 47.

Here is, again, the example definitions from the previous chapter, with three additional
name value pairs. Two with an empty value assigned (first and last), and a "global"
group name.

autogen definitions list;
group_name = example;
list = { list_element = alpha; first;

list_info = "some alpha stuff"; };
list = { list_info = "more beta stuff";

list_element = beta; };
list = { list_element = omega; last;

list_info = "final omega stuff"; };

2.2.2 Double Quote String

The string follows the C-style escaping (\, \n, \f, \v, etc.), plus octal character numbers
specified as \ooo. The difference from "C" is that the string may span multiple lines. Like
ANSI "C", a series of these strings, possibly intermixed with single quote strings, will be
concatenated together.

2.2.3 Single Quote String

This is similar to the shell single-quote string. However, escapes \ are honored before
another escape, single quotes ’ and hash characters #. This latter is done specifically to
disambiguate lines starting with a hash character inside of a quoted string. In other words,

fumble = ’
#endif
’;

could be misinterpreted by the definitions scanner, whereas this would not:

Chapter 2: AutoGen Definitions File 8

fumble = ’
\#endif
’;

As with the double quote string, a series of these, even intermixed with double quote strings,
will be concatenated together.

2.2.4 Shell Output String

This is assembled according to the same rules as the double quote string, except that
there is no concatenation of strings and the resulting string is written to a shell server
process. The definition takes on the value of the output string.

NB The text is interpreted by a server shell. There may be left over state from previous
‘ processing and it may leave state for subsequent processing. However, a cd to the original
directory is always issued before the new command is issued.

2.2.5 An Unquoted String

A simple string that does not contain white space may be left unquoted. The string must
not contain any of the characters special to the definition text (i.e. ", #, ’, (,), ,, ;, <, =,
>, [,], ‘, {, or }). This list is subject to change, but it will never contain underscore (_),
period (.), slash (/), colon (:), hyphen (-) or backslash (\\). Basically, if the string looks
like it is a normal DOS or UNIX file or variable name, and it is not one of two keywords
(‘autogen’ or ‘definitions’) then it is OK to not quote it, otherwise you should.

2.2.6 Scheme Result String

A scheme result string must begin with an open parenthesis (. The scheme expression
will be evaluated by Guile and the value will be the result. The AutoGen expression
functions are disabled at this stage, so do not use them.

2.2.7 A Here String

A ‘here string’ is formed in much the same way as a shell here doc. It is denoted
with a doubled less than character and, optionally, a hyphen. This is followed by optional
horizontal white space and an ending marker-identifier. This marker must follow the syntax
rules for identifiers. Unlike the shell version, however, you must not quote this marker. The
resulting string will start with the first character on the next line and continue up to but
not including the newline that precedes the line that begins with the marker token. No
backslash or any other kind of processing is done on this string. The characters are copied
directly into the result string.

Here are two examples:
str1 = <<- STR_END

$quotes = " ’ ‘
STR_END;

str2 = << STR_END

Chapter 2: AutoGen Definitions File 9

$quotes = " ’ ‘
STR_END;

STR_END;

The first string contains no new line characters. The first character is the dollar sign,
the last the back quote.

The second string contains one new line character. The first character is the tab character
preceeding the dollar sign. The last character is the semicolon after the STR_END. That
STR_END does not end the string because it is not at the beginning of the line. In the
preceeding case, the leading tab was stripped.

2.2.8 Concatenated Strings

If single or double quote characters are used, then you also have the option, a la ANSI-C
syntax, of implicitly concatenating a series of them together, with intervening white space
ignored.

NB You cannot use directives to alter the string content. That is,
str = "fumble"
#ifdef LATER

"stumble"
#endif

;

will result in a syntax error. The preprocessing directives are not carried out by the C
preprocessor. However,

str = ’"fumble\n"
#ifdef LATER
" stumble\n"
#endif
’;

Will work. It will enclose the ‘#ifdef LATER’ and ‘#endif’ in the string. But it may
also wreak havoc with the definition processing directives. The hash characters in the
first column should be disambiguated with an escape \ or join them with previous lines:
"fumble\n#ifdef LATER....

2.3 Assigning an Index to a Definition

In AutoGen, every name is implicitly an array of values. When assigning values, they
are usually implicitly assiged to the next highest slot. They can also be specified explicitly:

mumble[9] = stumble;
mumble[0] = grumble;

If, subsequently, you assign a value to mumble without an index, its index will be 10, not 1.
If indexes are specified, they must not cause conflicts.

#define-d names may also be used for index values. This is equivalent to the above:
#define FIRST 0
#define LAST 9
mumble[LAST] = stumble;

Chapter 2: AutoGen Definitions File 10

mumble[FIRST] = grumble;

All values in a range do not have to be filled in. If you leave gaps, then you will have
a sparse array. This is fine (see Section 3.6.13 [FOR], page 47). You have your choice of
iterating over all the defined values, or iterating over a range of slots. This:

[+ FOR mumble +][+ ENDFOR +]

iterates over all and only the defined entries, whereas this:
[+ FOR mumble (for-by 1) +][+ ENDFOR +]

will iterate over all 10 "slots". Your template will likely have to contain something like this:
[+ IF (exist? (sprintf "mumble[%d]" (for-index))) +]

or else "mumble" will have to be a compound value that, say, always contains a "grumble"
value:

[+ IF (exist? "grumble") +]

2.4 Dynamic Text

There are several methods for including dynamic content inside a definitions file. Three
of them are mentioned above (Section 2.2.4 [shell-generated], page 8 and see Section 2.2.6
[scheme-generated], page 8) in the discussion of string formation rules. Another method
uses the #shell processing directive. It will be discussed in the next section (see Section 2.5
[Directives], page 10). Guile/Scheme may also be used to yield to create definitions.

When the Scheme expression is preceeded by a backslash and single quote, then the
expression is expected to be an alist of names and values that will be used to create AutoGen
definitions.
This method can be be used as follows:

\’((name (value-expression))
(name2 (another-expr)))

This is entirely equivalent to:
name = (value-expression);
name2 = (another-expr);

Under the covers, the expression gets handed off to a Guile function named
alist->autogen-def in an expression that looks like this:

(alist->autogen-def
((name (value-expression)) (name2 (another-expr))))

2.5 Controlling What Gets Processed

Definition processing directives can only be processed if the ’#’ character is the first
character on a line. Also, if you want a ’#’ as the first character of a line in one of your
string assignments, you should either escape it by preceding it with a backslash ‘\’, or by
embedding it in the string as in "\n#".

All of the normal C preprocessing directives are recognized, though several are ignored.
There is also an additional #shell - #endshell pair. Another minor difference is that
AutoGen directives must have the hash character (#) in column 1.

Chapter 2: AutoGen Definitions File 11

The final tweak is that #! is treated as a comment line. Using this feature, you can
use: ‘#! /usr/local/bin/autogen’ as the first line of a definitons file, set the mode to
executable and "run" the definitions file as if it were a direct invocation of AutoGen. This
was done for its hack value.

The ignored directives are: ‘#assert’, ‘#ident’, ‘#pragma’, and ‘#if’. Note that when
ignoring the #if directive, all intervening text through its matching #endif is also ignored,
including the #else clause.

The AutoGen directives that affect the processing of definitions are:

#define name [<text>]
Will add the name to the define list as if it were a DEFINE program argument.
Its value will be the first non-whitespace token following the name. Quotes are
not processed.
After the definitions file has been processed, any remaining entries in the define
list will be added to the environment.

#elif

This must follow an #if otherwise it will generate an error. It will be ignored.

#else

This must follow an #if, #ifdef or #ifndef. If it follows the #if, then it will
be ignored. Otherwise, it will change the processing state to the reverse of what
it was.

#endif

This must follow an #if, #ifdef or #ifndef. In all cases, this will resume
normal processing of text.

#endshell
Ends the text processed by a command shell into autogen definitions.

#error [<descriptive text>]
This directive will cause AutoGen to stop processing and exit with a status of
EXIT FAILURE.

#if [<ignored conditional expression>]
#if expressions are not analyzed. Everything from here to the matching #endif
is skipped.

#ifdef name-to-test
The definitions that follow, up to the matching #endif will be processed only
if there is a corresponding -Dname command line option.

#ifndef name-to-test
The definitions that follow, up to the matching #endif will be processed only
if there is not a corresponding -Dname command line option or there was a
canceling -Uname option.

#include unadorned-file-name
This directive will insert definitions from another file into the current collection.
If the file name is adorned with double quotes or angle brackets (as in a C
program), then the include is ignored.

Chapter 2: AutoGen Definitions File 12

#line

Alters the current line number and/or file name. You may wish to use this
directive if you extract definition source from other files. getdefs uses this
mechanism so AutoGen will report the correct file and approximate line number
of any errors found in extracted definitions.

#option opt-name [<text>]
This directive will pass the option name and associated text to the AutoOpts
optionLoadLine routine (see [optionLoadLine], page 68). The option text may
span multiple lines by continuing them with a backslash. The backslash/newline
pair will be replaced with two space characters. This directive may be used to
set a search path for locating template files For example, this:

#option templ-dirs $ENVVAR/dirname

will direct autogen to use the ENVVAR environment variable to find a direc-
tory named dirname that (may) contain templates. Since these directories are
searched in most recently supplied first order, search directories supplied in this
way will be searched before any supplied on the command line.

#shell

Invokes $SHELL or ‘/bin/sh’ on a script that should generate AutoGen defini-
tions. It does this using the same server process that handles the back-quoted
‘ text. CAUTION let not your $SHELL be csh.

#undef name-to-undefine
Will remove any entries from the define list that match the undef name pattern.

2.6 Pre-defined Names

When AutoGen starts, it tries to determine several names from the operating environ-
ment and put them into environment variables for use in both #ifdef tests in the definitions
files and in shell scripts with environment variable tests. __autogen__ is always defined.
For other names, AutoGen will first try to use the POSIX version of the sysinfo(2) system
call. Failing that, it will try for the POSIX uname(2) call. If neither is available, then only
"__autogen__" will be inserted into the environment. In all cases, the associated names
are converted to lower case, surrounded by doubled underscores and non-symbol characters
are replaced with underscores.

With Solaris on a sparc platform, sysinfo(2) is available. The following strings are
used:
• SI_SYSNAME (e.g., " sunos ")
• SI_HOSTNAME (e.g., " ellen ")
• SI_ARCHITECTURE (e.g., " sparc ")
• SI_HW_PROVIDER (e.g., " sun microsystems ")
• SI_PLATFORM (e.g., " sun ultra 5 10 ")
• SI_MACHINE (e.g., " sun4u ")

For Linux and other operating systems that only support the uname(2) call, AutoGen
will use these values:

Chapter 2: AutoGen Definitions File 13

• sysname (e.g., " linux ")
• machine (e.g., " i586 ")
• nodename (e.g., " bach ")

By testing these pre-defines in my definitions, you can select pieces of the definitions
without resorting to writing shell scripts that parse the output of uname(1). You can also
segregate real C code from autogen definitions by testing for "__autogen__".

#ifdef __bach__
location = home;

#else
location = work;

#endif

2.7 Commenting Your Definitions

The definitions file may contain C and C++ style comments.
/*
* This is a comment. It continues for several lines and closes
* when the characters ’*’ and ’/’ appear together.
*/
// this comment is a single line comment

2.8 What it all looks like.

This is an extended example:
autogen definitions ‘template-name’;
/*
* This is a comment that describes what these
* definitions are all about.
*/
global = "value for a global text definition.";

/*
* Include a standard set of definitions
*/
#include standards.def

a_block = {
a_field;
a_subblock = {

sub_name = first;
sub_field = "sub value.";

};

#ifdef FEATURE
a_subblock = {

sub_name = second;
};

Chapter 2: AutoGen Definitions File 14

#endif

};

2.9 YACC Language Grammar

The preprocessing directives and comments are not part of the grammar. They are
handled by the scanner/lexer. The following was extracted directly from the defParse.y
source file:

definitions : identity def_list TK_END
{ $$ = (YYSTYPE)(rootDefCtx.pDefs = (tDefEntry*)$2); }

| identity TK_END
{ $$ = makeEmptyDefs(); }

;

def_list : definition { $$ = $1; }
| definition def_list { $$ = addSibMacro($1, $2); }
| identity def_list { $$ = $2; }
;

identity : TK_AUTOGEN TK_DEFINITIONS filename ’;’
{ $$ = identify($3); }

;

definition : value_name ’;’
{ $$ = makeMacro($1, (YYSTYPE)"", VALTYP_TEXT); }

| value_name ’=’ text_list ’;’
{ $$ = makeMacroList($1, $3, VALTYP_TEXT); }

| value_name ’=’ block_list ’;’
{ $$ = makeMacroList($1, $3, VALTYP_BLOCK); }

;

text_list : anystring { $$ = startList($1); }
| anystring ’,’ text_list { $$ = appendList($1, $3); }
;

block_list : def_block { $$ = startList($1); }
| def_block ’,’ block_list { $$ = appendList($1, $3); }
;

def_block : ’{’ def_list ’}’ { $$ = $2; } ;

anystring : filename { $$ = $1; }
| TK_NUMBER { $$ = $1; } ;

filename : TK_OTHER_NAME { $$ = $1; }
| TK_STRING { $$ = $1; }

Chapter 2: AutoGen Definitions File 15

| TK_VAR_NAME { $$ = $1; } ;

value_name : TK_VAR_NAME
{ $$ = findPlace((YYSTYPE)$1, (YYSTYPE)NULL); }

| TK_VAR_NAME ’[’ TK_NUMBER ’]’
{ $$ = findPlace((YYSTYPE)$1, (YYSTYPE)$3); }

| TK_VAR_NAME ’[’ TK_VAR_NAME ’]’
{ $$ = findPlace((YYSTYPE)$1, (YYSTYPE)$3); }

;

2.10 Alternate Definition Forms

There are several methods for supplying data values for templates.

‘no definitions’
It is entirely possible to write a template that does not depend upon external
definitions. Such a template would likely have an unvarying output, but be
convenient nonetheless because of an external library of either AutoGen or
Scheme functions, or both. This can be accommodated by providing the -
-override-tpl and --no-definitions options on the command line. See
Chapter 5 [autogen Invocation], page 53.

‘CGI’ AutoGen behaves as a CGI server if the definitions input is from stdin and the
environment variable REQUEST_METHOD is defined and set to either "GET" or
"POST", See Section 6.2 [AutoGen CGI], page 63. Obviously, all the values
are constrained to strings because there is no way to represent nested values.

‘XML’ AutoGen comes with a program named, xml2ag. Its output can either be
redirected to a file for later use, or the program can be used as an AutoGen
wrapper. See Section 8.6 [xml2ag Invocation], page 113.

The introductory template example (see Section 1.2 [Example Usage], page 2)
can be rewritten in XML as follows:

<EXAMPLE template="list.tpl">
<LIST list_element="alpha"

list_info="some alpha stuff"/>
<LIST list_info="more beta stuff"

list_element="beta"/>
<LIST list_element="omega"

list_info="final omega stuff"/>
</EXAMPLE>

A more XML-normal form might look like this:
<EXAMPLE template="list.tpl">
<LIST list_element="alpha">some alpha stuff</LIST>
<LIST list_element="beta" >more beta stuff</LIST>
<LIST list_element="omega">final omega stuff</LIST>
</EXAMPLE>

Chapter 2: AutoGen Definitions File 16

but you would have to change the template list_info references into text
references.

‘standard AutoGen definitions’
Of course. :-)

Chapter 3: AutoGen Template 17

3 AutoGen Template

The AutoGen template file defines the content of the output text. It is composed of two
parts. The first part consists of a pseudo macro invocation and commentary. It is followed
by the template proper.

This pseudo macro is special. It is used to identify the file as a AutoGen template
file, fixing the starting and ending marks for the macro invocations in the rest of the file,
specifying the list of suffixes to be generated by the template and, optionally, the shell to
use for processing shell commands embedded in the template.

AutoGen-ing a file consists of copying text from the template to the output file until a
start macro marker is found. The text from the start marker to the end marker constitutes
the macro text. AutoGen macros may cause sections of the template to be skipped or
processed several times. The process continues until the end of the template is reached.
The process is repeated once for each suffix specified in the pseudo macro.

This chapter describes the format of the AutoGen template macros and the usage of
the AutoGen native macros. Users may augment these by defining their own macros. See
Section 3.6.4 [DEFINE], page 46.

3.1 Format of the Pseudo Macro

The pseudo macro is used to tell AutoGen how to process a template. It tells autogen:
1. The punctuation characters used to demarcate the start of a macro. It may be up to

seven characters long and must be the first non-whitespace characters in the file.
2. That start marker must be immediately followed by the marker strings "AutoGen5"

and then "template", though capitalization is not important.

The next several components may be intermingled:
3. Zero, one or more suffix specifications tell AutoGen how many times to process the

template file. No suffix specifications mean that it is to be processed once and that
the generated text is to be written to stdout. The current suffix for each pass can
be determined with the (suffix) scheme function (see Section 3.4.35 [SCM suffix],
page 29).
The suffix specification consists of a sequence of POSIX compliant file name characters
and, optionally, an equal sign and a file name "printf"-style formatting string. Two
string arguments are allowed for that string: the base name of the definition file and
the current suffix (that being the text to the left of the equal sign). (Note: "POSIX
compliant file name characters" consist of alphanumerics plus the period (.), hyphen
(-) and underscore (_) characters.)

4. Comment lines: blank lines, lines starting with a hash mark [#]), and edit mode com-
ments (text between pairs of -*- strings).

5. Scheme expressions may be inserted in order to make configuration changes before
template processing begins. It is used, for example, to allow the template writer to
specify the shell program that must be used to interpret the shell commands in the
template. It can have no effect on any shell commands in the definitions file, as that
file will have been processed by the time the pseudo macro is interpreted.

Chapter 3: AutoGen Template 18

(setenv "SHELL" "/bin/sh")

This is extremely useful to ensure that the shell used is the one the template was
written to use. By default, AutoGen determines the shell to use by user preferences.
Sometimes, that can be the "csh", though.
The scheme expression can also be used to save a pre-existing output file for later text
extraction (see Section 3.5.4 [SCM extract], page 31).

(shellf "mv -f %1$s.c %1$s.sav" (base-name))

6. Finally, the end-macro marker must be last. It must not begin with a POSIX file name
character, and if it begins with an equal sign, then it must be separated from any suffix
specification by white space.

It is generally a good idea to use some sort of opening bracket in the starting macro
and closing bracket in the ending macro (e.g. {, (, [, or even < in the starting macro).
It helps both visually and with editors capable of finding a balancing parenthesis. The
closing marker may not begin with an open parenthesis, as that is used to enclose a scheme
expression.

It is also helpful to avoid using the comment marker (#); the POSIXly acceptable file
name characters period (.), hyphen (-) and underscore (_); and finally, it is advisable to
avoid using any of the quote characters double, single or back-quote. But there is no special
check for any of these advisories.

As an example, assume we want to use [+ and +] as the start and end macro markers,
and we wish to produce a ‘.c’ and a ‘.h’ file, then the first macro invocation will look
something like this:

[+ AutoGen5 template -*- Mode: emacs-mode-of-choice -*-
h=chk-%s.h
c
make sure we don’t use csh:
(setenv "SHELL" "/bin/sh") +]

The template proper starts after the pseudo-macro. The starting character is either the
first non-whitespace character or the first character after the newline that follows the end
macro marker.

3.2 Naming a value

When an AutoGen value is specified in a template, it is specified by name. The name
may be a simple name, or a compound name of several components. Since each named
value in AutoGen is implicitly an array of one or more values, each component may have
an index associated with it.
It looks like this:

comp-name-1 . comp-name-2 [2]

Note that if there are multiple components to a name, each component name is separated
by a dot (.). Indexes follow a component name, enclosed in square brackets ([and]). The
index may be either an integer or an integer-valued define name. The first component of
the name is searched for in the current definition level. If not found, higher levels will be
searched until either a value is found, or there are no more definition levels. Subsequent

Chapter 3: AutoGen Template 19

components of the name must be found within the context of the newly-current definition
level. Also, if the named value is prefixed by a dot (.), then the value search is started in
the current context only. No higher levels are searched.

If someone rewrites this, I’ll incorporate it. :-)

3.3 Macro Expression Syntax

AutoGen has two types of expressions: full expressions and basic ones. A full AutoGen
expression can appear by itself, or as the argument to certain AutoGen built-in macros:
CASE, IF, ELIF, INCLUDE, INVOKE (explicit invocation, see Section 3.6.16 [INVOKE],
page 49), and WHILE. If it appears by itself, the result is inserted into the output. If it is
an argument to one of these macros, the macro code will act on it sensibly.

You are constrained to basic expressions only when passing arguments to user defined
macros, See Section 3.6.4 [DEFINE], page 46.

The syntax of a full AutoGen expression is:
[[<apply-code>] <value-name>] [<basic-expr-1> [<basic-expr-2>]]

How the expression is evaluated depends upon the presence or absence of the apply code
and value name. The "value name" is the name of an AutoGen defined value, or not. If
it does not name such a value, the expression result is generally the empty string. All
expressions must contain either a value-name or a basic-expr.

3.3.1 Apply Code

The "apply code" selected determines the method of evaluating the expression. There
are five apply codes, including the non-use of an apply code.

‘no apply code’
This is the most common expression type. Expressions of this sort come in
three flavors:

‘<value-name>’
The result is the value of value-name, if defined. Otherwise it is
the empty string.

‘<basic-expr>’
The result of the basic expression is the result of the full expression,
See Section 3.3.2 [basic expression], page 20.

‘<value-name> <basic-expr>’
If there is a defined value for value-name, then the basic-expr is
evaluated. Otherwise, the result is the empty string.

‘% <value-name> <basic-expr>’
If value-name is defined, use basic-expr as a format string for sprintf. Then,
if the basic-expr is either a back-quoted string or a parenthesized expression,
then hand the result to the appropriate interpreter for further evaluation. Oth-
erwise, for single and double quote strings, the result is the result of the sprintf
operation. Naturally, if value-name is not defined, the result is the empty
string.

Chapter 3: AutoGen Template 20

For example, assume that fumble had the string value, stumble:
[+ % fumble ‘printf ’%%x\\n’ $%s‘ +]

This would cause the shell to evaluate "printf ’%x\n’ $stumble". Assuming
that the shell variable stumble had a numeric value, the expression result would
be that number, in hex. Note the need for doubled percent characters and
backslashes.

‘? <value-name> <basic-expr-1> <basic-expr-2>’
Two basic-expr-s are required. If the value-name is defined, then the first
basic-expr-1 is evaluated, otherwise basic-expr-2 is.

‘- <value-name> <basic-expr>’
Evaluate basic-expr only if value-name is not defined.

‘?% <value-name> <basic-expr-1> <basic-expr-2>’
This combines the functions of ‘?’ and ‘%’. If value-name is defined, it behaves
exactly like ‘%’, above, using basic-expr-1. If not defined, then basic-expr-2
is evaluated.
For example, assume again that fumble had the string value, stumble:

[+ ?% fumble ‘cat $%s‘ ‘pwd‘ +]

This would cause the shell to evaluate "cat $stumble". If fumble were not
defined, then the result would be the name of our current directory.

3.3.2 Basic Expression

A basic expression can have one of the following forms:

‘’STRING’’
A single quoted string. Backslashes can be used to protect single quotes (’),
hash characters (#), or backslashes (\) in the string. All other characters of
STRING are output as-is when the single quoted string is evaluated. Back-
slashes are processed before the hash character for consistency with the defini-
tion syntax. It is needed there to avoid preprocessing conflicts.

‘"STRING"’
A double quoted string. This is a cooked text string as in C, except that they
are not concatenated with adjacent strings. Evaluating "STRING" will output
STRING with all backslash sequences interpreted.

‘‘STRING‘’
A back quoted string. When this expression is evaluated, STRING is first
interpreted as a cooked string (as in ‘"STRING"’) and evaluated as a shell
expression by the AutoGen server shell. This expression is replaced by the
stdout output of the shell.

‘(STRING)’
A parenthesized expression. It will be passed to the Guile interpreter for eval-
uation and replaced by the resulting value.
Additionally, other than in the % and ?% expressions, the Guile expressions may
be introduced with the Guile comment character (;) and you may put a series

Chapter 3: AutoGen Template 21

of Guile expressions within a single macro. They will be implicitly evaluated as
if they were arguments to the (begin ...) expression. The result will be the
the result of the last Guile expression evaluated.

Chapter 3: AutoGen Template 22

3.4 AutoGen Scheme Functions

AutoGen uses Guile to interpret Scheme expressions within AutoGen macros. All of
the normal Guile functions are available, plus several extensions (see Section 3.5 [Common
Functions], page 31) have been added to augment the repertoire of string manipulation
functions and manage the state of AutoGen processing.

This section describes those functions that are specific to AutoGen. Please take note that
these AutoGen specific functions are not loaded and thus not made available until after the
command line options have been processed and the AutoGen definitions have been loaded.
They may, of course, be used in Scheme functions that get defined at those times, but they
cannot be invoked.

3.4.1 ‘ag-function?’ - test for function

Usage: (ag-function? ag-name)
return SCM BOOL T if a specified name is a user-defined AutoGen macro, otherwise return
SCM BOOL F.

Arguments:
ag-name - name of AutoGen macro

3.4.2 ‘base-name’ - base output name

Usage: (base-name)
Returns a string containing the base name of the output file(s). Generally, this is also the
base name of the definitions file.

This Scheme function takes no arguments.

3.4.3 ‘count’ - definition count

Usage: (count ag-name)
Count the number of entries for a definition. The input argument must be a string containing
the name of the AutoGen values to be counted. If there is no value associated with the
name, the result is an SCM immediate integer value of zero.

Arguments:
ag-name - name of AutoGen value

3.4.4 ‘def-file’ - definitions file name

Usage: (def-file)
Get the name of the definitions file. Returns the name of the source file containing the
AutoGen definitions.

This Scheme function takes no arguments.

3.4.5 ‘dne’ - "Do Not Edit" warning

Usage: (dne prefix [first prefix] [optpfx])
Generate a "DO NOT EDIT" or "EDIT WITH CARE" warning string. Which depends

Chapter 3: AutoGen Template 23

on whether or not the --writable command line option was set. The first argument is
a per-line string prefix. The optional second argument is a prefix for the first-line and, in
read-only mode, activates the editor hints.

-*- buffer-read-only: t -*- vi: set ro:

The warning string also includes information about the template used to construct the file
and the definitions used in its instantiation.

The optional third argument is used when the first argument is actually an invocation
option and the prefix arguments get shifted. The first argument must be, specifically, "-d".
That is used to signify that the date stamp should not be inserted into the output.

Arguments:
prefix - string for starting each output line
first prefix - Optional - for the first output line
optpfx - Optional - shifted prefix

3.4.6 ‘error’ - display message and exit

Usage: (error message)
The argument is a string that printed out as part of an error message. The message is
formed from the formatting string:

DEFINITIONS ERROR in %s line %d for %s: %s\n

The first three arguments to this format are provided by the routine and are: The name
of the template file, the line within the template where the error was found, and the current
output file name.

After displaying the message, the current output file is removed and autogen exits with
the EXIT FAILURE error code. IF, however, the argument begins with the number 0
(zero), or the string is the empty string, then processing continues with the next suffix.

Arguments:
message - message to display before exiting

3.4.7 ‘exist?’ - test for value name

Usage: (exist? ag-name)
return SCM BOOL T iff a specified name has an AutoGen value. The name may include
indexes and/or member names. All but the last member name must be an aggregate
definition. For example:

(exist? "foo[3].bar.baz")

will yield true if all of the following is true:
There is a member value of either group or string type named baz for some group value
bar that is a member of the foo group with index 3. There may be multiple entries of bar
within foo, only one needs to contain a value for baz.

Arguments:
ag-name - name of AutoGen value

Chapter 3: AutoGen Template 24

3.4.8 ‘find-file’ - locate a file in the search path

Usage: (find-file file-name [suffix])
AutoGen has a search path that it uses to locate template and definition files. This function
will search the same list for ‘file-name’, both with and without the ‘.suffix’, if provided.

Arguments:
file-name - name of file with text
suffix - Optional - file suffix to try, too

3.4.9 ‘first-for?’ - detect first iteration

Usage: (first-for? [for var])
Returns SCM BOOL T if the named FOR loop (or, if not named, the current inner-
most loop) is on the first pass through the data. Outside of any FOR loop, it returns
SCM UNDEFINED. See Section 3.6.13 [FOR], page 47.

Arguments:
for var - Optional - which for loop

3.4.10 ‘for-by’ - set iteration step

Usage: (for-by by)
This function records the "step by" information for an AutoGen FOR function. Outside of
the FOR macro itself, this function will emit an error. See Section 3.6.13 [FOR], page 47.

Arguments:
by - the iteration increment for the AutoGen FOR macro

3.4.11 ‘for-from’ - set initial index

Usage: (for-from from)
This function records the initial index information for an AutoGen FOR function. Outside
of the FOR macro itself, this function will emit an error. See Section 3.6.13 [FOR], page 47.

Arguments:
from - the initial index for the AutoGen FOR macro

3.4.12 ‘for-index’ - get current loop index

Usage: (for-index [for var])
Returns the current index for the named FOR loop. If not named, then the index for the
innermost loop. Outside of any FOR loop, it returns SCM UNDEFINED. See Section 3.6.13
[FOR], page 47.

Arguments:
for var - Optional - which for loop

3.4.13 ‘for-sep’ - set loop separation string

Usage: (for-sep separator)
This function records the separation string that is to be inserted between each iteration of

Chapter 3: AutoGen Template 25

an AutoGen FOR function. This is often nothing more than a comma. Outside of the FOR
macro itself, this function will emit an error.

Arguments:
separator - the text to insert between the output of each FOR iteration

3.4.14 ‘for-to’ - set ending index

Usage: (for-to to)
This function records the terminating value information for an AutoGen FOR function.
Outside of the FOR macro itself, this function will emit an error. See Section 3.6.13 [FOR],
page 47.

Arguments:
to - the final index for the AutoGen FOR macro

3.4.15 ‘get’ - get named value

Usage: (get ag-name [alt-val])
Get the first string value associated with the name. It will either return the associated string
value (if the name resolves), the alternate value (if one is provided), or else the empty string.

Arguments:
ag-name - name of AutoGen value
alt-val - Optional - value if not present

3.4.16 ‘high-lim’ - get highest value index

Usage: (high-lim ag-name)
Returns the highest index associated with an array of definitions. This is generally, but
not necessarily, one less than the count value. (The indexes may be specified, rendering a
non-zero based or sparse array of values.)

This is very useful for specifying the size of a zero-based array of values where not all
values are present. For example:

tMyStruct myVals[[+ (+ 1 (high-lim "my-val-list")) +]];

Arguments:
ag-name - name of AutoGen value

3.4.17 ‘last-for?’ - detect last iteration

Usage: (last-for? [for var])
Returns SCM BOOL T if the named FOR loop (or, if not named, the current inner-
most loop) is on the last pass through the data. Outside of any FOR loop, it returns
SCM UNDEFINED. See Section 3.6.13 [FOR], page 47.

Arguments:
for var - Optional - which for loop

Chapter 3: AutoGen Template 26

3.4.18 ‘len’ - get count of values

Usage: (len ag-name)
If the named object is a group definition, then "len" is the same as "count". Otherwise, if
it is one or more text definitions, then it is the sum of their string lengths. If it is a single
text definition, then it is equivalent to (string-length (get "ag-name")).

Arguments:
ag-name - name of AutoGen value

3.4.19 ‘low-lim’ - get lowest value index

Usage: (low-lim ag-name)
Returns the lowest index associated with an array of definitions.

Arguments:
ag-name - name of AutoGen value

3.4.20 ‘match-value?’ - test for matching value

Usage: (match-value? op ag-name test-str)
This function answers the question, "Is there an AutoGen value named ag-name with a value
that matches the pattern test-str using the match function op?" Return SCM BOOL T
iff at least one occurrence of the specified name has such a value. The operator can be any
function that takes two string arguments and yields a boolean. It is expected that you will
use one of the string matching functions provided by AutoGen.
The value name must follow the same rules as the ag-name argument for exist? (see
Section 3.4.7 [SCM exist?], page 23).

Arguments:
op - boolean result operator
ag-name - name of AutoGen value
test-str - string to test against

3.4.21 ‘out-delete’ - delete current output file

Usage: (out-delete)
Remove the current output file. Cease processing the template for the current suffix. It is
an error if there are push-ed output files. Use the (error "0") scheme function instead.
See Section 3.7 [output controls], page 50.

This Scheme function takes no arguments.

3.4.22 ‘out-depth’ - output file stack depth

Usage: (out-depth)
Returns the depth of the output file stack. See Section 3.7 [output controls], page 50.

This Scheme function takes no arguments.

Chapter 3: AutoGen Template 27

3.4.23 ‘out-line’ - output file line number

Usage: (out-line)
Returns the current line number of the output file. It rewinds and reads the file to count
newlines.

This Scheme function takes no arguments.

3.4.24 ‘out-move’ - change name of output file

Usage: (out-move new-name)
Rename current output file. See Section 3.7 [output controls], page 50. Please note: chang-
ing the name will not save a temporary file from being deleted. It may, however, be used
on the root output file.

Arguments:
new-name - new name for the current output file

3.4.25 ‘out-name’ - current output file name

Usage: (out-name)
Returns the name of the current output file. If the current file is a temporary, unnamed
file, then it will scan up the chain until a real output file name is found. See Section 3.7
[output controls], page 50.

This Scheme function takes no arguments.

3.4.26 ‘out-pop’ - close current output file

Usage: (out-pop [disp])
If there has been a push on the output, then close that file and go back to the previously
open file. It is an error if there has not been a push. See Section 3.7 [output controls],
page 50.

If there is no argument, no further action is taken. Otherwise, the argument should be
#t and the contents of the file are returned by the function.

Arguments:
disp - Optional - return contents of the file

3.4.27 ‘out-push-add’ - append output to file

Usage: (out-push-add file-name)
Identical to push-new, except the contents are not purged, but appended to. See Section 3.7
[output controls], page 50.

Arguments:
file-name - name of the file to append text to

Chapter 3: AutoGen Template 28

3.4.28 ‘out-push-new’ - purge and create output file

Usage: (out-push-new [file-name])
Leave the current output file open, but purge and create a new file that will remain open
until a pop delete or switch closes it. The file name is optional and, if omitted, the output
will be sent to a temporary file that will be deleted when it is closed. See Section 3.7 [output
controls], page 50.

Arguments:
file-name - Optional - name of the file to create

3.4.29 ‘out-resume’ - resume current output file

Usage: (out-resume suspName)
If there has been a suspended output, then make that output descriptor current again.
That output must have been suspended with the same tag name given to this routine as its
argument.

Arguments:
suspName - A name tag for reactivating

3.4.30 ‘out-suspend’ - suspend current output file

Usage: (out-suspend suspName)
If there has been a push on the output, then set aside the output descriptor for later
reactiviation with (out-resume "xxx"). The tag name need not reflect the name of the
output file. In fact, the output file may be an anonymous temporary file. You may also
change the tag every time you suspend output to a file, because the tag names are forgotten
as soon as the file has been "resumed".

Arguments:
suspName - A name tag for reactivating

3.4.31 ‘out-switch’ - close and create new output

Usage: (out-switch file-name)
Switch output files - close current file and make the current file pointer refer to the new file.
This is equivalent to out-pop followed by out-push-new, except that you may not pop the
base level output file, but you may switch it. See Section 3.7 [output controls], page 50.

Arguments:
file-name - name of the file to create

3.4.32 ‘set-option’ - Set a command line option

Usage: (set-option opt)
The text argument must be an option name followed by any needed option argument.
Returns SCM UNDEFINED.

Arguments:
opt - AutoGen option name + its argument

Chapter 3: AutoGen Template 29

3.4.33 ‘set-writable’ - Make the output file be writable

Usage: (set-writable [set?])
This function will set the current output file to be writable (or not). This is only effective if
neither the --writable nor --not-writable have been specified. This state is reset when
the current suffix’s output is complete.

Arguments:
set? - Optional - boolean arg, false to make output non-writable

3.4.34 ‘stack’ - make list of AutoGen values

Usage: (stack ag-name)
Create a scheme list of all the strings that are associated with a name. They must all be
text values or we choke.

Arguments:
ag-name - AutoGen value name

3.4.35 ‘suffix’ - get the current suffix

Usage: (suffix)
Returns the current active suffix (see Section 3.1 [pseudo macro], page 17).

This Scheme function takes no arguments.

3.4.36 ‘tpl-file’ - get the template file name

Usage: (tpl-file)
Returns the name of the current template file.

This Scheme function takes no arguments.

3.4.37 ‘tpl-file-line’ - get the template file and line number

Usage: (tpl-file-line [msg-fmt])
Returns the file and line number of the current template macro using either the default
format, "from %s line %d", or else the format you supply. For example, if you want to
insert a "C" language file-line directive, you would supply the format "# %2$d %1$s".

Arguments:
msg-fmt - Optional - formatting for line message

3.4.38 ‘make-header-guard’ - make self-inclusion guard

Emit a #ifndef/#define sequence based upon the output file name and the provided
prefix. It will also define a scheme variables named, header-file and header-guard. The
#define name is composed as follows:
1. The first element is the string argument and a separating underscore.
2. That is followed by the name of the header file with illegal characters mapped to

underscores.

Chapter 3: AutoGen Template 30

3. The end of the name is always, "_GUARD".
4. Finally, the entire string is mapped to upper case.

The final #define name is stored in an SCM symbol named header-guard. Conse-
quently, the concluding #endif for the file should read something like:

#endif /* [+ (. header-guard) +] */

The name of the header file (the current output file) is also stored in an SCM sym-
bol, header-file. Therefore, if you are also generating a C file that uses the previously
generated header file, you can put this into that generated file:

#include "[+ (. header-file) +]"

Obviously, if you are going to produce more than one header file from a particular
template, you will need to be careful how these SCM symbols get handled.

Arguments:
prefix - first segment of #define name

3.4.39 ‘autogen-version’ - autogen version number

This is a symbol defining the current AutoGen version number string. It was first defined
in AutoGen-5.2.14. It is currently “5.5.5”.

Chapter 3: AutoGen Template 31

3.5 Common Scheme Functions

This section describes a number of general purpose functions that make the kind of
string processing that AutoGen does a little easier. Unlike the AutoGen specific functions
(see Section 3.4 [AutoGen Functions], page 22), these functions are available for direct use
during definition load time.

3.5.1 ‘bsd’ - BSD Public License

Usage: (bsd prog name owner prefix)
Emit a string that contains the Free BSD Public License. It takes three arguments: prefix
contains the string to start each output line. owner contains the copyright owner. prog_
name contains the name of the program the copyright is about.

Arguments:
prog name - name of the program under the BSD
owner - Grantor of the BSD License
prefix - String for starting each output line

3.5.2 ‘c-string’ - emit string for ANSI C

Usage: (c-string string)
Reform a string so that, when printed, the C compiler will be able to compile the data and
construct a string that contains exactly what the current string contains. Many non-printing
characters are replaced with escape sequences. Newlines are replaced with a backslash, an
n, a closing quote, a newline, seven spaces and another re-opening quote. The compiler will
implicitly concatenate them. The reader will see line breaks.

A K&R compiler will choke. Use kr-string for that compiler.

Arguments:
string - string to reformat

3.5.3 ‘error-source-line’ - display of file & line

Usage: (error-source-line)
This function is only invoked just before Guile displays an error message. It displays the file
name and line number that triggered the evaluation error. You should not need to invoke
this routine directly. Guile will do it automatically.

This Scheme function takes no arguments.

3.5.4 ‘extract’ - extract text from another file

Usage: (extract file-name marker-fmt [caveat] [default])
This function is used to help construct output files that may contain text that is carried
from one version of the output to the next.

The first two arguments are required, the second are optional:

• The file-name argument is used to name the file that contains the demarcated text.

Chapter 3: AutoGen Template 32

• The marker-fmt is a formatting string that is used to construct the starting and ending
demarcation strings. The sprintf function is given the marker-fmt with two arguments.
The first is either "START" or "END". The second is either "DO NOT CHANGE
THIS COMMENT" or the optional caveat argument.

• caveat is presumed to be absent if it is the empty string (""). If absent, “DO NOT
CHANGE THIS COMMENT” is used as the second string argument to the marker-
fmt.

• When a default argument is supplied and no pre-existing text is found, then this text
will be inserted between the START and END markers.

The resulting strings are presumed to be unique within the subject file. As a simplified
example:

[+ (extract "fname" "// %s - SOMETHING - %s" ""
"example default") +]

will result in the following text being inserted into the output:
// START - SOMETHING - DO NOT CHANGE THIS COMMENT
example default
// END - SOMETHING - DO NOT CHANGE THIS COMMENT

The “example default” string can then be carried forward to the next generation of the
output, provided the output is not named "fname" and the old output is renamed to
"fname" before AutoGen-eration begins.

NOTE: You can set aside previously generated source files inside the pseudo macro with
a Guile/scheme function, extract the text you want to keep with this extract
function. Just remember you should delete it at the end, too. Here is an
example from my Finite State Machine generator:

[+ AutoGen5 Template -*- Mode: text -*-
h=%s-fsm.h c=%s-fsm.c
(shellf
"[-f %1$s-fsm.h] && mv -f %1$s-fsm.h .fsm.head
[-f %1$s-fsm.c] && mv -f %1$s-fsm.c .fsm.code" (base-name)) +]

This code will move the two previously produced output files to files named ".fsm.head"
and ".fsm.code". At the end of the ’c’ output processing, I delete them.

Arguments:
file-name - name of file with text
marker-fmt - format for marker text
caveat - Optional - warn about changing marker
default - Optional - default initial text

3.5.5 ‘format-arg-count’ - count the args to a format

Usage: (format-arg-count format)
Sometimes, it is useful to simply be able to figure out how many arguments are required
by a format string. For example, if you are extracting a format string for the purpose
of generating a macro to invoke a printf-like function, you can run the formatting string
through this function to determine how many arguments to provide for in the macro. e.g.
for this extraction text:

Chapter 3: AutoGen Template 33

/*=fumble bumble
* fmt: ’stumble %s: %d\n’
=*/

You may wish to generate a macro:

#define BUMBLE(a1,a2) printf_like(something,(a1),(a2))

You can do this by knowing that the format needs two arguments.

Arguments:
format - formatting string

3.5.6 ‘fprintf’ - format to a file

Usage: (fprintf port format [format-arg ...])
Format a string using arguments from the alist. Write to a specified port. The result will
NOT appear in your output. Use this to print information messages to a template user.

Arguments:
port - Guile-scheme output port
format - formatting string
format-arg - Optional - list of arguments to formatting string

3.5.7 ‘gperf’ - perform a perfect hash function

Usage: (gperf name str)
Perform the perfect hash on the input string. This is only useful if you have previously
created a gperf program with the make-gperf function See Section 3.5.15 [SCM make-gperf],
page 35. The name you supply here must match the name used to create the program and
the string to hash must be one of the strings supplied in the make-gperf string list. The
result will be a perfect hash index.

See the documentation for gperf(1GNU) for more details.

Arguments:
name - name of hash list
str - string to hash

3.5.8 ‘gpl’ - GNU General Public License

Usage: (gpl prog-name prefix)
Emit a string that contains the GNU General Public License. It takes two arguments:
prefix contains the string to start each output line, and prog_name contains the name of
the program the copyright is about.

Arguments:
prog-name - name of the program under the GPL
prefix - String for starting each output line

Chapter 3: AutoGen Template 34

3.5.9 ‘hide-email’ - convert eaddr to javascript

Usage: (hide-email display eaddr)
Hides an email address as a java scriptlett. The ’mailto:’ tag and the email address are
coded bytes rather than plain text. They are also broken up.

Arguments:
display - display text
eaddr - email address

3.5.10 ‘in?’ - test for string in list

Usage: (in? test-string string-list ...)
Return SCM BOOL T if the first argument string is found in one of the entries in the second
(list-of-strings) argument.

Arguments:
test-string - string to look for
string-list - list of strings to check

3.5.11 ‘join’ - join string list with separator

Usage: (join separator list ...)
With the first argument as the separator string, joins together an a-list of strings into one
long string. The list may contain nested lists, partly because you cannot always control
that.

Arguments:
separator - string to insert between entries
list - list of strings to join

3.5.12 ‘kr-string’ - emit string for K&R C

Usage: (kr-string string)
Reform a string so that, when printed, a K&R C compiler will be able to compile the
data and construct a string that contains exactly what the current string contains. Many
non-printing characters are replaced with escape sequences. New-lines are replaced with a
backslash-n-backslash and newline sequence,

Arguments:
string - string to reformat

3.5.13 ‘lgpl’ - GNU Library General Public License

Usage: (lgpl prog name owner prefix)
Emit a string that contains the GNU Library General Public License. It takes three argu-
ments: prefix contains the string to start each output line. owner contains the copyright
owner. prog_name contains the name of the program the copyright is about.

Arguments:
prog name - name of the program under the LGPL
owner - Grantor of the LGPL
prefix - String for starting each output line

Chapter 3: AutoGen Template 35

3.5.14 ‘license’ - an arbitrary license

Usage: (license lic name prog name owner prefix)
Emit a string that contains the named license. The license text is read from a file named,
lic_name.lic, searching the standard directories. The file contents are used as a format
argument to printf(3), with prog_name and owner as the two string formatting arguments.
Each output line is automatically prefixed with the string prefix.

Arguments:
lic name - file name of the license
prog name - name of the licensed program or library
owner - Grantor of the License
prefix - String for starting each output line

3.5.15 ‘make-gperf’ - build a perfect hash function program

Usage: (make-gperf name strings ...)
Build a program to perform perfect hashes of a known list of input strings. This function
produces no output, but prepares a program named, ‘gperf_<name>’ for use by the gperf
function See Section 3.5.7 [SCM gperf], page 33.

This program will be obliterated within a few seconds after AutoGen exits.

Arguments:
name - name of hash list
strings - list of strings to hash

3.5.16 ‘makefile-script’ - create makefile script

Usage: (makefile-script text)
This function will take ordinary shell script text and reformat it so that it will work properly
inside of a makefile shell script. Not every shell construct can be supported; the intent is
to have most ordinary scripts work without much, if any, alteration.

The following transformations are performed on the source text:

1. Trailing whitespace on each line is stripped.
2. Except for the last line, the string, " ; \\" is appended to the end of every line that

does not end with a backslash, semi-colon, conjunction operator or pipe. Note that this
will mutilate multi-line quoted strings, but make renders it impossible to use multi-line
constructs anyway.

3. If the line ends with a backslash, it is left alone.
4. If the line ends with one of the excepted operators, then a space and backslash is added.
5. The dollar sign character is doubled, unless it immediately precedes an opening paren-

thesis or the single character make macros ’*’, ’<’, ’@’, ’?’ or ’%’. Other single character
make macros that do not have enclosing parentheses will fail. For shell usage of the
"$@", "$?" and "$*" macros, you must enclose them with curly braces, e.g., "${?}".
The ksh construct $(<command>) will not work. Though some makes accept ${var}
constructs, this function will assume it is for shell interpretation and double the dollar
character. You must use $(var) for all make substitutions.

Chapter 3: AutoGen Template 36

6. Double dollar signs are replaced by four before the next character is examined.
7. Every line is prefixed with a tab, unless the first line already starts with a tab.
8. The newline character on the last line, if present, is suppressed.
9. Blank lines are stripped.

This function is intended to be used approximately as follows:
$(TARGET) : $(DEPENDENCIES)
<+ (out-push-new) +>
....mostly arbitrary shell script text....
<+ (makefile-script (out-pop #t)) +>

Arguments:
text - the text of the script

3.5.17 ‘max’ - maximum value in list

Usage: (max list ...)
Return the maximum value in the list

Arguments:
list - list of values. Strings are converted to numbers

3.5.18 ‘min’ - minimum value in list

Usage: (min list ...)
Return the minimum value in the list

Arguments:
list - list of values. Strings are converted to numbers

3.5.19 ‘prefix’ - prefix lines with a string

Usage: (prefix prefix text)
Prefix every line in the second string with the first string.

For example, if the first string is "# " and the second contains:
two
lines

The result string will contain:
two
lines

Arguments:
prefix - string to insert at start of each line
text - multi-line block of text

3.5.20 ‘printf’ - format to stdout

Usage: (printf format [format-arg ...])
Format a string using arguments from the alist. Write to the standard out port. The result

Chapter 3: AutoGen Template 37

will NOT appear in your output. Use this to print information messages to a template user.
Use “(sprintf ...)” to add text to your document.

Arguments:
format - formatting string
format-arg - Optional - list of arguments to formatting string

3.5.21 ‘raw-shell-str’ - single quote shell string

Usage: (raw-shell-str string)
Convert the text of the string into a singly quoted string that a normal shell will process
into the original string. (It will not do macro expansion later, either.) Contained single
quotes become tripled, with the middle quote escaped with a backslash. Normal shells will
reconstitute the original string.

NOTE: some shells will not correctly handle unusual non-printing characters. This
routine works for most reasonably conventional ASCII strings.

Arguments:
string - string to transform

3.5.22 ‘shell’ - invoke a shell script

Usage: (shell command)
Generate a string by writing the value to a server shell and reading the output back in. The
template programmer is responsible for ensuring that it completes within 10 seconds. If it
does not, the server will be killed, the output tossed and a new server started.

Arguments:
command - shell command - the result value is stdout

3.5.23 ‘shell-str’ - double quote shell string

Usage: (shell-str string)
Convert the text of the string into a double quoted string that a normal shell will process
into the original string, almost. It will add the escape character \\ before two special
characters to accomplish this: the backslash \\ and double quote ".

NOTE: some shells will not correctly handle unusual non-printing characters. This
routine works for most reasonably conventional ASCII strings.

WARNING:
This function omits the extra backslash in front of a backslash, however, if it is followed by
either a backquote or a dollar sign. It must do this because otherwise it would be impossible
to protect the dollar sign or backquote from shell evaluation. Consequently, it is not possible
to render the strings "\\$" or "\\‘". The lesser of two evils.

All others characters are copied directly into the output.
The sub-shell-str variation of this routine behaves identically, except that the extra

backslash is omitted in front of " instead of ‘. You have to think about it. I’m open to
suggestions.

Meanwhile, the best way to document is with a detailed output example. If the back-
slashes make it through the text processing correctly, below you will see what happens

Chapter 3: AutoGen Template 38

with three example strings. The first example string contains a list of quoted foos, the
second is the same with a single backslash before the quote characters and the last is with
two backslash escapes. Below each is the result of the raw-shell-str, shell-str and
sub-shell-str functions.

foo[0] ’foo’ "foo" ‘foo‘ $foo
raw-shell-str -> ’’\’’foo’\’’ "foo" ‘foo‘ $foo’
shell-str -> "’foo’ \"foo\" ‘foo‘ $foo"
sub-shell-str -> ‘’foo’ "foo" \‘foo\‘ $foo‘

foo[1] \’bar\’ \"bar\" \‘bar\‘ \$bar
raw-shell-str -> ’\’\’’bar\’\’’ \"bar\" \‘bar\‘ \$bar’
shell-str -> "\\’bar\\’ \\\"bar\\\" \‘bar\‘ \$bar"
sub-shell-str -> ‘\\’bar\\’ \"bar\" \\\‘bar\\\‘ \$bar‘

foo[2] \\’BAZ\\’ \\"BAZ\\" \\‘BAZ\\‘ \\$BAZ
raw-shell-str -> ’\\’\’’BAZ\\’\’’ \\"BAZ\\" \\‘BAZ\\‘ \\$BAZ’
shell-str -> "\\\\’BAZ\\\\’ \\\\\"BAZ\\\\\" \\\‘BAZ\\\‘ \\\$BAZ"
sub-shell-str -> ‘\\\\’BAZ\\\\’ \\\"BAZ\\\" \\\\\‘BAZ\\\\\‘ \\\$BAZ‘

There should be four, three, five and three backslashes for the four examples on the last
line, respectively. The next to last line should have four, five, three and three backslashes. If
this was not accurately reproduced, take a look at the agen5/test/shell.test test. Notice the
backslashes in front of the dollar signs. It goes from zero to one to three for the "cooked"
string examples.

Arguments:
string - string to transform

3.5.24 ‘shellf’ - format a string, run shell

Usage: (shellf format [format-arg ...])
Format a string using arguments from the alist, then send the result to the shell for inter-
pretation.

Arguments:
format - formatting string
format-arg - Optional - list of arguments to formatting string

3.5.25 ‘sprintf’ - format a string

Usage: (sprintf format [format-arg ...])
Format a string using arguments from the alist.

Arguments:
format - formatting string
format-arg - Optional - list of arguments to formatting string

3.5.26 ‘string-capitalize’ - capitalize a new string

Usage: (string-capitalize str)
Create a new SCM string containing the same text as the original, only all the first letter
of each word is upper cased and all other letters are made lower case.

Chapter 3: AutoGen Template 39

Arguments:
str - input string

3.5.27 ‘string-capitalize!’ - capitalize a string

Usage: (string-capitalize! str)
capitalize all the words in an SCM string.

Arguments:
str - input/output string

3.5.28 ‘string-contains-eqv?’ - caseless substring

Usage: (*=* text match)
string-contains-eqv?: Test to see if a string contains an equivalent string. ‘equivalent’ means
the strings match, but without regard to character case and certain characters are considered
‘equivalent’. Viz., ’-’, ’ ’ and ’^’ are equivalent.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.29 ‘string-contains?’ - substring match

Usage: (*==* text match)
string-contains?: Test to see if a string contains a substring. "strstr(3)" will find an address.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.30 ‘string-downcase’ - lower case a new string

Usage: (string-downcase str)
Create a new SCM string containing the same text as the original, only all the upper case
letters are changed to lower case.

Arguments:
str - input string

3.5.31 ‘string-downcase!’ - make a string be lower case

Usage: (string-downcase! str)
Change to lower case all the characters in an SCM string.

Arguments:
str - input/output string

Chapter 3: AutoGen Template 40

3.5.32 ‘string-end-eqv-match?’ - caseless regex ending

Usage: (*~ text match)
string-end-eqv-match?: Test to see if a string ends with a pattern. Case is not significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.33 ‘string-end-match?’ - regex match end

Usage: (*~~ text match)
string-end-match?: Test to see if a string ends with a pattern. Case is significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.34 ‘string-ends-eqv?’ - caseless string ending

Usage: (*= text match)
string-ends-eqv?: Test to see if a string ends with an equivalent string.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.35 ‘string-ends-with?’ - string ending

Usage: (*== text match)
string-ends-with?: Test to see if a string ends with a substring. strcmp(3) returns zero for
comparing the string ends.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.36 ‘string-equals?’ - string matching

Usage: (== text match)
string-equals?: Test to see if two strings exactly match.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.37 ‘string-eqv-match?’ - caseless regex match

Usage: (~ text match)
string-eqv-match?: Test to see if a string fully matches a pattern. Case is not significant,
but any character equivalences must be expressed in your regular expression.

Chapter 3: AutoGen Template 41

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.38 ‘string-eqv?’ - caseless string match

Usage: (= text match)
string-eqv?: Test to see if two strings are equivalent. ‘equivalent’ means the strings match,
but without regard to character case and certain characters are considered ‘equivalent’.
Viz., ’-’, ’ ’ and ’^’ are equivalent. If the arguments are not strings, then the result of the
numeric comparison is returned.

This is an overloaded operation. If the arguments are not both strings, then the query
is passed through to scm_num_eq_p().

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.39 ‘string-has-eqv-match?’ - caseless regex contains

Usage: (*~* text match)
string-has-eqv-match?: Test to see if a string contains a pattern. Case is not significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.40 ‘string-has-match?’ - contained regex match

Usage: (*~~* text match)
string-has-match?: Test to see if a string contains a pattern. Case is significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.41 ‘string-match?’ - regex match

Usage: (~~ text match)
string-match?: Test to see if a string fully matches a pattern. Case is significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.42 ‘string-start-eqv-match?’ - caseless regex start

Usage: (~* text match)
string-start-eqv-match?: Test to see if a string starts with a pattern. Case is not significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

Chapter 3: AutoGen Template 42

3.5.43 ‘string-start-match?’ - regex match start

Usage: (~~* text match)
string-start-match?: Test to see if a string starts with a pattern. Case is significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.44 ‘string-starts-eqv?’ - caseless string start

Usage: (=* text match)
string-starts-eqv?: Test to see if a string starts with an equivalent string.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.45 ‘string-starts-with?’ - string starting

Usage: (==* text match)
string-starts-with?: Test to see if a string starts with a substring.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.46 ‘string-substitute’ - multiple global replacements

Usage: (string-substitute source match repl)
match and repl may be either a single string or a list of strings. Either way, they must
have the same structure and number of elements. For example, to replace all less than and
all greater than characters, do something like this:

(string-substitute source
("&" "<" ">")
("&" "<" ">"))

Arguments:
source - string to transform
match - substring or substring list to be replaced
repl - replacement strings or substrings

3.5.47 ‘string->c-name!’ - map non-name chars to underscore

Usage: (string->c-name! str)
Change all the graphic characters that are invalid in a C name token into underscores.
Whitespace characters are ignored. Any other character type (i.e. non-graphic and non-
white) will cause a failure.

Arguments:
str - input/output string

Chapter 3: AutoGen Template 43

3.5.48 ‘string-tr’ - convert characters with new result

Usage: (string-tr source match translation)
This is identical to string-tr!, except that it does not over-write the previous value.

Arguments:
source - string to transform
match - characters to be converted
translation - conversion list

3.5.49 ‘string-tr!’ - convert characters

Usage: (string-tr! source match translation)
This is the same as the tr(1) program, except the string to transform is the first argument.
The second and third arguments are used to construct mapping arrays for the transformation
of the first argument.

It is too bad this little program has so many different and incompatible implementations!

Arguments:
source - string to transform
match - characters to be converted
translation - conversion list

3.5.50 ‘string-upcase’ - upper case a new string

Usage: (string-upcase str)
Create a new SCM string containing the same text as the original, only all the lower case
letters are changed to upper case.

Arguments:
str - input string

3.5.51 ‘string-upcase!’ - make a string be upper case

Usage: (string-upcase! str)
Change to upper case all the characters in an SCM string.

Arguments:
str - input/output string

3.5.52 ‘sub-shell-str’ - back quoted (sub-)shell string

Usage: (sub-shell-str string)
This function is substantially identical to shell-str, except that the quoting character is
‘ and the "leave the escape alone" character is ".

Arguments:
string - string to transform

Chapter 3: AutoGen Template 44

3.5.53 ‘sum’ - sum of values in list

Usage: (sum list ...)
Compute the sum of the list of expressions.

Arguments:
list - list of values. Strings are converted to numbers

3.5.54 ‘html-escape-encode’ - escape special chars

Usage: (html-escape-encode str)
Substitute escape sequences for characters that are special to HTML/XML. It will replace
"&", "<" and ">" with the strings, "&", "<", and ">", respectively.

Arguments:
str - string to transform

3.6 AutoGen Native Macros

This section describes the various AutoGen natively defined macros. Unlike the Scheme
functions, some of these macros are "block macros" with a scope that extends through a
terminating macro. Block macros must not overlap. That is to say, a block macro started
within the scope of an encompassing block macro must have its matching end macro appear
before the encompassing block macro is either ended or subdivided.

The block macros are these:

CASE This macro has scope through the ESAC macro. The scope is subdivided by
SELECT macros. You must have at least one SELECT macro.

DEFINE This macro has scope through the ENDDEF macro. The defined user macro can
never be a block macro.

FOR This macro has scope through the ENDFOR macro.

IF This macro has scope through the ENDIF macro. The scope may be subdivided
by ELIF and ELSE macros. Obviously, there may be only one ELSE macro and
it must be the last of these subdivisions.

INCLUDE This macro has the scope of the included file. It is a block macro in the sense
that the included file must not contain any incomplete block macros.

WHILE This macro has scope through the ENDWHILE macro.

3.6.1 AutoGen Macro Syntax

The general syntax is:
[{ <native-macro-name> | <user-defined-name> }] [<arg> ...]

The syntax for <arg> depends on the particular macro, but is generally a full expression
(see Section 3.3 [expression syntax], page 19). Here are the exceptions to that general rule:
1. INVOKE macros, implicit or explicit, must be followed by a list of name/string value

pairs. The string values are simple expressions, as described above.
That is, the INVOKE syntax is either:

Chapter 3: AutoGen Template 45

<user-macro-name> [<name> [= <expression>] ...]

or
INVOKE <name-expression> [<name> [= <expression>] ...]

2. AutoGen FOR macros must be in one of two forms:
FOR <name> [<separator-string>]

or
FOR <name> (...Scheme expression list)

where <name> must be a simple name and the Scheme expression list is expected to
contain one or more of the for-from, for-to, for-by, and for-sep functions. (See
Section 3.6.13 [FOR], page 47, and Section 3.4 [AutoGen Functions], page 22)

3. AutoGen DEFINE macros must be followed by a simple name. Anything after that is
ignored. See Section 3.6.4 [DEFINE], page 46.

4. The AutoGen COMMENT, ELSE, ESAC and the END* macros take no arguments and ignore
everything after the macro name (e.g. see Section 3.6.3 [COMMENT], page 46)

3.6.2 CASE - Select one of several template blocks

The arguments are evaluated and converted to a string, if necessary. (see Section 3.6.12
[EXPR], page 47) The scope of the macro is up to the matching ESAC function. Within the
scope of a CASE, this string is matched against case selection macros. There are sixteen
match macros that are derived from four different ways the test may be performed, plus an
"always true" match. The code for each selection expression is formed as follows:
1. Must the match start matching from the beginning of the string? If not, then the

match macro code starts with an asterisk (*).
2. Must the match finish matching at the end of the string? If not, then the match macro

code ends with an asterisk (*).
3. Is the match a pattern match or a string comparison? If a comparison, use an equal

sign (=). If a pattern match, use a tilde (~).
4. Is the match case sensitive? If alphabetic case is important, double the tilde or equal

sign.
5. Do you need a default match when none of the others match? Use a single asterisk (*).

For example:
[+ CASE <full-expression> +]
[+ ~~* "[Tt]est" +]reg exp must match at start, not at end
[+ == "TeSt" +]a full-string, case sensitive compare
[+ = "TEST" +]a full-string, case insensitive compare
[+ * +]always match - no testing
[+ ESAC +]

<full-expression> (see Section 3.3 [expression syntax], page 19) may be any expres-
sion, including the use of apply-codes and value-names. If the expression yields a number,
it is converted to a decimal string.

These case selection codes have also been implemented as Scheme expression functions
using the same codes (see Section 3.5 [Common Functions], page 31).

Chapter 3: AutoGen Template 46

3.6.3 COMMENT - A block of comment to be ignored

This function can be specified by the user, but there will never be a situation where it will
be invoked at emit time. The macro is actually removed from the internal representation.

If the native macro name code is #, then the entire macro function is treated as a
comment and ignored.

3.6.4 DEFINE - Define a user AutoGen macro

This function will define a new macro. You must provide a name for the macro. You
do not specify any arguments, though the invocation may specify a set of name/value pairs
that are to be active during the processing of the macro.

[+ define foo +]
... macro body with macro functions ...
[+ enddef +]
... [+ foo bar=’raw text’ baz=<<text expression>> +]

Once the macro has been defined, this new macro can be invoked by specifying the macro
name as the first token after the start macro marker. Alternatively, you may make the
invocation explicitly invoke a defined macro by specifying INVOKE in the macro invocation.
If you do that, the macro name can be computed with an expression that gets evaluated
every time the INVOKE macro is encountered. See Section 3.6.16 [INVOKE], page 49.

Any remaining text in the macro invocation will be used to create new name/value
pairs that only persist for the duration of the processing of the macro. The expressions are
evaluated the same way basic expressions are evaluated. See Section 3.3 [expression syntax],
page 19.

The resulting definitions are handled much like regular definitions, except:

1. The values may not be compound. That is, they may not contain nested name/value
pairs.

2. The bindings go away when the macro is complete.

3. The name/value pairs are separated by whitespace instead of semi-colons.

4. Sequences of strings are not concatenated.

3.6.5 ELIF - Alternate Conditional Template Block

This macro must only appear after an IF function, and before any associated ELSE or
ENDIF functions. It denotes the start of an alternate template block for the IF function. Its
expression argument is evaluated as are the arguments to IF. For a complete description
See Section 3.6.14 [IF], page 48.

3.6.6 ELSE - Alternate Template Block

This macro must only appear after an IF function, and before the associated ENDIF
function. It denotes the start of an alternate template block for the IF function. For a
complete description See Section 3.6.14 [IF], page 48.

Chapter 3: AutoGen Template 47

3.6.7 ENDDEF - Ends a macro definition.

This macro ends the DEFINE function template block. For a complete description See
Section 3.6.4 [DEFINE], page 46.

3.6.8 ENDFOR - Terminates the FOR function template block

This macro ends the FOR function template block. For a complete description See Sec-
tion 3.6.13 [FOR], page 47.

3.6.9 ENDIF - Terminate the IF Template Block

This macro ends the IF function template block. For a complete description See Sec-
tion 3.6.14 [IF], page 48.

3.6.10 ENDWHILE - Terminate the WHILE Template Block

This macro ends the WHILE function template block. For a complete description See
Section 3.6.19 [WHILE], page 49.

3.6.11 ESAC - Terminate the CASE Template Block

This macro ends the CASE function template block. For a complete description, See
Section 3.6.2 [CASE], page 45.

3.6.12 EXPR - Evaluate and emit an Expression

This macro does not have a name to cause it to be invoked explicitly, though if a
macro starts with one of the apply codes or one of the simple expression markers, then
an expression macro is inferred. The result of the expression evaluation (see Section 3.3
[expression syntax], page 19) is written to the current output.

3.6.13 FOR - Emit a template block multiple times

This macro has a slight variation on the standard syntax:
FOR <value-name> [<separator-string>]

or
FOR <value-name> (...Scheme expression list

or
FOR <value-name> IN "quoted string" unquoted-string ...

Other than for the last form, the first macro argument must be the name of an AutoGen
value. If there is no value associated with the name, the FOR template block is skipped
entirely. The scope of the FOR macro extends to the corresponding ENDFOR macro. The last
form will create an array of string values named <value-name> that only exists within the
context of this FOR loop. With this form, in order to use a separator-string, you must
code it into the end of the template block using the (last-for?) predicate function (see
Section 3.4.17 [SCM last-for?], page 25).

Chapter 3: AutoGen Template 48

If there are any arguments after the value-name, the initial characters are used to de-
termine the form. If the first character is either a semi-colon (;) or an opening parenthesis
((), then it is presumed to be a Scheme expression containing the FOR macro specific func-
tions for-from, for-by, for-to, and/or for-sep. See Section 3.4 [AutoGen Functions],
page 22. If it consists of an ’i’ an ’n’ and separated by white space from more text, then
the FOR x IN form is processed. Otherwise, the remaining text is presumed to be a string
for inserting between each iteration of the loop. This string will be emitted one time less
than the number of iterations of the loop. That is, it is emitted after each loop, excepting
for the last iteration.

If the from/by/to functions are invoked, they will specify which copies of the named value
are to be processed. If there is no copy of the named value associated with a particular
index, the FOR template block will be instantiated anyway. The template must use methods
for detecting missing definitions and emitting default text. In this fashion, you can insert
entries from a sparse or non-zero based array into a dense, zero based array.

NB: the for-from, for-to, for-by and for-sep functions are disabled outside of the
context of the FOR macro. Likewise, the first-for, last-for and for-index functions
are disabled outside of the range of a FOR block.

[+FOR var (for-from 0) (for-to <number>) (for-sep ",") +]
... text with various substitutions ...[+
ENDFOR var+]

this will repeat the ... text with various substitutions ... <number>+1 times. Each
repetition, except for the last, will have a comma , after it.

[+FOR var ",\n" +]
... text with various substitutions ...[+
ENDFOR var +]

This will do the same thing, but only for the index values of var that have actually been
defined.

3.6.14 IF - Conditionally Emit a Template Block

Conditional block. Its arguments are evaluated (see Section 3.6.12 [EXPR], page 47)
and if the result is non-zero or a string with one or more bytes, then the condition is
true and the text from that point until a matched ELIF, ELSE or ENDIF is emitted. ELIF
introduces a conditional alternative if the IF clause evaluated FALSE and ELSE introduces
an unconditional alternative.

[+IF <full-expression> +]
emit things that are for the true condition[+

ELIF <full-expression-2> +]
emit things that are true maybe[+

ELSE "This may be a comment" +]
emit this if all but else fails[+

ENDIF "This may *also* be a comment" +]

Chapter 3: AutoGen Template 49

<full-expression> may be any expression described in the EXPR expression function, in-
cluding the use of apply-codes and value-names. If the expression yields an empty string,
it is interpreted as false.

3.6.15 INCLUDE - Read in and emit a template block

The entire contents of the named file is inserted at this point. The contents of the file
are processed for macro expansion. The arguments are eval-ed, so you may compute the
name of the file to be included. The included file must not contain any incomplete function
blocks. Function blocks are template text beginning with any of the macro functions ‘CASE’,
‘DEFINE’, ‘FOR’, ‘IF’ and ‘WHILE’; extending through their respective terminating macro
functions.

3.6.16 INVOKE - Invoke a User Defined Macro

User defined macros may be invoked explicitly or implicitly. If you invoke one implicitly,
the macro must begin with the name of the defined macro. Consequently, this may not be
a computed value. If you explicitly invoke a user defined macro, the macro begins with the
macro name INVOKE followed by a basic expression that must yield a known user defined
macro. A macro name must be found, or AutoGen will issue a diagnostic and exit.

Arguments are passed to the invoked macro by name. The text following the macro
name must consist of a series of names each of which is followed by an equal sign (=) and a
basic expression that yields a string.

The string values may contain template macros that are parsed the first time the macro
is processed and evaluated again every time the macro is evaluated.

3.6.17 SELECT - Selection block for CASE function

This macro selects a block of text by matching an expression against the sample text
expression evaluated in the CASE macro. See Section 3.6.2 [CASE], page 45.

You do not specify a SELECT macro with the word “select”. Instead, you must use one
of the 17 match operators described in the CASE macro description.

3.6.18 UNKNOWN - Either a user macro or a value name.

The macro text has started with a name not known to AutoGen. If, at run time, it turns
out to be the name of a defined macro, then that macro is invoked. If it is not, then it is a
conditional expression that is evaluated only if the name is defined at the time the macro
is invoked.

You may not specify UNKNOWN explicitly.

3.6.19 WHILE - Conditionally loop over a Template Block

Conditionally repeated block. Its arguments are evaluated (see Section 3.6.12 [EXPR],
page 47) and as long as the result is non-zero or a string with one or more bytes, then the
condition is true and the text from that point until a matched ENDWHILE is emitted.

Chapter 3: AutoGen Template 50

[+WHILE <full-expression> +]
emit things that are for the true condition[+

ENDWHILE +]

<full-expression> may be any expression described in the EXPR expression function, in-
cluding the use of apply-codes and value-names. If the expression yields an empty string,
it is interpreted as false.

3.7 Redirecting Output

AutoGen provides a means for redirecting the template output to different files. It is
accomplished by providing a set of Scheme functions named out-* (see Section 3.4 [AutoGen
Functions], page 22).

‘out-push (see Section 3.4.28 [SCM out-push-new], page 28)’
This allows you to logically "push" output files onto a stack.

‘out-pop (see Section 3.4.26 [SCM out-pop], page 27)’
This function closes the current output file and resumes output to the next one
in the stack.

‘out-suspend (see Section 3.4.30 [SCM out-suspend], page 28)’
This function does not close the current output, but instead sets it aside for
resumption with

‘out-resume (see Section 3.4.29 [SCM out-resume], page 28)’
This will put a named file descriptor back onto the top of stack so that it
becomes the current output again.

‘out-switch (see Section 3.4.31 [SCM out-switch], page 28)’
This closes the current output and creates a new file, purging any preexisting
one. This is a shortcut for "pop" followed by "push", but can also be done at
the base level.

‘out-move (see Section 3.4.24 [SCM out-move], page 27)’
Renames the current output file without closing it.

There are also several functions for determining the output status. See Section 3.4
[AutoGen Functions], page 22.

Chapter 4: Augmenting AutoGen Features 51

4 Augmenting AutoGen Features

AutoGen was designed to be simple to enhance. You can do it by providing shell com-
mands, Guile/Scheme macros or callout functions that can be invoked as a Guile macro.
Here is how you do these.

4.1 Shell Output Commands

Shell commands are run inside of a server process. This means that, unlike ‘make’,
context is kept from one command to the next. Consequently, you can define a shell
function in one place inside of your template and invoke it in another. You may also store
values in shell variables for later reference. If you load functions from a file containing shell
functions, they will remain until AutoGen exits.

If your shell script should determine that AutoGen should stop processing, the recom-
mended method for stopping AutoGen is:

echo "some error text" >&2
kill -2 ${AG_pid}

4.2 Guile Macros

Guile also maintains context from one command to the next. This means you may define
functions and variables in one place and reference them elsewhere. You also may load Guile
macro definitions from a Scheme file by using the --load-scheme command line option (see
Section 5.7 [autogen load-scheme], page 56). Beware, however, that the AutoGen specific
scheme functions have not been loaded at this time, so though you may define functions
that reference them, do not invoke the AutoGen functions at this time.

If your Scheme script should determine that AutoGen should stop processing, the rec-
ommended method for stopping AutoGen is:

(error "some error text")

4.3 Guile Callout Functions

Callout functions must be registered with Guile to work. This can be accomplished
either by putting your routines into a shared library that contains a void scm_init(void
) routine that registers these routines, or by building them into AutoGen.

To build them into AutoGen, you must place your routines in the source directory and
name the files ‘exp*.c’. You also must have a stylized comment that ‘getdefs’ can find
that conforms to the following:

/*=gfunc <function-name>
*
* what: <short one-liner>
* general_use:
* string: <invocation-name-string>
* exparg: <name>, <description> [, [’optional’] [, ’list’]]
* doc: A long description telling people how to use
* this function.

Chapter 4: Augmenting AutoGen Features 52

=*/
SCM
ag_scm_<function-name>(SCM arg_name[, ...])
{ <code> }

‘gfunc’ You must have this exactly thus.

‘<function-name>’
This must follow C syntax for variable names

‘<short one-liner>’
This should be about a half a line long. It is used as a subsection title in this
document.

‘general_use:’
You must supply this unless you are an AutoGen maintainer and are writing a
function that queries or modifies the state of AutoGen.

‘<invocation-name-string>’
Normally, the function-name string will be transformed into a reasonable in-
vocation name. However, that is not always true. If the result does not suit
your needs, then supply an alternate string.

‘exparg:’ You must supply one for each argument to your function. All optional argu-
ments must be last. The last of the optional arguments may be a list, if you
choose.

‘doc:’ Please say something meaningful.

‘[, ...]’ Do not actually specify an ANSI ellipsis here. You must provide for all the
arguments you specified with exparg.

See the Guile documentation for more details. More information is also available in a
large comment at the beginning of the ‘agen5/snarf.tpl’ template file.

4.4 AutoGen Macros

There are two kinds those you define yourself and AutoGen native. The user-defined
macros may be defined in your templates or loaded with the --lib-template option (See
Section 3.6.4 [DEFINE], page 46 and Section 5.4 [autogen lib-template], page 55).

As for AutoGen native macros, do not add any. It is easy to do, but I won’t like it. The
basic functions needed to accomplish looping over and selecting blocks of text have proven
to be sufficient over a period of several years. New text transformations can be easily added
via any of the AutoGen extension methods, as discussed above.

Chapter 5: Invoking autogen 53

5 Invoking autogen

AutoGen creates text files from templates using external definitions. The definitions file
(‘<def-file>’) can be specified with the ‘definitions’ option or as the command argument,
but not both. Omitting it or specifying ‘-’ will result in reading definitions from standard
input.

The output file names are based on the template, but generally use the base name of
the definition file. If standard in is read for the definitions, then ‘stdin’ will be used for
that base name. The suffixes to the base name are gotten from the template. However,
the template file may specify the entire output file name. The generated files are always
created in the current directory. If you need to place output in an alternate directory, ‘cd’
to that directory and use the ‘–templ dirs’ option to search the original directory.

‘loop-limit’ is used in debugging to stop runaway expansions.
This chapter was generated by AutoGen, the aginfo template and the option descriptions

for the autogen program. It documents the autogen usage text and option meanings.
This software is released under the GNU General Public License.

5.1 autogen usage help (-?)

This is the automatically generated usage text for autogen:
autogen - The Automated Program Generator - Ver. 5.5.5pre5
USAGE: autogen [-<flag> [<val>] | --<name>[{=| }<val>]]... [<def-file>]
Flg Arg Option-Name Description
-L Str templ-dirs Template search directory list

- may appear multiple times
-T Str override-tpl Override template file

- may not be preset
-l Str lib-template Library template file

- may appear multiple times
-b Str base-name Base name for output file(s)

- may not be preset
Str definitions Definitions input file

- disabled as --no-definitions
- enabled by default
- may not be preset

-S Str load-scheme Scheme code file to load
-F Str load-functions Load scheme callout library
-s Str skip-suffix Omit the file with this suffix

- may not be preset
- may appear multiple times

-o opt select-suffix specify this output suffix
- may not be preset
- may appear multiple times

no source-time set mod times to latest source
- disabled as --no-source-time

Str equate characters considered equivalent
no writable Allow output files to be writable

Chapter 5: Invoking autogen 54

- disabled as --not-writable
- may not be preset

The following options are often useful while debugging new templates:

Flg Arg Option-Name Description
Num loop-limit Limit on increment loops

it must lie in one of the ranges:
-1 exactly, or
1 to 16777216

-t Num timeout Time limit for servers
it must lie in the range: 0 to 3600

KWd trace tracing level of detail
Str trace-out tracing output file or filter

These options can be used to control what gets processed
in the definitions files and template files.

Flg Arg Option-Name Description
-D Str define name to add to definition list

- may appear multiple times
-U Str undefine definition list removal pattern

- an alternate for define

Auto-supported Options:

Flg Arg Option-Name Description
-v opt version Output version information and exit
-? no help Display usage information and exit
-! no more-help Extended usage information passed thru pager
-> opt save-opts Save the option state to an rc file
-< Str load-opts Load options from an rc file

- disabled as --no-load-opts
- may appear multiple times

Options are specified by doubled hyphens and their name
or by a single hyphen and the flag character.

AutoGen creates text files from templates using external definitions.

The following option preset mechanisms are supported:
- reading file /dev/null
- reading file ./.autogenrc
- examining environment variables named AUTOGEN_*

The valid trace option keywords are:
nothing
templates
block-macros

Chapter 5: Invoking autogen 55

expressions
everything

The definitions file (‘<def-file>’) can be specified with the
‘definitions’ option or as the command argument, but not both.
Omitting it or specifying ‘-’ will result in reading definitions from
standard input.

The output file names are based on the template, but generally use the
base name of the definition file. If standard in is read for the
definitions, then ‘stdin’ will be used for that base name. The
suffixes to the base name are gotten from the template. However, the
template file may specify the entire output file name. The generated
files are always created in the current directory. If you need to
place output in an alternate directory, ‘cd’ to that directory and use
the ‘--templ_dirs’ option to search the original directory.

‘loop-limit’ is used in debugging to stop runaway expansions.

please send bug reports to: autogen-bugs@lists.sf.net

5.2 templ-dirs option (-L)

This is the “template search directory list” option.
This option has some usage constraints. It:
• may appear an unlimited number of times.

Add a directory to the list of directories to search when opening a template, either as
the primary template or an included one. The last entry has the highest priority in the
search list. That is to say, they are searched in reverse order.

5.3 override-tpl option (-T)

This is the “override template file” option.
This option has some usage constraints. It:
• may not be preset with environment variables or in initialization (rc) files.

Definition files specify the standard template that is to be expanded. This option will
override that name and expand a different template.

5.4 lib-template option (-l)

This is the “library template file” option.
This option has some usage constraints. It:
• may appear an unlimited number of times.

DEFINE macros are saved from this template file for use in processing the main macro
file. Template text aside from the DEFINE macros is is ignored.

Chapter 5: Invoking autogen 56

5.5 base-name option (-b)

This is the “base name for output file(s)” option.
This option has some usage constraints. It:
• may not be preset with environment variables or in initialization (rc) files.

A template may specify the exact name of the output file. Normally, it does not. Instead,
the name is composed of the base name of the definitions file with suffixes appended. This
option will override the base name derived from the definitions file name. This is required
if there is no definitions file and advisable if definitions are being read from stdin. If the
definitions are being read from standard in, the base name defaults to ‘stdin’.

5.6 definitions option

This is the “definitions input file” option.
This option has some usage constraints. It:
• is enabled by default.
• may not be preset with environment variables or in initialization (rc) files.

Use this argument to specify the input definitions file with a command line option. If
you do not specify this option, then there must be a command line argument that specifies
the file, even if only to specify stdin with a hyphen (-). Specify, --no-definitions when
you wish to process a template without any active AutoGen definitions.

5.7 load-scheme option (-S)

This is the “scheme code file to load” option. Use this option to pre-load Scheme scripts
into the Guile interpreter before template processing begins. Please note that the AutoGen
specific functions are not loaded until after argument processing. So, though they may
be specified in lambda functions you define, they may not be invoked until after option
processing is complete.

5.8 load-functions option (-F)

This is the “load scheme callout library” option. This option is used to load Guile-
scheme callout functions. The automatically called initialization routine scm_init must be
used to register these routines or data. This routine can be generated by using the following
command and the ‘snarf.tpl’ template. Read the introductory comment in ‘snarf.tpl’ to see
what the ‘getdefs(1AG)’ comment must contain.

First, create a config file for getdefs, and then invoke getdefs loading that file:
cat > getdefs.cfg <<EOF
subblock exparg=arg_name,arg_desc,arg_optional,arg_list
defs-to-get gfunc
template snarf
srcfile
linenum
assign group = name_of_some_group

Chapter 5: Invoking autogen 57

assign init = _init
EOF

getdefs load=getdefs.cfg <<source-file-list>>

Note, however, that your functions must be named:

name_of_some_group_scm_<<function_name>>(...)

so you may wish to use a shorter group name.

5.9 skip-suffix option (-s)

This is the “omit the file with this suffix” option.

This option has some usage constraints. It:

• may appear an unlimited number of times.

• may not be preset with environment variables or in initialization (rc) files.

Occasionally, it may not be desirable to produce all of the output files specified in the
template. (For example, only the ‘.h’ header file, but not the ‘.c’ program text.) To do
this specify --skip-suffix=c on the command line.

5.10 select-suffix option (-o)

This is the “specify this output suffix” option.

This option has some usage constraints. It:

• may appear an unlimited number of times.

• may not be preset with environment variables or in initialization (rc) files.

If you wish to override the suffix specifications in the template, you can use one or more
copies of this option. See the suffix specification in the Section 3.1 [pseudo macro], page 17
section of the info doc.

5.11 source-time option

This is the “set mod times to latest source” option. If you stamp your output files with
the ‘DNE’ macro output, then your output files will always be different, even if the content
has not really changed. If you use this option, then the modification time of the output
files will change only if the input files change. This will help reduce unneeded builds.

5.12 equate option

This is the “characters considered equivalent” option. This option will alter the list of
characters considered equivalent. The default are the three characters, " -^". (The latter
is conventional on a Tandem, and I do a lot of work on the Tandem.)

Chapter 5: Invoking autogen 58

5.13 writable option

This is the “allow output files to be writable” option.
This option has some usage constraints. It:
• may not be preset with environment variables or in initialization (rc) files.

This option will leave output files writable.Normally, output files are read-only.

5.14 loop-limit option

This is the “limit on increment loops” option. This option prevents runaway loops. For
example, if you accidentally specify, "FOR x (for-from 1) (for-to -1) (for-by 1)", it will take
a long time to finish. If you do have more than 256 entries in tables, you will need to specify
a new limit with this option.

5.15 timeout option (-t)

This is the “time limit for servers” option.
This option has some usage constraints. It:
• must be compiled in by defining SHELL_ENABLED during the compilation.

AutoGen works with a shell server process. Most normal commands will complete in less
than 10 seconds. If, however, your commands need more time than this, use this option.

The valid range is 0 to 3600 seconds (1 hour). Zero will disable the server time limit.

5.16 trace option

This is the “tracing level of detail” option. This option will cause AutoGen to display a
trace of its template processing. There are five levels:

‘nothing’ Does no tracing at all (default)

‘templates’
Traces the invocation of DEFINEd macros and INCLUDEs

‘block-macros’
Traces all block macros. The above, plus IF, FOR, CASE and WHILE.

‘expressions’
Displays the results of expression evaluations

‘everything’
Displays the invocation of every AutoGen macro, even TEXT macros.

5.17 trace-out option

This is the “tracing output file or filter” option. The output specified may be either a
file name, or, if the option argument begins with the pipe operator (|), a command that
will receive the tracing output as standard in. For example, --traceout=’| less’ will run
the trace output through the less program.

Chapter 5: Invoking autogen 59

5.18 show-defs option

This is the “show the definition tree” option.

This option has some usage constraints. It:

• must be compiled in by defining DEBUG_ENABLED during the compilation.

• may not be preset with environment variables or in initialization (rc) files.

This will print out the complete definition tree before processing the template.

5.19 show-shell option

This is the “show shell commands” option.

This option has some usage constraints. It:

• must be compiled in by defining DEBUG_ENABLED during the compilation.

• may not be preset with environment variables or in initialization (rc) files.

This will cause set -x to be executed in the shell, with the resultant output printed to
/dev/tty. This option will have no effect if ‘--disable-shell’ was specified at configure
time.

5.20 define option (-D)

This is the “name to add to definition list” option.

This option has some usage constraints. It:

• may appear an unlimited number of times.

• is a member of the define class of options.

The AutoGen define names are used for the following purposes:

1. Sections of the AutoGen definitions may be enabled or disabled by using C-style #ifdef
and #ifndef directives.

2. When defining a value for a name, you may specify the index for a particular value.
That index may be a literal value, a define option or a value #define-d in the definitions
themselves.

3. The name of a file may be prefixed with $NAME/. The $NAME part of the name string
will be replaced with the define-d value for NAME.

4. When AutoGen is finished loading the definitions, the defined values are exported to
the environment with, putenv(3). These values can then be used in shell scripts with
${NAME} references and in templates with (getenv "NAME").

5. While processing a template, you may specify an index to retrieve a specific value.
That index may also be a define-d value.

Chapter 5: Invoking autogen 60

5.21 undefine option (-U)

This is the “definition list removal pattern” option.
This option has some usage constraints. It:
• may appear an unlimited number of times.
• may not be preset with environment variables or in initialization (rc) files.
• is a member of the define class of options.

Just like ’C’, AutoGen uses #ifdef/#ifndef preprocessing directives. This option will
cause the matching names to be removed from the list of defined values.

Chapter 6: Configuring and Installing 61

6 Configuring and Installing

6.1 Configuring AutoGen

AutoGen is configured and built using Libtool, Automake and Autoconf. Consequently,
you can install it whereever you wish using the various ‘--prefix’ options. To the various
configuration options supplied by these tools, AutoGen adds a few of its own:

‘--disable-shell’
AutoGen is now capable of acting as a CGI forms server, See Section 6.2 [Au-
toGen CGI], page 63. As such, it will gather its definitions using either ‘GET’ or
‘POST’ methods. All you need to do is have a template named ‘cgi.tpl’ handy
or specify a different one with a command line option.
However, doing this without disabling the server shell brings considerable risk.
If you were to pass user input to a script that contained, say, the classic "‘‘rm
-rf /‘’", you might have a problem. This configuration option will cause shell
template commands to simply return the command string as the result. No
mistakes. Much safer. Strongly recommended. The default is to have server
shell scripting enabled.
Disabling the shell will have some build side effects, too.
• Many of the make check tests will fail, since they assume a working server

shell.
• The getdefs and columns programs are not built. The options are dis-

tributed as definition files and they cannot be expanded with a shell-
disabled AutoGen.

• Similarly, the documentation cannot be regenerated because the documen-
tation templates depend on subshell functionality.

‘--enable-debug’
Turning on AutoGen debugging enables very detailed inspection of the input
definitions and monitoring shell script processing. These options are not par-
ticularly useful to anyone not directly involved in maintaining AutoGen. If you
do choose to enable AutoGen debugging, be aware that the usage page was
generated without these options, so when the build process reaches the docu-
mentation rebuild, there will be a failure. ‘cd’ into the ‘agen5’ build directory,
‘make’ the ‘autogen.texi’ file and all will be well thereafter.

‘--with-regex-header’
‘--with-header-path’
‘--with-regex-lib’

These three work together to specify how to compile with and link
to a particular POSIX regular expression library. The value for
‘--with-regex-header=value’ must be the name of the relevant header
file. The AutoGen sources will attempt to include that source with
a #include <value> C preprocessing statement. The path from the
‘--with-header-path=path’ will be added to CPPFLAGS as ‘-Ipath’. The

Chapter 6: Configuring and Installing 62

lib-specs from ‘--with-regex-lib=lib-specs’ will be added to LDFLAGS
without any adornment.

Chapter 6: Configuring and Installing 63

6.2 AutoGen as a CGI server

AutoGen is now capable of acting as a CGI forms server. It behaves as a CGI server if the
definitions input is from stdin and the environment variable REQUEST_METHOD is defined and
set to either "GET" or "POST". If set to anything else, AutoGen will exit with a failure
message. When set to one of those values, the CGI data will be converted to AutoGen
definitions (see Chapter 2 [Definitions File], page 6) and the template named "cgi.tpl"
will be processed.

This works by including the name of the real template to process in the form data
and having the "cgi.tpl" template include that template for processing. I do this for
processing the form http://autogen.sourceforge.net/conftest.html. The "cgi.tpl"
looks approximately like this:

<? AutoGen5 Template ?>
<?
IF (not (exist? "template")) ?><?

form-error ?><?

ELIF (=* (get "template") "/") ?><?
form-error ?><?

ELIF (define tpl-file (string-append "cgi-tpl/"
(get "template")))

(access? tpl-file R_OK) ?><?
INCLUDE (. tpl-file) ?><?

ELIF (set! tpl-file (string-append tpl-file ".tpl"))
(access? tpl-file R_OK) ?><?

INCLUDE (. tpl-file) ?><?

ELSE ?><?
form-error ?><?

ENDIF ?>

This forces the template to be found in the "cgi-tpl/" directory. Note also that there is
no suffix specified in the pseudo macro (see Section 3.1 [pseudo macro], page 17). That tells
AutoGen to emit the output to stdout.

The output is actually spooled until it is complete so that, in the case of an error, the
output can be discarded and a proper error message can be written in its stead.

Please also note that it is advisable, especially for network accessible machines, to con-
figure AutoGen (see Section 6.1 [configuring], page 61) with shell processing disabled (--
disable-shell). That will make it impossible for any referenced template to hand data to
a subshell for interpretation.

6.3 Signal Names

When AutoGen is first built, it tries to use psignal(3), sys_siglist, strsigno(3) and
strsignal(3) from the host operating system. If your system does not supply these, the
AutoGen distribution will. However, it will use the distributed mapping and this mapping

Chapter 6: Configuring and Installing 64

is unlikely to match what your system uses. This can be fixed. Once you have installed
autogen, the mapping can be rebuilt on the host operating system. To do so, you must
perform the following steps:
1. Build and install AutoGen in a place where it will be found in your search path.
2. cd ${top_srcdir}/compat

3. autogen strsignal.def

4. Verify the results by examining the ‘strsignal.h’ file produced.
5. Re-build and re-install AutoGen.

If you have any problems or peculiarities that cause this process to fail on your platform,
please send me copies of the header files containing the signal names and numbers, along
with the full path names of these files. I will endeavor to fix it. There is a shell script inside
of ‘strsignal.def’ that tries to hunt down the information.

6.4 Installing AutoGen

There are several files that get installed. The number depend whether or not both shared
and archive libraries are to be installed. The following assumes that everything is installed
relative to $prefix. You can, of course, use configure to place these files where you wish.

NB AutoGen does not contain any compiled-in path names. All support directories are
located via option processing, the environment variable HOME or finding the directory where
the executable came from.

The installed files are:
1. The executables in ‘bin’ (autogen, getdefs and columns).
2. The AutoOpts link libraries as ‘lib/libopts.*’.
3. An include file in ‘include/options.h’, needed for Automated Option Processing (see

next chapter).
4. Several template files and a scheme script in ‘share/autogen’, needed for Automated

Option Processing (see Chapter 7 [AutoOpts], page 66), parsing definitions written
with scheme syntax (see Section 2.4 [Dynamic Text], page 10), the templates for pro-
ducing documentation for your program (see Section 7.3.5 [documentation attributes],
page 81), autoconf test macros, and AutoFSM.

5. Info-style help files as ‘info/autogen.info*’. These files document AutoGen, the
option processing library AutoOpts, and several add-on components.

6. The three man pages for the three executables are installed in man/man1.

This program, library and supporting files can be installed with three commands:
• <src-dir>/configure [<configure-options>]
• make
• make install

However, you may wish to insert make check before the make install command.
If you do perform a make check and there are any failures, you will find the results in

<module>/test/FAILURES. Needless to say, I would be interested in seeing the contents of
those files and any associated messages. If you choose to go on and analyze one of these

Chapter 6: Configuring and Installing 65

failures, you will need to invoke the test scripts individually. You may do so by specifying
the test (or list of test) in the TESTS make variable, thus:

gmake TESTS=test-name.test check

I specify gmake because most makes will not let you override internal definitions with
command line arguments. gmake does.

All of the AutoGen tests are written to honor the contents of the VERBOSE environment
variable. Normally, any commentary generated during a test run is discarded unless the
VERBOSE environment variable is set. So, to see what is happening during the test, you
might invoke the following with bash or ksh:

VERBOSE=1 gmake TESTS="for.test forcomma.test" check

Or equivalently with csh:
env VERBOSE=1 gmake TESTS="for.test forcomma.test" check

Chapter 7: Automated Option Processing 66

7 Automated Option Processing

AutoOpts 19.2 is bundled with AutoGen. It is a tool that virtually eliminates the hassle
of processing options and keeping man pages, info docs and usage text up to date. This
package allows you to specify several program attributes, up to a hundred option types and
many option attributes. From this, it then produces all the code necessary to parse and
handle the command line and initialization file options, and the documentation that should
go with your program as well.

AutoOpts is distributed under The GNU Lesser General Public License. "Lesser" mean-
ing you have greater license with it and may link it into commercial programs.

7.1 AutoOpts Features

AutoOpts supports option processing; option state saving; and program documentation
with innumerable features. Here, we list a few obvious ones and some important ones,
but the full list is really defined by all the attributes defined in the Section 7.3 [Option
Definitions], page 70 section.
1. POSIX-compliant short (flag) option processing.
2. GNU-style long options processing. Long options are recognized without case sensitiv-

ity, and they may be abbreviated.
3. Environment variable initializations.
4. Initialization from RC or INI files, and saving the option state back into one.
5. INI files may be partitioned. One INI file may be used by several programs by parti-

tioning it with lines containing, “[PROGRAM_NAME]”, See [loading rc files], page 67.
6. Options may be marked as dis-abled with a disablement prefix. Such options may

default to either an enabled or a disabled state. You may also provide an enablement
prifix, too, e.g., --allow-mumble and --prevent-mumble.

7. Verify that required options are present between the minimum and maximum number
of times on the command line.

8. Verify that conflicting options do not appear together, and that options that require
the presence of other options are, in fact, used in the presence of other options.

9. Provides a callable routine to parse a text string as if it were from one of the RC/INI
files.

10. --help and --version are automatically supported. --more-help will page the gen-
erated help.

11. By adding a ‘doc’ and ‘arg-name’ attributes to each option, AutoGen will also be able
to produce a man page and the ‘invoking’ section of a texinfo document.

12. Insert the option processing state into Scheme-defined variables. Thus, Guile based
applications that are linked with private main() routines can take advantage of all of
AutoOpts’ functionality.

13. If test-main is defined, the output ‘.c’ file will contain a main routine that will be
compiled when TEST_<prog-name>_OPTS is defined. See Section 7.7 [shell options],
page 96. If you choose to compile this program, it is currently capable of producing
one of three results:

Chapter 7: Automated Option Processing 67

a. A program that processes the arguments and writes to standard out portable shell
commands containing the digested options.

b. A program that will generate portable shell commands to parse the defined options.
The expectation is that this result will be copied into a shell script and used there.

c. test-main may specify a routine that will be called with a pointer to the option
descriptions as the single argument. You must supply this routine and, obviously,
you can cause it to do whatever you wish it to do.

14. Library suppliers can specify command line options that their client programs will
accept. They specify option definitions that get #include-d into the client option
definitions and they specify an "anchor" option that has a callback and must be invoked.
That will give the library access to the option state for their options.

15. The generated usage text can be emitted in either AutoOpts standard format (max-
imizing the information about each option), or GNU-ish normal form. The default
form is selected by either specifying or not specifying the gnu-usage attribute (see
Section 7.3.3 [information attributes], page 73). This can be overridden by the user
himself with the AUTOOPTS_USAGE environment variable. If it exists and is set to the
string gnu, it will force GNU-ish style format; if it is set to the string autoopts, it will
force AutoOpts standard format; otherwise, it will have no effect.

Explanatory details:

loading rc files

Initialization files are enabled by specifying the program attribute homerc (see Sec-
tion 7.3.1 [program attributes], page 71). The initialization values are identified by the long
option name followed by white space and any associated value. The value, if any, will con-
tinue through the end of the last line not continued with a backslash. Leading and trailing
white space is stripped.

Initialization files are selected both by the homerc entries and, optionally, via a command
line option. The first component of the homerc entry may be an environment variable such
as $HOME, or it may also be $$ (two dollar sign characters) to specify the directory of the
executable. For example:

homerc = "$$/../share/autogen";

will cause the AutoOpts library to look in the normal autogen datadir for an initialization
file.

The initialization files are processed in the order they are specified by the homerc at-
tribute, so that each new file will normally override the settings of the previous files. This
may be overridden by marking some options for immediate action (see Section 7.3.4.4
[Immediate Action], page 77). Any such options are acted upon in reverse order. The
disabled load-opts (--no-load-opts) option, for example, is an immediate action option.
Its presence in the last homerc file will prevent the processing of any prior homerc files
because its effect is immediate.

Initialization file processing can be completely suppressed by specifying --no-load-opts
on the command line, or PROGRAM_LOAD_OPTS=no in the environment.

Initialization files may be sectioned. If, for example, you have a collection of programs
that work closely together and, likely, have a common set of options, these programs may use

Chapter 7: Automated Option Processing 68

a single, sectioned, initialization file. It may be partitioned by lines that commence with the
square open bracket ([). All text before the first such a line is always processed. Once such
a line is found, the upper-cased c-variable-syntax program name will be compared against
the text following that bracket. If there is a match and the next character after that is a
square close bracket (]), then the section is processed and the file closed. Otherwise, the
section is ignored and a matching section is searched for.

For exampe, if the fumble-stumble options had a sectioned RC file, then a line contain-
ing exactly [FUMBLE_STUMBLE] would be searched for.

saving rc files

When initialization files are enabled for an application, the user is also provided with an
automatically supplied --save-opts option. All of the known option state will be written
to either the specified output file or, if it is not specified, then to the last specified homerc
file.

process a text string for options

The optionLoadLine takes two arguments:
1. The pointer to the program’s option descriptor (tOptions*).
2. A pointer to a NUL-terminated string that contains a long option name followed,

optionally, by a string value.

Leading and trailing white space is trimmed from the value, but otherwise new lines are
not discarded. The caller is expected to have NUL terminated the string at the correct
point.

Chapter 7: Automated Option Processing 69

7.2 Quick Start

Since it is generally easier to start with a simple example than it is to look at the
options that AutoGen uses itself, here is a very simple AutoOpts example. You can copy
this example out of the Info file and into a source file to try it. You can then embellish
it into what you really need. For more extensive examples, you can also examine the help
output and option definitions for the commands columns, getdefs and autogen itself.

For our simple example, assume you have a program named check that takes two options:
1. A list of directories to check over for whatever it is check does. You want this option

available as a POSIX-style flag option and a GNU long option. You want to allow as
many of these as the user wishes.

2. An option to show or not show the definition tree being used. Only one occurrence is
to be allowed, specifying one or the other.

First, specify your program attributes and its options to AutoOpts, as with the following
example.

AutoGen Definitions options;
prog-name = check;
prog-title = "Checkout Automated Options";
long-opts;
test_main;

flag = {
name = check_dirs;
value = L; /* flag style option character */
arg_type = string; /* option argument indication */
max = NOLIMIT; /* occurrence limit (none) */
stack_arg; /* save opt args in a stack */
descrip = "Checkout directory list";

};

flag = {
name = show_defs;
descrip = "Show the definition tree";
disable = dont; /* mark as enable/disable type */

/* option. Disable as ‘dont-’ */
};

Then perform the following steps:
1. autogen checkopt.def

2. cc -o check -DTEST_CHECK_OPTS -g checkopt.c -L $prefix/lib -lopts

And now, ./check --help yields:
check - Checkout Automated Options
USAGE: check [-<flag> [<val>]]... [--<name>[{=| }<val>]]...

Flg Arg Option-Name Description
-L YES check-dirs Checkout directory list

- may appear without limit
no show-defs Show the definition tree

Chapter 7: Automated Option Processing 70

- disabled as --dont-show-defs
-? no help Display usage information and exit
-! no more-help Extended usage information passed thru pager

Options may be specified by doubled markers and their name
or by a single marker and the flag character/option value.

Normally, however, you would compile ‘checkopt.c’ as in:
cc -o checkopt.o -I$prefix/include -c checkopt.c

and link ‘checkopt.o’ with the rest of your program. The main program causes the options
to be processed by calling optionProcess (see Section 7.4.28.3 [libopts-optionProcess],
page 92):

main(int argc, char** argv)
{

{
int optct = optionProcess(&checkOptions, argc, argv);
argc -= optct;
argv += optct;

}

The options are tested and used as in the following fragment:
if (HAVE_OPT(SHOW_DEFS) && HAVE_OPT(CHECK_DIRS)) {
int dirct = STACKCT_OPT(CHECK_DIRS);
char** dirs = STACKLST_OPT(CHECK_DIRS);
while (dirct-- > 0) {

char* dir = *dirs++;
...

A lot of magic happens to make this happen. The rest of this chapter will describe
the myriad of option attributes supported by AutoOpts. However, keep in mind that, in
general, you won’t need much more than what was described in this "quick start" section.

7.3 Option Definitions

AutoOpts uses an AutoGen definitions file for the definitions of the program options and
overall configuration attributes. The complete list of program and option attributes is quite
extensive, so if you are reading to understand how to use AutoOpts, I recommend reading
the "Quick Start" section (see Section 7.2 [Quick Start], page 69) and paying attention to
the following:

1. prog-name, prog-title, and argument, program attributes, See Section 7.3.1 [program
attributes], page 71.

2. name and descrip option attributes, See Section 7.3.4.1 [Required Attributes], page 75.

3. value (flag character) and min (occurrence counts) option attributes, See
Section 7.3.4.2 [Common Attributes], page 75.

4. arg-type from the option argument specification section, See Section 7.3.4.6 [Option
Arguments], page 78.

5. Read the overall how to, See Section 7.6 [Using AutoOpts], page 94.

Chapter 7: Automated Option Processing 71

6. Highly recommended, but not required, are the several "man" and "info" documenta-
tion attributes, See Section 7.3.5 [documentation attributes], page 81.

Keep in mind that the majority are rarely used and can be safely ignored. However,
when you have special option processing requirements, the flexibility is there.

7.3.1 Program Description Attributes

The following global definitions are used to define attributes of the entire program. These
generally alter the configuration or global behavior of the AutoOpts option parser. The first
two are required of every program. The rest have been alphabetized. Except as noted, there
may be only one copy of each of these definitions:

‘prog-name’
This attribute is required. Variable names derived from this name are derived
using string->c_name! (see Section 3.5.47 [SCM string->c-name!], page 42).

‘prog-title’
This attribute is required and may be any descriptive text.

‘allow-errors’
The presence of this attribute indicates ignoring any command line option er-
rors. This may also be turned on and off by invoking the macros ERRSKIP_
OPTERR and ERRSTOP_OPTERR from the generated interface file.

‘argument’
Specifies the syntax of the arguments that follow the options. It may not be
empty, but if it is not supplied, then option processing must consume all the
arguments. If it is supplied and starts with an open bracket ([), then there is
no requirement on the presence or absence of command line argument following
the options. Lastly, if it is supplied and does not start with an open bracket,
then option processing must not consume all of the command line arguments.

‘environrc’
Indicates looking in the environment for values of variables named, PROGRAM_
OPTNAME, where PROGRAM is the upper cased C-name of the program and OPTNAME
is the upper cased C-name of the option. The C-names are the regular names
with all special characters converted to underscores (_).

If a particular option may be disabled, then its disabled state is indicated by
setting the value to the disablement prefix. So, for example, if the disable-
ment prefix were dont, then you can disable the optname option by setting the
PROGRAM_OPTNAME’ environment variable to ‘dont ’. See Section 7.3.4.2 [Com-
mon Attributes], page 75.

‘export’ This string is inserted into the .h interface file. Generally used for global vari-
ables or #include directives required by flag_code text and shared with other
program text. Do not specify your configuration header (‘config.h’) in this
attribute or the include attribute, however. Instead, use config-header, be-
low.

Chapter 7: Automated Option Processing 72

‘config-header’
The contents of this attribute should be just the name of the configuration
file. A "#include" naming this file will be inserted at the top of the generated
header.

‘homerc’ Specifies either a directory or a file using a specific path (like . or
‘/usr/local/share/progname’) or an environment variable (like ‘$HOME/rc/’
or ‘$PREFIX/share/progname’) or the directory where the executable was
found (‘$$[/...]’) to use to try to find the rcfile. Use as many as you like.
The presence of this attribute activates the --save-opts and --load-opts
options. See [loading rc files], page 67.

‘include’ This string is inserted into the .c file. Generally used for global variables re-
quired only by flag_code program text.

‘long-opts’
Presence indicates GNU-standard long option processing. If any options do not
have an option value (flag character) specified, and least one does specify such
a value, then you must specify long-opts. If none of your options specify an
option value (flag character) and you do not specify long-opts, then command
line arguments are processed in "named option mode". This means that:
• Every command line argument must be a long option.
• The flag markers - and -- are completely optional.
• The argument program attribute is disallowed.
• One of the options may be specified as the default (as long as it has a

required option argument).

‘prefix’ This value is inserted into all global names. This will disambiguate them if
more than one set of options are to be compiled into a single program.

‘rcfile’ Specifies the initialization file name. This is only useful if you have provided at
least one homerc attribute. default: .<prog-name>rc

‘version’ Specifies the program version and activates the VERSION option, See Sec-
tion 7.3.6 [automatic options], page 81.

7.3.2 Generated main Procedures

AutoOpts can generate the main procedure in certain circumstances. It will do this to
help with integrating with the guile library environment, and for creating a program to
convert command line options into environment variables for use in processing shell script
options and for testing the command line interface.

‘before-guile-boot’
If guile-main has been specified and if this is specified as well, then this code
will be inserted into the actual main() procedure before gh_enter() is called.

‘guile-main’
Creates a guile-style main and inner-main procedures. The inner main proce-
dure will call optionProcess() and will invoke any code specified by this at-
tribute. If this attribute does not specify any code, then calls to the AutoOpts

Chapter 7: Automated Option Processing 73

library procedure export_options_to_guile() and then scm_shell() will be
inserted into inner_main().

‘main-text’
If you need to specify the content of the main procedure generated for the
"option testing" program, you can do that with this attribute. The result will
be a procedure that looks like this:

int main(int argc, char** argv) {
[+ main-text +]

return EXIT_SUCCESS;
}

‘test-main’
Creates a test main procedure for testing option processing. The resulting
program may also be used for several purposes.

1. If the text of test-main is short (3 or fewer characters), the generated
main() will call putBourneShell. That routine will emit Bourne shell com-
mands that can be eval-ed by a Bourne-derived shell to incorporate the
digested options into the shell’s environment, See Section 7.7 [shell op-
tions], page 96. You would use it thus:

eval "‘./programopts $@‘"
test -z "${OPTION_CT}"] && exit 1
test ${OPTION_CT} -gt 0 && shift ${OPTION_CT}

2. If the text of test-main contains putShellParse, the program will gen-
erate portable Bourne shell commands that will parse the command line
options. The expectation is that this result will be copied into a shell script
and used there, See Section 7.7 [shell options], page 96.

3. Any other text must be the name of a routine that you will write yourself.
That routine will be called after processing the command line options and it
will be passed the option processing descriptor pointer as its sole argument.

7.3.3 Program Information Attributes

These attributes are used to define how and what information is displayed to the user
of the program.

‘copyright’
The copyright is a structured value containing three to five values. If
copyright is used, then the first three are required.

1. ‘date’ - the list of applicable dates for the copyright.

2. ‘owner’ - the name of the copyright holder.

3. ‘type’ - specifies the type of distribution license. AutoOpts/AutoGen will
automatically support the text of the GNU Public License (‘GPL’), the
GNU General Public License with Library extensions (‘LGPL’), the Free
BSD license (‘BSD’), and a write-it-yourself copyright notice (‘NOTE’). Only
these values are recognized.

Chapter 7: Automated Option Processing 74

4. ‘text’ - the text of the copyright notice. It is only needed if ‘type’ is set
to ‘NOTE’.

5. ‘author’ - in case the author name is to appear in the documentation and
is different from the copyright owner.

6. ‘eaddr’ - email address of the author or copyright holder.

An example of this might be:

copyright = {
date = "1992-2003";
owner = "Bruce Korb";
eaddr = ’bkorb@gnu.org’;
type = GPL;

};

‘detail’ This string is added to the usage output when the HELP option is selected.

‘explain’ Gives additional information whenever the usage routine is invoked..

‘preserve-case’
This attribute will not change anything except appearance. Normally, the op-
tion names are all documented in lower case. However, if you specify this at-
tribute, then they will display in the case used in their specification. Command
line options will still be matched without case sensitivity.

‘prog-desc and’
‘opts-ptr’

These define global pointer variables that point to the program descriptor and
the first option descriptor for a library option. This is intended for use by certain
libraries that need command line and/or initialization file option processing.
These definitions have no effect on the option template output, but are used for
creating a library interface file. Normally, the first "option" for a library will
be a documentation option that cannot be specified on the command line, but
is marked as settable. The library client program will invoke the SET_OPTION
macro which will invoke a handler function that will finally set these global
variables.

‘usage’ Optionally names the usage procedure, if the library routine optionUsage()
does not work for you. If you specify gnu_usage as the value of this attribute,
for example, you will use a procedure by that name for displaying usage. Of
course, you will need to provide that procedure.

‘gnu-usage’
Normally, the default format produced by the optionUsage procedure is Au-
toOpts Standard. By specifying this attribute, the default format will be GNU-
ish style. Either default may be overridden by the user with the AUTOOPTS_
USAGE environment variable. If it is set to gnu or autoopts, it will alter the
style appropriately. This attribute will conflict with the usage attribute.

Chapter 7: Automated Option Processing 75

7.3.4 Option Attributes

For each option you wish to specify, you must have a block macro named flag defined.
There are two required attributes: name and descrip. If any options do not have a value
(traditional flag character) attribute, then the long-opts global text macro must also be
defined. As a special exception, if no options have a value and long-opts is not defined
and argument is not defined, then all arguments to the program are named. In this case,
the - and -- command line option markers are optional.

7.3.4.1 Required Attributes

Every option must have exactly one copy of both of these attributes.

‘name’ Long name for the option. Even if you are not accepting long options and are
only accepting flags, it must be provided. AutoOpts generates private, named
storage that requires this name.

‘descrip’ Except for documentation options, a very brief description of the option. About
40 characters on one line, maximum. It appears on the usage() output next
to the option name. If, however, the option is a documentation option, it will
appear on one or more lines by itself. It is thus used to visually separate and
comment upon groups of options in the usage text.

7.3.4.2 Common Option Attributes

These option attributes are optional. Any that do appear in the definition of a flag, may
appear only once.

‘value’ The flag character to specify for traditional option flags. e.g. -L.

‘max’ Maximum occurrence count (invalid if disable present).

‘min’ Minimum occurrence count. If present, then the option must appear on the
command line. Preset values do not count towards the minimum occurrence
count.

‘must-set’
If an option must be specified, but it need not be specified on the command
line, then specify this attribute for the option.

‘enable’ Long-name prefix for enabling the option (invalid if disable not present). Only
useful if long option names are being processed.

‘disable’ Prefix for disabling (inverting sense of) the option. Only useful if long option
names are being processed.

‘enabled’ If default is for option being enabled. (Otherwise, the OPTST DISABLED bit
is set at compile time.) Only useful if the option can be disabled.

‘ifdef’
‘ifndef’ If an option is relevant on certain platforms or when certain features are enabled

or disabled, you can specify the compile time flag used to indicate when the

Chapter 7: Automated Option Processing 76

option should be compiled in or out. For example, if you have a configurable
feature, mumble that is indicated with the compile time define, WITH_MUMBLING,
then add:

ifdef = WITH_MUMBLING;

Note that case and spelling must match whatever you are using. Do not confuse
these attributes with the AutoGen directives of the same names, See Section 2.5
[Directives], page 10. These cause C pre-processing directives to be inserted into
the generated C text.

7.3.4.3 Special Option Handling

These option attributes do not fit well with other categories.

‘no-preset’
If presetting this option is not allowed. (Thus, environment variables and values
set in rc/ini files will be ignored.)

‘settable’
If the option can be set outside of option processing. If this attribute is de-
fined, special macros for setting this particular option will be inserted into the
interface file. For example, TEMPL_DIRS is a settable option for AutoGen, so
a macro named SET_OPT_TEMPL_DIRS(a) appears in the interface file. This
attribute interacts with the documentation attribute.

‘equivalence’
Generally, when several options are mutually exclusive and basically serve the
purpose of selecting one of several processing modes, these options can be con-
sidered an equivalence class. Sometimes, it is just easier to deal with them as
such.
For an option equivalence class, there is a single occurrence counter for all the
members of the class. All members of the equivalence class must contain the
same equivalenced-to option, including the equivalenced-to option itself. Thus,
it must be a member.
As an example, cpio(1) has three options -o, -i, and -p that define the opera-
tional mode of the program (create, extract and pass-through, respectively).
They form an equivalence class from which one and only one member must ap-
pear on the command line. If cpio were an AutoOpt-ed program, then each of
these option definitions would contain:

equivalence = create;

and the program would be able to determine the operating mode with code
that worked something like this:

switch (WHICH_IDX_CREATE) {
case INDEX_OPT_CREATE: ...
case INDEX_OPT_EXTRACT: ...
case INDEX_OPT_PASS_THROUGH: ...
default: /* cannot happen */
}

Chapter 7: Automated Option Processing 77

‘documentation’
This attribute means the option exists for the purpose of separating option
description text in the usage output. Libraries may choose to make it settable
so that the library can determine which command line option is the first one
that pertains to the library.
If present, this option disables all other attributes except settable, call_proc
and flag_code. settable must be and is only specified if call_proc or flag_
code has been specified. When present, the descrip attribute will be displayed
only when the --help option has been specified. It will be displayed flush to
the left hand margin and may consist of one or more lines of text. The name
of the option will not be printed.
Documentation options are for clarifying the usage text and will not appear in
generated man pages or in the generated invoking texinfo doc.

7.3.4.4 Immediate Action Attributes

Certain options may need to be processed early. For example, in order to suppress the
processing of RC files, it is necessary to process the command line option --no-load-opts
before the RC files are processed. To accommodate this, certain options may have their
enabled or disabled forms marked for immediate processing. The consequence of this is that
they are processed ahead of all other options in the reverse of normal order.

Normally, the first options processed are the options specified in the first homerc file,
followed by then next homerc file through to the end of RC file processing. Next, envi-
ronment variables are processed and finally, the command line options. The later options
override settings processed earlier. That actually gives them higher priority. Command line
immediate action options actually have the lowest priority of all. They would be used only
if they are to have an effect on the processing of subsequent options.

‘immediate’
Use this option attribute to specify that the enabled form of the option is to
be processed immediately. The help and more-help options are so specified.
They will also call exit() upon completion, so they do have an effect on the
processing of the remaining options :-).

‘immed-disable’
Use this option attribute to specify that the disabled form of the option is to
be processed immediately. The load-opts option is so specified. The --no-
load-opts command line option will suppress the processing of RC files and
environment variables. Contrariwise, the --load-opts command line option is
processed normally. That means that the options specified in that file will be
processed after all the homerc files and, in fact, after options that precede it on
the command line.

7.3.4.5 Option Conflict Attributes

These attributes may be used as many times as you need. They are used at the end of
the option processing to verify that the context within which each option is found does not
conflict with the presence or absence of other options.

Chapter 7: Automated Option Processing 78

This is not a complete cover of all possible conflicts and requirements, but it simple to
implement and covers the more common situations.

‘flags-must’
one entry for every option that must be present when this option is present

‘flags-cant’
one entry for every option that cannot be present when this option is present

7.3.4.6 Option Argument Specification

Several attributes relate to the handling of arguments to options. Each may appear only
once, except for the arg-range attribute. It may appear as often as may be needed.

‘arg-type’
This specifies the type of argument the option will take. If not present, the
option cannot take an argument. If present, it must be one of the following
four. The bracketed part of the name is optional.

‘str[ing]’ The argument may be any arbitrary string.

‘num[ber]’ The argument must be a correctly formed integer, without any
trailing U’s or L’s. If you specify your own callback validation rou-
tine, read the arg-range section below for some considerations.
AutoOpts contains a library procedure to convert the string to a
number. If you specify range checking with arg-range, then Au-
toOpts produces a special purpose procedure for this option.

‘bool[ean]’
The argument will be interpreted and always yield either
AG TRUE or AG FALSE. False values are the empty string, the
number zero, or a string that starts with f, F, n or N (representing
False or No). Anything else will be interpreted as True.

‘key[word]’
The argument must match a specified list of strings. Assuming you
have named the option, optn-name, the strings will be converted
into an enumeration of type te_Optn_Name with the values OPTN_
NAME_KEYWORD. If you have not specified a default value, the value
OPTN_NAME_UNDEFINED will be inserted with the value zero. The
option will be initialized to that value. You may now use this in
your code as follows:

te_Optn_Name opt = OPT_VALUE_OPTN_NAME;
switch (opt) {
case OPTN_NAME_UNDEFINED: /* undefined things */ break;
case OPTN_NAME_KEYWORD: /* ‘keyword’ things */ break;
default: /* utterly impossible */ ;
}

AutoOpts produces a special purpose procedure for this option.

Chapter 7: Automated Option Processing 79

‘keyword’ If the arg-type is keyword, then you must specify the list of keywords by a
series of keyword entries. The interface file will contain an enumeration of
<OPTN NAME>_<KEYWORD> for each keyword entry.

‘arg-optional’
This attribute indicates that the user does not have to supply an argument for
the option. This is only valid if the arg-type is string or keyword. If it is
keyword, then this attribute may also specify the default keyword to assume
when the argument is not supplied. If left empty, arg-default or the zero-valued
keyword will be used.

‘arg-default’
This specifies the default value to be used when the option is not specified or
preset.

‘default’ If your program processes its arguments in named option mode (See “long-opts”
in Section 7.3.1 [program attributes], page 71), then you may select one of your
options to be the default option. Do so with this attribute. The option so
specified must have an arg-type specified, but not the arg-optional attribute.
That is to say, the option argument must be required.
If you have done this, then any arguments that do not match an option name
and do not contain an equal sign (=) will be interpreted as an option argument
to the default option.

‘arg-range’
If the arg-type is number, then arg-ranges may be specified, too. If you
specify one or more of these option attributes, then AutoOpts will create a
callback procedure for handling it. The argument value supplied for the option
must match one of the range entries. Each arg-range should consist of either
an integer by itself or an integer range. The integer range is specified by one or
two integers separated by the two character sequence, ->.
The generated procedure imposes some constraints:
• A number by itself will match that one value.
• The high end of the range may not be INT_MIN, both for obvious reasons

and because that value is used to indicate a single-valued match.
• An omitted lower value implies a lower bound of INT MIN.
• An omitted upper value implies a upper bound of INT MAX.
• The argument value is required. It may not be optional.

The usage procedure displays these ranges by calling the callback with the
pOptDesc pointer set to NULL. Therefore, all callback procedures designed to
handle options with numeric arguments must be prepared to handle a call with
that pointer set NULL.

7.3.4.7 Option Argument Handling

AutoOpts will automatically generate a callback procedure for options with enumerated
keyword arguments and numeric arguments with range checking. If you have specified such
an option, you may not specify any of the attributes listed here.

Chapter 7: Automated Option Processing 80

Otherwise, you may pick zero or one of the following attributes. The first two attributes
interact with the documentation and settable attributes, See Section 7.3.4.3 [Special
Option Handling], page 76.

‘flag-code’
statements to execute when the option is encountered. The generated procedure
will look like this:

static void
doOpt<name>(tOptions* pOptions, tOptDesc* pOptDesc)
{
<flag_code>
}

Only certain fields within the tOptions and tOptDesc structures may be ac-
cessed. See Section 7.4.1 [Option Processing Data], page 84.

‘extract-code’
This is effectively identical to flag_code, except that the source is kept in the
output file instead of the definitions file. A long comment is used to demarcate
the code. You must not modify that marker. Before regenerating the option
code file, the old file is renamed from MUMBLE.c to MUMBLE.c.save. The
template will be looking there for the text to copy into the new output file.

‘call-proc’
external procedure to call when option is encountered. The calling sequence
must conform to the sequence defined above for the generated procedure,
doOpt<name>. It has the same restrictions regarding the fields within the
structures passed in as arguments. See Section 7.4.1 [Option Processing Data],
page 84.

‘flag-proc’
Name of another option whose flag_code can be executed when this option is
encountered.

‘stack-arg’
Call a special library routine to stack the option’s arguments. Special macros
in the interface file are provided for determining how many of the options were
found (STACKCT_OPT(NAME)) and to obtain a pointer to a list of pointers to the
argument values (STACKLST_OPT(NAME)). Obviously, for a stackable argument,
the max attribute needs to be set higher than 1.
If two options are equivalenced (see Section 7.3.4.3 [Special Option Handling],
page 76) and specify this attribute, then the “equivalenced-to” option will add
entries to the stack, and the “equivalencing” option, if specified, will remove
entries that match the regular expression argument. The pattern, ".*" will
efficiently remove all the entries in the stack. It would not be useful to have
more than two options in this equivalence class.
If the stacked option has a disablement prefix, then the entire stack of arguments
will be cleared even more efficiently than the ".*" regular expression. A stacked,
equivalencing option with a disablement prefix will cause undefined results.

Chapter 7: Automated Option Processing 81

If all of this is confusing, then don’t mess with equivalenced stacked option
arguments. If you really want to know, the AutoGen --define option (see
Section 5.20 [autogen define], page 59) has a stacked argument, and --undefine
(see Section 5.21 [autogen undefine], page 60) is equivalenced to it.

7.3.5 Man and Info doc Attributes

AutoOpts includes AutoGen templates for producing abbreviated man pages and for
producing the invoking section of an info document. To take advantage of these templates,
you must add several attributes to your option definitions.

‘doc’ First, every flag definition other than “documentation” definitions, must have
a doc attribute defined. If the option takes an argument, then it will need an
arg-name attribute as well. The doc text should be in plain sentences with
minimal formatting. The Texinfo commands @code, and @var will have its
enclosed text made into \fB entries in the man page, and the @file text will
be made into \fI entries. The arg-name attribute is used to display the option’s
argument in the man page.
Options marked with the “documentation” attribute are for documenting the
usage text. All other options should have the “doc” attribute in order to doc-
ument the usage of the option in the generated man pages.

‘arg-name’
If an option has an argument, the argument should have a name for documen-
tation purposes. It will default to arg-type, but it will likely be clearer with
something else like, file-name instead of string (the type).

‘prog-man-descrip’
‘prog-info-descrip’

Then, you need to supply a brief description of what your program does. If
you already have a detail definition, this may be sufficient. If not, or if you
need special formatting for one of the manual formats, then you will need ei-
ther a definition for prog-man-descrip or prog-info-descrip or both. These
will be inserted verbatim in the man page document and the info document,
respectively.

‘man-doc’ Finally, if you need to add man page sections like SEE ALSO or USAGE or other,
put that text in a man-doc definition. This text will be inserted verbatim in
the man page after the OPTIONS section and before the AUTHOR section.

7.3.6 Automatically Supported Options

AutoOpts provides automated support for five options. help and more-help are al-
ways provided. version is provided if version is defined in the option definitions See
Section 7.3.1 [program attributes], page 71. save-opts and load-opts are provided if at
least one homerc is defined See Section 7.3.1 [program attributes], page 71.

Below are the option names and flag values. The flags are activated if and only if at
least one user-defined option also uses a flag value. These flags may be deleted or changed
to characters of your choosing by specifying xxx-value = "y";, where xxx is one of the five

Chapter 7: Automated Option Processing 82

names below and y is either empty or the character of your choice. For example, to change
the help flag from ? to h, specify help-value = "h";; and to require that save-opts be
specified only with its long option name, specify save-opts-value = "";.

‘help -?’ This option will immediately invoke the USAGE() procedure and display the
usage line, a description of each option with its description and option usage
information. This is followed by the contents of the definition of the detail
text macro.

‘more-help -!’
This option is identical to the help option, except that it also includes the
contents of the detail-file file (if provided and found), plus the output is
passed through a pager program. (more by default, or the program identified
by the PAGER environment variable.)

‘version -v’
This will print the program name, title and version. If it is followed by the
letter c and a value for copyright and owner have been provided, then the
copyright will be printed, too. If it is followed by the letter n, then the full
copyright notice (if available) will be printed.

‘save-opts ->’
This option will cause the option state to be printed in RC/INI file format when
option processing is done but not yet verified for consistency. The program will
terminate successfully without running when this has completed. Note that for
most shells you will have to quote or escape the flag character to restrict special
meanings to the shell.

The output file will be the RC/INI file name (default or provided by rcfile)
in the last directory named in a homerc definition.

This option may be set from within your program by invoking the "SET_OPT_
SAVE_OPTS(filename)" macro (see Section 7.4.16 [SET OPT name], page 88).
Invoking this macro will set the file name for saving the option processing state,
but the state will not actually be saved. You must call optionSaveFile to do
that (see Section 7.4.28.5 [libopts-optionSaveFile], page 93). CAVEAT: if, after
invoking this macro, you call optionProcess, the option processing state will
be saved to this file and optionProcess will not return. You may wish to
invoke CLEAR_OPT(SAVE_OPTS) (see Section 7.4.2 [CLEAR OPT], page 86)
beforehand.

‘load-opts -<’
This option will load options from the named file. They will be treated exactly
as if they were loaded from the normally found RC/INI files, but will not be
loaded until the option is actually processed. This can also be used within an
RC/INI file causing them to nest.

It is ultimately intended that specifying the option, no-load-opts will suppress
the processing of rc/ini files and environment variables. To do this, AutoOpts
must first implement pre-scanning of the options, environment and rc files.

Chapter 7: Automated Option Processing 83

7.3.7 Library of Standard Options

AutoOpts has developed a set of standardized options. You may incorporate these
options in your program simply by first adding a #define for the options you want, and
then the line,

#include stdoptions.def

in your option definitions. The supported options are specified thus:
#define DEBUG
#define DIRECTORY
#define DRY_RUN
#define INPUT
#define INTERACTIVE
#define OUTPUT
#define WARN

#define SILENT
#define QUIET
#define BRIEF
#define VERBOSE

By default, only the long form of the option will be available. To specify the short (flag)
form, suffix these names with _FLAG. e.g.,

#define DEBUG_FLAG

--silent, --quiet, --brief and --verbose are related in that they all indicate some
level of diagnostic output. These options are all designed to conflict with each other.
Instead of four different options, however, several levels can be incorporated by #define-
ing VERBOSE_ENUM. In conjunction with VERBOSE, it incorporates the notion of 5 levels in
an enumeration: silent, quiet, brief, informative and verbose; with the default being
brief.

Here is an example program that uses the following set of definitions:
AutoGen Definitions options;

prog-name = default-test;
prog-title = ’Default Option Example’;
homerc = ’$$/../share/default-test’, ’$HOME’, ’.’;
environrc;
test-main = yes;
long-opts;
gnu-usage;
version = ’1.0’;
#define DEBUG_FLAG
#define WARN_FLAG
#define WARN_LEVEL
#define VERBOSE_FLAG
#define VERBOSE_ENUM
#define DRY_RUN_FLAG
#define OUTPUT_FLAG
#define INPUT_FLAG

Chapter 7: Automated Option Processing 84

#define DIRECTORY_FLAG
#define INTERACTIVE_FLAG
#include stdoptions.def

Running a few simple commands on that definition file:
autogen default-test.def
copts="-DTEST_DEFAULT_TEST_OPTS -I${prefix}/include"
lopts="-L${prefix}/lib -lopts -lm"
cc -o default-test ${copts} default-test.c ${lopts}

Yields a program which, when run with ‘--help’, prints out:

7.4 Programmatic Interface

The user interface for access to the argument information is completely defined in the
generated header file and in the portions of the distributed file "options.h" that are marked
"public".

In the following macros, text marked <NAME> or name is the name of the option in upper
case and segmented with underscores _. The macros and enumerations defined in the
options header (interface) file are used as follows:

To see how these #define macros are used in a program, the reader is referred to the
several ‘opts.h’ files included with the AutoGen sources.

7.4.1 Data for Option Processing

This section describes the data that may be accessed from within the option processing
callback routines. The following fields may be used in the following ways and may be used
for read only. The first set is addressed from the tOptDesc* pointer:

‘optIndex’
‘optValue’

These may be used by option procedures to determine which option they are
working on (in case they handle several options).

‘optActualIndex’
‘optActualValue’

These may be used by option procedures to determine which option was used
to set the current option. This may be different from the above if the options
are members of an equivalence class.

‘optOccCt’
If AutoOpts is processing command line arguments, then this value will contain
the current occurrence count. During the option preset phase (reading rc/ini
files and examining environment variables), the value is zero.

‘fOptState’
The field may be tested for the following bit values (prefix each name with
OPTST_, e.g. OPTST_INIT):

‘INIT’ Initial compiled value. As a bit test, it will always yield FALSE.

Chapter 7: Automated Option Processing 85

‘SET’ The option was set via the SET_OPT() macro.

‘PRESET’ The option was set via an RC/INI file, or a call to the
optionLoadLine() routine.

‘DEFINED’ The option was set via a command line option.

‘SET_MASK’
This is a mask of flags that show the set state, one of the above
four values.

‘EQUIVALENCE’
This bit is set when the option was selected by an equivalenced
option.

‘DISABLED’
This bit is set if the option is to be disabled. (Meaning it was a
long option prefixed by the disablement prefix, or the option has
not been specified yet and initializes as disabled.)

As an example of how this might be used, in AutoGen I want to allow template
writers to specify that the template output can be left in a writable or read-
only state. To support this, there is a Guile function named set-writable
(see Section 3.4.33 [SCM set-writable], page 29). Also, I provide for command
options --writable and --not-writable. I give precedence to command line
and RC file options, thus:

switch (STATE_OPT(WRITABLE)) {
case OPTST_DEFINED:
case OPTST_PRESET:

fprintf(stderr, zOverrideWarn, pCurTemplate->pzFileName,
pCurMacro->lineNo);

break;

default:
if (gh_boolean_p(set) && (set == SCM_BOOL_F))

CLEAR_OPT(WRITABLE);
else

SET_OPT_WRITABLE;
}

‘pzLastArg’
Pointer to the latest argument string. BEWARE If the argument type is nu-
meric or an enumeration, then this will be the argument value and not a pointer
to a string.

The following two fields are addressed from the tOptions* pointer:

‘pzProgName’
Points to a NUL-terminated string containing the current program name, as
retrieved from the argument vector.

‘pzProgPath’
Points to a NUL-terminated string containing the full path of the current pro-
gram, as retrieved from the argument vector. (If available on your system.)

Chapter 7: Automated Option Processing 86

Note these fields get filled in during the first call to optionProcess(). All other fields
are private, for the exclusive use of AutoOpts code and is subject to change.

7.4.2 CLEAR OPT(<NAME>) - Clear Option Markings

Make as if the option had never been specified. HAVE_OPT(<NAME>) will yield FALSE after
invoking this macro.

7.4.3 COUNT OPT(<NAME>) - Definition Count

This macro will tell you how many times the option was specified on the command line.
It does not include counts of preset options.

if (COUNT_OPT(NAME) != desired-count) {
make-an-undesirable-message.

}

7.4.4 DESC(<NAME>) - Option Descriptor

This macro is used internally by other AutoOpt macros. It is not for general use. It is
used to obtain the option description corresponding to its UPPER CASED option name
argument. This is primarily used in other macro definitions.

7.4.5 DISABLE OPT name - Disable an option

This macro is emitted if it is both settable and it can be disabled. If it cannot be
disabled, it may always be CLEAR-ed (see above).

The form of the macro will actually depend on whether the option is equivalenced to
another, and/or has an assigned handler procedure. Unlike the SET_OPT macro, this macro
does not allow an option argument.

DISABLE_OPT_NAME;

7.4.6 ENABLED OPT(<NAME>) - Is Option Enabled?

Yields true if the option defaults to disabled and ISUNUSED_OPT() would yield true. It
also yields true if the option has been specified with a disablement prefix, disablement value
or the DISABLE_OPT_NAME macro was invoked.

7.4.7 ERRSKIP OPTERR - Ignore Option Errors

When it is necessary to continue (return to caller) on option errors, invoke this option.
It is reversible. See Section 7.4.8 [ERRSTOP OPTERR], page 86.

7.4.8 ERRSTOP OPTERR - Stop on Errors

After invoking this macro, if optionProcess() encounters an error, it will call
exit(1) rather than return. This is the default processing mode. It can be overridden by
specifying allow-errors in the definitions file, or invoking the macro See Section 7.4.7
[ERRSKIP OPTERR], page 86.

Chapter 7: Automated Option Processing 87

7.4.9 HAVE OPT(<NAME>) - Have this option?

This macro yields true if the option has been specified in any fashion at all. It is used
thus:

if (HAVE_OPT(NAME)) {
<do-things-associated-with-opt-name>;

}

7.4.10 ISSEL OPT(<NAME>) - Is Option Selected?

This macro yields true if the option has been specified either on the command line or
via a SET/DISABLE macro.

7.4.11 ISUNUSED OPT(<NAME>) - Never Specified?

This macro yields true if the option has never been specified, or has been cleared via the
CLEAR_OPT() macro.

7.4.12 OPTION CT - Full Count of Options

The full count of all options, both those defined and those generated automatically by
AutoOpts. This is primarily used to initialize the program option descriptor structure.

7.4.13 OPT ARG(<NAME>) - Option Argument String

The option argument value as a pointer to string. Note that argument values that have
been specified as numbers are stored as numbers or keywords. For such options, use instead
the OPT_VALUE_name define. It is used thus:

if (HAVE_OPT(NAME)) {
char* p = OPT_ARG(NAME);
<do-things-with-opt-name-argument-string>;

}

7.4.14 OPT VALUE name - Option Argument Value

This macro gets emitted only for options that take numeric or keyword arguments. The
macro yields a word-sized integer containing the enumeration or numeric value of the option
argument.

int opt_val = OPT_VALUE_NAME;

7.4.15 RESTART OPT(n) - Resume Option Processing

If option processing has stopped (either because of an error or something was encountered
that looked like a program argument), it can be resumed by providing this macro with the
index n of the next option to process and calling optionProcess() again.

Chapter 7: Automated Option Processing 88

7.4.16 SET OPT name - Force an option to be set

This macro gets emitted only when the given option has the settable attribute specified.
The form of the macro will actually depend on whether the option is equivalenced to

another, has an option argument and/or has an assigned handler procedure. If the option
has an argument, then this macro will too. Beware that the argument is not reallocated, so
the value must not be on the stack or deallocated in any other way for as long as the value
might get referenced.

If you have supplied at least one ‘homerc’ file (see Section 7.3.1 [program attributes],
page 71), this macro will be emitted for the --save-opts option.

SET_OPT_SAVE_OPTS("filename");

See Section 7.3.6 [automatic options], page 81, for a discussion of the implications of using
this particular example.

7.4.17 STACKCT OPT(<NAME>) - Stacked Arg Count

When the option handling attribute is specified as stack_arg, this macro may be used
to determine how many of them actually got stacked.

Do not use this on options that have not been stacked or has not been specified (the
stack_arg attribute must have been specified, and HAVE_OPT(<NAME>) must yield TRUE).
Otherwise, you will likely seg fault.

if (HAVE_OPT(NAME)) {
int ct = STACKCT_OPT(NAME);
char** pp = STACKLST_OPT(NAME);

do {
char* p = *pp++;
do-things-with-p;

} while (--ct > 0);
}

7.4.18 STACKLST OPT(<NAME>) - Argument Stack

The address of the list of pointers to the option arguments. The pointers are ordered by
the order in which they were encountered in the option presets and command line processing.

Do not use this on options that have not been stacked or has not been specified (the
stack_arg attribute must have been specified, and HAVE_OPT(<OPTION>) must yield
TRUE). Otherwise, you will likely seg fault.

if (HAVE_OPT(NAME)) {
int ct = STACKCT_OPT(NAME);
char** pp = STACKLST_OPT(NAME);

do {
char* p = *pp++;
do-things-with-p;

} while (--ct > 0);
}

Chapter 7: Automated Option Processing 89

7.4.19 START OPT - Restart Option Processing

This is just a shortcut for RESTART OPT(1) (See Section 7.4.15 [RESTART OPT],
page 87.)

7.4.20 STATE OPT(<NAME>) - Option State

If you need to know if an option was set because of presetting actions (RC/INI processing
or environment variables), versus a command line entry versus one of the SET/DISABLE
macros, then use this macro. It will yield one of four values: OPTST_INIT, OPTST_SET,
OPTST_PRESET or OPTST_DEFINED. It is used thus:

switch (STATE_OPT(NAME)) {
case OPTST_INIT:

not-preset, set or on the command line. (unless CLEAR-ed)

case OPTST_SET:
option set via the SET_OPT_NAME() macro.

case OPTST_PRESET:
option set via an RC/INI file or environment variable

case OPTST_DEFINED:
option set via a command line option.

default:
cannot happen :)

}

7.4.21 USAGE(exit-code) - Usage invocation macro

This macro invokes the procedure registered to display the usage text. Normally, this
will be optionUsage from the AutoOpts library, but you may select another procedure
by specifying usage = "proc_name" program attribute. This procedure must take two ar-
guments first, a pointer to the option descriptor, and second the exit code. The macro
supplies the option descriptor automatically. This routine is expected to call exit(3) with
the provided exit code.

The optionUsage routine also behaves differently depending on the exit code. If the
exit code is zero, it is assumed that assistance has been requested. Consequently, a little
more information is provided than when displaying usage and exiting with a non-zero exit
code.

7.4.22 VALUE OPT name - Option Flag Value

This is a #define for the flag character used to specify an option on the command
line. If value was not specified for the option, then it is a unique number associated with
the option. option value refers to this value, option argument refers to the (optional)
argument to the option.

Chapter 7: Automated Option Processing 90

switch (WHICH_OPT_OTHER_OPT) {
case VALUE_OPT_NAME:

this-option-was-really-opt-name;
case VALUE_OPT_OTHER_OPT:

this-option-was-really-other-opt;
}

7.4.23 VERSION - Version and Full Version

If the version attribute is defined for the program, then a stringified version
will be #defined as PROGRAM VERSION and PROGRAM FULL VERSION.
PROGRAM FULL VERSION is used for printing the program version in response to the
version option. The version option is automatically supplied in response to this attribute,
too.

You may access PROGRAM VERSION via programOptions.pzFullVersion.

7.4.24 WHICH IDX name - Which Equivalenced Index

This macro gets emitted only for equivalenced-to options. It is used to obtain the index
for the one of the several equivalence class members set the equivalenced-to option.

switch (WHICH_IDX_OTHER_OPT) {
case INDEX_OPT_NAME:

this-option-was-really-opt-name;
case INDEX_OPT_OTHER_OPT:

this-option-was-really-other-opt;
}

7.4.25 WHICH OPT name - Which Equivalenced Option

This macro gets emitted only for equivalenced-to options. It is used to obtain the value
code for the one of the several equivalence class members set the equivalenced-to option.

switch (WHICH_OPT_OTHER_OPT) {
case VALUE_OPT_NAME:

this-option-was-really-opt-name;
case VALUE_OPT_OTHER_OPT:

this-option-was-really-other-opt;
}

7.4.26 teOptIndex - Option Index and Enumeration

This enum defines the complete set of options, both user specified and automatically
provided. This can be used, for example, to distinguish which of the equivalenced options
was actually used.

switch (pOptDesc->optActualIndex) {
case INDEX_OPT_FIRST:

stuff;
case INDEX_OPT_DIFFERENT:

different-stuff;

Chapter 7: Automated Option Processing 91

default:
unknown-things;

}

7.4.27 OPTIONS STRUCT VERSION - active version

You will not actually need to reference this value, but you need to be aware that it is
there. It is the first value in the option descriptor that you pass to optionProcess. It
contains a magic number and version information. Normally, you should be able to work
with a more recent option library than the one you compiled with. However, if the library
is changed incompatibly, then the library will detect the out of date magic marker, explain
the difficulty and exit. You will then need to rebuild and recompile your option definitions.
This has rarely been necessary.

7.4.28 libopts External Procedures

These are the routines that libopts users may call directly from their code. There are
several other routines that can be called by code generated by the libopts option templates,
but they are not to be called from any other user code. The ‘options.h’ is fairly clear
about this, too.

This subsection was automatically generated by AutoGen using extracted information
and the aginfo3.tpl template.

7.4.28.1 optionFree

free allocated option processing memory
Usage:

optionFree(pOpts);

Where the arguments are:
Name Type Description
—– —– ————-
pOpts tOptions* program options descriptor

AutoOpts sometimes allocates memory and puts pointers to it in the option state struc-
tures. This routine deallocates all such memory.

As long as memory has not been corrupted, this routine is always successful.

7.4.28.2 optionLoadLine

process a string for an option name and value
Usage:

optionLoadLine(pOpts, pzLine);

Where the arguments are:
Name Type Description
—– —– ————-
pOpts tOptions* program options descriptor

Chapter 7: Automated Option Processing 92

pzLine const char* NUL-terminated text
This is a user callable routine for setting options from, for example, the contents of a file

that they read in. Only one option may appear in the text. It will be treated as a normal
(non-preset) option.

When passed a pointer to the option struct and a string, it will find the option named
by the first token on the string and set the option argument to the remainder of the string.
The caller must NUL terminate the string. Any embedded new lines will be included in the
option argument.

Invalid options are silently ignored. Invalid option arguments will cause a warning to
print, but the function should return.

7.4.28.3 optionProcess

this is the main option processing routine
Usage:

int res = optionProcess(pOpts, argc, argv);

Where the arguments are:
Name Type Description
—– —– ————-
pOpts tOptions* program options descriptor

argc int program arg count

argv char** program arg vector
returns int the count of the arguments processed

This is the main entry point for processing options. It is intended that this procedure
be called once at the beginning of the execution of a program. Depending on options
selected earlier, it is sometimes necessary to stop and restart option processing, or to select
completely different sets of options. This can be done easily, but you generally do not want
to do this.

The number of arguments processed always includes the program name. If one of the
arguments is "–", then it is counted and the processing stops. If an error was encountered
and errors are to be tolerated, then the returned value is the index of the argument causing
the error.

Errors will cause diagnostics to be printed. exit(3) may or may not be called. It
depends upon whether or not the options were generated with the "allow-errors" attribute,
or if the ERRSKIP OPTERR or ERRSTOP OPTERR macros were invoked.

7.4.28.4 optionRestore

restore option state from memory copy
Usage:

optionRestore(pOpts);

Where the arguments are:
Name Type Description

Chapter 7: Automated Option Processing 93

—– —– ————-
pOpts tOptions* program options descriptor

Copy back the option state from saved memory. The allocated memory is left intact, so
this routine can be called repeatedly without having to call optionSaveState again.

If you have not called optionSaveState before, a diagnostic is printed to stderr and
exit is called.

7.4.28.5 optionSaveFile

saves the option state to a file
Usage:

optionSaveFile(pOpts);

Where the arguments are:
Name Type Description
—– —– ————-
pOpts tOptions* program options descriptor

This routine will save the state of option processing to a file. The name of that file can
be specified with the argument to the --save-opts option, or by appending the rcfile
attribute to the last homerc attribute. If no rcfile attribute was specified, it will default
to .programnamerc. If you wish to specify another file, you should invoke the SET_OPT_
SAVE_OPTS(filename) macro.

If no homerc file was specified, this routine will silently return and do nothing. If the
output file cannot be created or updated, a message will be printed to stderr and the
routine will return.

7.4.28.6 optionSaveState

saves the option state to memory
Usage:

optionSaveState(pOpts);

Where the arguments are:
Name Type Description
—– —– ————-
pOpts tOptions* program options descriptor

This routine will allocate enough memory to save the current option processing state.
If this routine has been called before, that memory will be reused. You may only save one
copy of the option state. This routine may be called before optionProcess(3).

If it fails to allocate the memory, it will print a message to stderr and exit. Otherwise,
it will always succeed.

7.4.28.7 optionVersion

return the compiled AutoOpts version number
Usage:

Chapter 7: Automated Option Processing 94

const char* res = optionVersion();

Where the arguments are:
Name Type Description
—– —– ————-
returns const char* the version string in constant memory

Returns the full version string compiled into the library. The returned string cannot be
modified.

7.5 Option Descriptor File

This is the module that is to be compiled and linked with your program. It contains
internal data and procedures subject to change. Basically, it contains a single global data
structure containing all the information provided in the option definitions, plus a number
of static strings and any callout procedures that are specified or required. You should
never have need for looking at this, except, perhaps, to examine the code generated for
implementing the flag_code construct.

7.6 Using AutoOpts

There are actually several levels of “using” autoopts. Which you choose depends upon
how you plan to distribute (or not) your application.

7.6.1 local-only use

To use AutoOpts in your application where you do not have to worry about distribution
issues, your issues are simple and few.
• Create a file ‘myopts.def’, according to the documentation above. It is probably easiest

to start with the example in Section 7.2 [Quick Start], page 69 and edit it into the form
you need.

• Run AutoGen to create the option interface file (myopts.h) and the option descriptor
code (myopts.c):

autogen myopts.def

• In all your source files where you need to refer to option state, #include "myopts.h".
• In your main routine, code something along the lines of:

#define ARGC_MIN some-lower-limit
#define ARGC_MAX some-upper-limit
main(int argc, char** argv)
{

{
int arg_ct = optionProcess(&myprogOptions, argc, argv);
argc -= arg_ct;
if ((argc < ARGC_MIN) || (argc > ARGC_MAX)) {

fprintf(stderr, "%s ERROR: remaining args (%d) "
"out of range\n", myprogOptions.pzProgName,
argc);

Chapter 7: Automated Option Processing 95

USAGE(EXIT_FAILURE);
}
argv += arg_ct;

}
if (HAVE_OPT(OPTN_NAME))

respond_to_optn_name();
...

}

• Compile ‘myopts.c’ and link your program with the following additional arguments:
myopts.c -I$prefix/include -L $prefix/lib -lopts

These values can be derived from the “autoopts-config” script:
myopts.c ‘autoopts-config cflags‘ ‘autoopts-config ldflags‘

7.6.2 binary distro, AutoOpts not installed

If you will be distributing (or copying) your project to a system that does not have
AutoOpts installed, you will need to statically link the AutoOpts library, “libopts” into
your program. Add the output from the following to your link command:

autoopts-config static-libs

7.6.3 binary distro, AutoOpts pre-installed

If you will be distributing (or copying) your project to a system that does have AutoOpts
installed, you will still need to ensure that the library is findable at program load time, or
you will still have to statically link. The former can be accomplished by linking your
project with --rpath or by setting the LD_LIBRARY_PATH appropriately. Otherwise, See
Section 7.6.2 [binary not installed], page 95.

7.6.4 source distro, AutoOpts pre-installed

If you will be distributing your project to a system that will build your product but it
may not be pre-installed with AutoOpts, you will need to do some configuration checking
before you start the build. Assuming you are willing to fail the build if AutoOpts has not
been installed, you will still need to do a little work.

AutoOpts is distributed with a configuration check M4 script, ‘autoopts.m4’. It will add
an autoconf macro named, AG_PATH_AUTOOPTS. Add this to your ‘configure.ac’ script
and use the following substitution values:

AUTOGEN the name of the autogen executable

AUTOGEN_TPLIB
the directory where AutoGen template library is stored

AUTOOPTS_CFLAGS
the compile time options needed to find the AutoOpts headers

AUTOOPTS_LIBS
the link options required to access the libopts library

Chapter 7: Automated Option Processing 96

7.6.5 source distro, AutoOpts not installed

If you will be distributing your project to a system that will build your product but it may
not be pre-installed with AutoOpts, you may wish to incorporate the sources for libopts
in your project. To do this, I recommend reading the tear-off libopts library ‘README’ that
you can find in the ‘pkg/libopts’ directory. You can also examine an example package
(blocksort) that incorporates this tear off library in the autogen distribution directory.
There is also a web page that describes what you need to do:

http://autogen.sourceforge.net/blocksort.html

7.7 AutoOpts for Shell Scripts

AutoOpts may be used with shell scripts by automatically creating a complete program
that will process command line options and pass back the results to the invoking shell by
issuing shell variable assignment commands. It may also be used to generate portable shell
code that can be inserted into your script.

The functionality of these features, of course, is somewhat constrained compared with
the normal program facilities. Specifically, you cannot invoke callout procedures with either
of these methods. Additionally, if you generate a shell script:
1. You cannot obtain options from RC/INI files.
2. You cannot obtain options from environment variables.
3. You cannot save the option state to an option file.
4. Option conflict/requirement verification is disabled.

Both of these methods are enabled by running AutoGen on the definitions file with the
additional global attribute:

test-main [= proc-to-call] ;

If you do not supply a proc-to-call, it will default to putBourneShell. That will
produce a program that will process the options and generate shell text for the invoking shell
to interpret. If you supply the name, putShellParse, then you will have a program that
will generate a shell script that can parse the options. If you supply a different procedure
name, you will have to provide that routine and it may do whatever you like.

In summary, you will need to issue approximately the following two commands to have
a working program:

autogen -L <opt-template-dir> program.def
cc -o progopts -L <opt-lib-dir> -I <opt-include-dir> \

-DTEST_program_OPTS program.c -lopts

The resulting program can be used within your shell script as follows:
eval ‘./progopts $@‘
if [-z "${OPTION_CT}"] ; then exit 1 ; fi
shift ${OPTION_CT}

If you had used test-main = putShellParse instead, then you can, at this point, merely
run the program and it will write the parsing script to standard out. You may also provide
this program with command line options to specify the shell script file to create or edit,
and you may specify the shell program to use on the first shell script line. That program’s
usage text would look something like this:

Chapter 7: Automated Option Processing 97

genshellopt - Generate Shell Option Processing Script - Ver. 1
USAGE: genshellopt [-<flag> [<val>] | --<name>[{=| }<val>]]...

Flg Arg Option-Name Description
-o Str script Output Script File
-s Str shell Shell name (follows "#!" magic)

- disabled as --no-shell
- enabled by default

-v opt version Output version information and exit
-? no help Display usage information and exit
-! no more-help Extended usage information passed thru pager

Options are specified by doubled hyphens and their name
or by a single hyphen and the flag character.

Note that ‘shell’ is only useful if the output file does not already
exist. If it does, then the shell name and optional first argument
will be extracted from the script file.

If the script file already exists and contains Automated Option Processing
text, the second line of the file through the ending tag will be replaced
by the newly generated text. The first ‘#!’ line will be regenerated.

please send bug reports to: autogen-bugs@lists.sf.net

= = = = = = = =

This incarnation of genshell will produce
a shell script to parse the options for getdefs:

getdefs - AutoGen Definition Extraction Tool - Ver. 1.4
USAGE: getdefs [<option-name>[{=| }<val>]]...

Arg Option-Name Description
Str defs-to-get Regexp to look for after the "/*="
opt ordering Alphabetize or use named file
Num first-index The first index to apply to groups
Str input Input file to search for defs
Str subblock subblock definition names
Str listattr attribute with list of values
opt filelist Insert source file names into defs
Str assign Global assignments
Str common-assign Assignments common to all blocks
Str copy File(s) to copy into definitions
opt srcfile Insert source file name into each def
opt linenum Insert source line number into each def
Str output Output file to open
opt autogen Invoke AutoGen with defs
Str template Template Name
Str agarg AutoGen Argument
Str base-name Base name for output file(s)

Chapter 7: Automated Option Processing 98

opt version Output version information and exit
no help Display usage information and exit
no more-help Extended usage information passed thru pager
opt save-opts Save the option state to an rc file
Str load-opts Load options from an rc file

All arguments are named options.

If no ‘‘input’’ argument is provided or is set to simply "-", and if
‘‘stdin’’ is not a ‘‘tty’’, then the list of input files will be
read from ‘‘stdin’’.

please send bug reports to: autogen-bugs@lists.sf.net

7.8 Automated Info Docs

AutoOpts provides two templates for producing ‘.texi’ documentation. ‘aginfo.tpl’
for the invoking section, and ‘aginfo3.tpl’ for describing exported library functions and
macros.

For both types of documents, the documentation level is selected by passing a
‘-DLEVEL=<level-name>’ argument to AutoGen when you build the document. (See the
example invocation below.)

Two files will be produced, a ‘.texi’ file and a ‘.menu’ file. You should include the
‘.menu’ file in your document where you wish to reference the ‘invoking’ chapter, section
or subsection.

The ‘.texi’ file will contain an introductory paragraph, a menu and a subordinate section
for the invocation usage and for each documented option. The introductory paragraph is
normally the boiler plate text, along the lines of:

This chapter documents the @file{AutoOpts} generated usage text
and option meanings for the @file{your-program} program.

or:
These are the publicly exported procedures from the libname library.
Any other functions mentioned in the header file are for the private use
of the library.

7.8.1 “invoking” info docs

Using the option definitions for an AutoOpt client program, the ‘aginfo.tpl’ template
will produce texinfo text that documents the invocation of your program. The text emitted
is designed to be included in the full texinfo document for your product. It is not a stand-
alone document. The usage text for the Section 5.1 [autogen usage], page 53, Section 8.5.1
[getdefs usage], page 107 and Section 8.4.1 [columns usage], page 103 programs, are included
in this document and are all generated using this template.

If your program’s option definitions include a ‘prog-info-descrip’ section, then that
text will replace the boilerplate introductory paragraph.
These files are produced by invoking the following command:

Chapter 7: Automated Option Processing 99

autogen -L ${prefix}/share/autogen -T aginfo.tpl \
-DLEVEL=section your-opts.def

Where ‘${prefix}’ is the AutoGen installation prefix and ‘your-opts.def’ is the name of
your product’s option definition file.

7.8.2 library info docs

The ‘texinfo’ doc for libraries is derived from mostly the same information as is used
for producing man pages See Section 7.9.2 [man3], page 100. The main difference is that
there is only one output file and the individual functions are referenced from a .texi menu.
There is also a small difference in the global attributes used:

lib description A description of the library. This text appears before the
menu. If not provided, the standard boilerplate version
will be inserted.

see also The SEE ALSO functionality is not supported for the
‘texinfo’ documentation, so any see_also attribute will
be ignored.

These files are produced by invoking the following commands:
getdefs linenum srcfile template=aginfo3.tpl output=libexport.def \

<source-file-list>

autogen -L ${prefix}/share/autogen -DLEVEL=section libexport.def

Where ‘${prefix}’ is the AutoGen installation prefix and ‘libexport.def’ is some name
that suits you.

An example of this can be seen in this document, See Section 7.4.28 [libopts procedures],
page 91.

7.9 Automated Man Pages

AutoOpts provides two templates for producing man pages. The command (‘man1’)
pages are derived from the options definition file, and the library (‘man3’) pages are derived
from stylized comments (see Section 8.5 [getdefs Invocation], page 106).

7.9.1 command line man pages

Using the option definitions for an AutoOpt client program, the ‘agman1.tpl’ template
will produce an nroff document suitable for use as a ‘man(1)’ page document for a command
line command. The description section of the document is either the ‘prog-man-descrip’
text, if present, or the ‘detail’ text.

Each option in the option definitions file is fully documented in its usage. This includes
all the information documented above for each option (see Section 7.3.4 [option attributes],
page 75), plus the ‘doc’ attribute is appended. Since the ‘doc’ text is presumed to be
designed for texinfo documentation, sed is used to convert some constructs from texi to
nroff-for-man-pages. Specifically,

convert @code, @var and @samp into \fB...\fP phrases
convert @file into \fI...\fP phrases

Chapter 7: Automated Option Processing 100

Remove the ’@’ prefix from curly braces
Indent example regions
Delete the example commands
Replace ‘end example’ command with ".br"
Replace the ‘@*’ command with ".br"

This document is produced by invoking the following command:
AutoGen -L ${prefix}/share/autogen -T agman1.tpl options.def

Where ‘${prefix}’ is the AutoGen installation prefix and ‘options.def’ is the name of
your product’s option definition file. I do not use this very much, so any feedback or
improvements would be greatly appreciated.

7.9.2 library man pages

Two global definitions are required, and then one library man page is produced for each
export_func definition that is found. It is generally convenient to place these definitions
as ‘getdefs’ comments (see Section 8.5 [getdefs Invocation], page 106) near the procedure
definition, but they may also be a separate AutoGen definitions file (see Chapter 2 [Defini-
tions File], page 6). Each function will be cross referenced with their sister functions in a
‘SEE ALSO’ section. A global see_also definition will be appended to this cross referencing
text.
The two global definitions required are:

library This is the name of your library, without the ‘lib’ prefix. The Au-
toOpts library is named ‘libopts.so...’, so the library attribute
would have the value opts.

header Generally, using a library with a compiled program entails
#include-ing a header file. Name that header with this attribute.
In the case of AutoOpts, it is generated and will vary based on the
name of the option definition file. Consequently, ‘your-opts.h’ is
specified.

The export_func definition should contain the following attributes:
name The name of the procedure the library user may call.
what A brief sentence describing what the procedure does.
doc A detailed description of what the procedure does. It may ramble

on for as long as necessary to properly describe it.
err A short description of how errors are handled.
ret type The data type returned by the procedure. Omit this for void

procedures.
ret desc Describe what the returned value is, if needed.
private If specified, the function will not be documented. This is used, for

example, to produce external declarations for functions that are not
available for public use, but are used in the generated text.

arg This is a compound attribute that contains:
arg type The data type of the argument.
arg name A short name for it.
arg desc A brief description.

As a ‘getdefs’ comment, this would appear something like this:

Chapter 7: Automated Option Processing 101

/*=--subblock=arg=arg_type,arg_name,arg_desc =*/
/*=*
* library: opts
* header: your-opts.h

=*/
/*=export_func optionProcess
*
* what: this is the main option processing routine
* arg: + tOptions* + pOpts + program options descriptor +
* arg: + int + argc + program arg count +
* arg: + char** + argv + program arg vector +
* ret_type: int
* ret_desc: the count of the arguments processed
*
* doc: This is what it does.
* err: When it can’t, it does this.

=*/

Note the subblock and library comments. subblock is an embedded ‘getdefs’ option
(see Section 8.5.6 [getdefs subblock], page 109) that tells it how to parse the arg attribute.
The library and header entries are global definitions that apply to all the documented
functions.

Chapter 8: Add-on packages for AutoGen 102

8 Add-on packages for AutoGen

This chapter includes several programs that either work closely with AutoGen (extracting
definitions or providing special formatting functions), or leverage off of AutoGen technology.
There is also a formatting library that helps make AutoGen possible.

AutoOpts ought to appear in this list as well, but since it is the primary reason why
many people would even look into AutoGen at all, I decided to leave it in the list of chapters.

8.1 Automated Finite State Machine

The templates to generate a finite state machine in C or C++ is included with AutoGen.
The documentation is not. The documentation is in HTML format for viewing, or you can
download FSM.

8.2 Combined RPC Marshalling

The templates and NFSv4 definitions are not included with AutoGen in any way. The
folks that designed NFSv4 noticed that much time and bandwidth was wasted sending
queries and responses when many of them could be bundled. The protocol bundles the
data, but there is no support for it in rpcgen. That means you have to write your own code
to do that. Until now. Download this and you will have a large, complex example of how
to use AutoXDR for generating the marshalling and unmarshalling of combined RPC calls.
There is a brief example on the web, but you should download AutoXDR.

8.3 Automated Event Management

Large software development projects invariably have a need to manage the distribution
and display of state information and state changes. In other words, they need to manage
their software events. Generally, each such project invents its own way of accomplishing
this and then struggles to get all of its components to play the same way. It is a difficult
process and not always completely successful. This project helps with that.

AutoEvents completely separates the tasks of supplying the data needed for a partic-
ular event from the methods used to manage the distribution and display of that event.
Consequently, the programmer writing the code no longer has to worry about that part
of the problem. Likewise the persons responsible for designing the event management and
distribution no longer have to worry about getting programmers to write conforming code.

This is a work in progress. See my web page on the subject, if you are interested. I have
some useful things put together, but it is not ready to call a product.

http://www.gnu.org/software/autogen/autofsm.html
http://download.sourceforge.net/autogen/
http://www.gnu.org/software/autogen/xdr/index.html
http://download.sourceforge.net/autogen/
http://www.gnu.org/software/autogen/autoevents.html

Chapter 8: Add-on packages for AutoGen 103

8.4 Invoking columns

This program was designed for the purpose of generating compact, columnized tables. It
will read a list of text items from standard in or a specified input file and produce a colum-
nized listing of all the non-blank lines. Leading white space on each line is preserved, but
trailing white space is stripped. Methods of applying per-entry and per-line embellishments
are provided. See the formatting and separation arguments below.

This program is used by AutoGen to help clean up and organize its output.
See ‘autogen/agen5/fsm.tpl’ and the generated output ‘pseudo-fsm.h’.
This function was not implemented as an expression function because either it would

have to be many expression functions, or a provision would have to be added to provide
options to expression functions. Maybe not a bad idea, but it is not being implemented at
the moment.

A side benefit is that you can use it outside of AutoGen to columnize input, a la the ls
command.

This section was generated by AutoGen, the aginfo template and the option descriptions
for the columns program. It documents the columns usage text and option meanings.

This software is released under the GNU General Public License.

8.4.1 columns usage help (-?)

This is the automatically generated usage text for columns:
columns - Columnize Input Text - Ver. 1.1
USAGE: columns [-<flag> [<val>] | --<name>[{=| }<val>]]...

Flg Arg Option-Name Description
-W Num width Maximum Line Width
-c Num columns Desired number of columns
-w Num col-width Set width of each column

Num spread maximum spread added to column width
-I Str indent Line prefix or indentation

Str first-indent First line prefix
- requires these options:
indent

Num tab-width tab width
-s opt sort Sort input text
-f Str format Formatting string for each input
-S Str separation Separation string - follows all but last

Str line-separation string at end of all lines but last
no by-columns Print entries in column order

-i Str input Input file (if not stdin)
-v opt version Output version information and exit
-? no help Display usage information and exit
-! no more-help Extended usage information passed thru pager

Options are specified by doubled hyphens and their name
or by a single hyphen and the flag character.

Chapter 8: Add-on packages for AutoGen 104

This program was designed for the purpose of generating compact,
columnized tables. It will read a list of text items from standard
in or a specified input file and produce a columnized listing of
all the non-blank lines. Leading white space on each line is
preserved, but trailing white space is stripped. Methods of
applying per-entry and per-line embellishments are provided.
See the formatting and separation arguments below.

This program is used by AutoGen to help clean up and organize
its output.

please send bug reports to: autogen-bugs@lists.sf.net

8.4.2 width option (-W)

This is the “maximum line width” option. This option specifies the full width of the
output line, including any start-of-line indentation. The output will fill each line as com-
pletely as possible, unless the column width has been explicitly specified. If the maximum
width is less than the length of the widest input, you will get a single column of output.

8.4.3 columns option (-c)

This is the “desired number of columns” option. Use this option to specify exactly how
many columns to produce. If that many columns will not fit within line width, then the
count will be reduced to the number that fit.

8.4.4 col-width option (-w)

This is the “set width of each column” option. Use this option to specify exactly how
many characters are to be allocated for each column. If it is narrower than the widest entry,
it will be over-ridden with the required width.

8.4.5 spread option

This is the “maximum spread added to column width” option. Use this option to specify
exactly how many characters may be added to each column. It allows you to prevent columns
from becoming too far apart.

8.4.6 indent option (-I)

This is the “line prefix or indentation” option. If a number, then this many spaces will
be inserted at the start of every line. Otherwise, it is a line prefix that will be inserted at
the start of every line.

8.4.7 first-indent option

This is the “first line prefix” option.
This option has some usage constraints. It:

Chapter 8: Add-on packages for AutoGen 105

• must appear in combination with the following options: indent.

If a number, then this many spaces will be inserted at the start of the first line. Other-
wise, it is a line prefix that will be inserted at the start of that line.

8.4.8 tab-width option

This is the “tab width” option. If an indentation string contains tabs, then this value is
used to compute the ending column of the prefix string.

8.4.9 sort option (-s)

This is the “sort input text” option. Causes the input text to be sorted. If an argument
is supplied, it is presumed to be a pattern and the sort is based upon the matched text. If
the pattern starts with or consists of an asterisk (*), then the sort is case insensitive.

8.4.10 format option (-f)

This is the “formatting string for each input” option. If you need to reformat each input
text, the argument to this option is interpreted as an sprintf(3) format that is used to
produce each output entry.

8.4.11 separation option (-S)

This is the “separation string - follows all but last” option. Use this option if, for
example, you wish a comma to appear after each entry except the last.

8.4.12 line-separation option

This is the “string at end of all lines but last” option. Use this option if, for example,
you wish a backslash to appear at the end of every line, except the last.

8.4.13 by-columns option

This is the “print entries in column order” option. Normally, the entries are printed out
in order by rows and then columns. This option will cause the entries to be ordered within
columns. The final column, instead of the final row, may be shorter than the others.

8.4.14 input option (-i)

This is the “input file (if not stdin)” option. This program normally runs as a filter,
reading from standard input, columnizing and writing to standard out. This option redirects
input to a file.

Chapter 8: Add-on packages for AutoGen 106

8.5 Invoking getdefs

If no input argument is provided or is set to simply "-", and if stdin is not a tty, then
the list of input files will be read from stdin. This program extracts AutoGen definitions
from a list of source files. Definitions are delimited by ‘/*=<entry-type> <entry-name>\n’
and ‘=*/\n’. From that, this program creates a definition of the following form:

#line nnn "source-file-name"
entry type = {

name = entry name;
...

};

The ellipsis “...” is filled in by text found between the two delimiters, using the following
rules:

1. Each entry is located by the pattern "\n[^*\n]**[\t]*([a-z][a-z0-9]*):". Fundamen-
tally, it finds a line that, after the first asterisk on the line, contains whitespace then
a name and is immediately followed by a colon. The name becomes the name of the
attribute and what follows, up to the next attribute, is its value.

2. If the first character of the value is either a single or double quote, then you are
responsible for quoting the text as it gets inserted into the output definitions.

3. All the leading text on a line is stripped from the value. The leading text is everything
before the first asterisk, the asterisk and all the whitespace characters that immediately
follow it. If you want whitespace at the beginnings of the lines of text, you must do
something like this:

* mumble:
* " this is some\n"
* " indented text."

4. If the ‘<entry-name>’ is followed by a comma, the word ‘ifdef’ (or ’ifndef’) and a name
‘if name’, then the above entry will appear as:

#ifdef if_name
#line nnn "source-file-name"
entry_type = {

name = entry_name;
...

};
#endif

5. If you use of the subblock option, you can specify a nested value, See Section 8.5.6
[getdefs subblock], page 109. That is, this text:

* arg: int, this, what-it-is

with the ‘–subblock=arg=type,name,doc’ option would yield:
arg = { type = int; name = this; doc = what-it-is; };

This section was generated by AutoGen, the aginfo template and the option descriptions
for the getdefs program. It documents the getdefs usage text and option meanings.

This software is released under the GNU General Public License.

Chapter 8: Add-on packages for AutoGen 107

8.5.1 getdefs usage help

This is the automatically generated usage text for getdefs:

getdefs - AutoGen Definition Extraction Tool - Ver. 1.4
USAGE: getdefs [<option-name>[{=| }<val>]]...

Arg Option-Name Description
Str defs-to-get Regexp to look for after the "/*="
opt ordering Alphabetize or use named file

- disabled as --no-ordering
- enabled by default

Num first-index The first index to apply to groups
Str input Input file to search for defs

- may appear multiple times
- default option for unnamed options

Str subblock subblock definition names
- may appear multiple times

Str listattr attribute with list of values
- may appear multiple times

opt filelist Insert source file names into defs

Definition insertion options

Arg Option-Name Description
Str assign Global assignments

- may appear multiple times
Str common-assign Assignments common to all blocks

- may appear multiple times
Str copy File(s) to copy into definitions

- may appear multiple times
opt srcfile Insert source file name into each def
opt linenum Insert source line number into each def

Definition output disposition options:

Arg Option-Name Description
Str output Output file to open

- an alternate for autogen
opt autogen Invoke AutoGen with defs

- disabled as --no-autogen
- enabled by default

Str template Template Name
Str agarg AutoGen Argument

- prohibits these options:
output
- may appear multiple times

Str base-name Base name for output file(s)
- prohibits these options:
output

Chapter 8: Add-on packages for AutoGen 108

Auto-supported Options:

Arg Option-Name Description
opt version Output version information and exit
no help Display usage information and exit
no more-help Extended usage information passed thru pager
opt save-opts Save the option state to an rc file
Str load-opts Load options from an rc file

- disabled as --no-load-opts
- may appear multiple times

All arguments are named options.

If no ‘‘input’’ argument is provided or is set to simply "-", and if
‘‘stdin’’ is not a ‘‘tty’’, then the list of input files will be
read from ‘‘stdin’’.

The following option preset mechanisms are supported:
- reading file /dev/null

This program extracts AutoGen definitions from a list of source files.
Definitions are delimited by ‘/*=<entry-type> <entry-name>\n’ and
‘=*/\n’. From that, this program creates a definition of the
following form:

#line nnn "source-file-name"
entry_type = {

name = entry_name;
...

};

The ellipsis ’...’ is filled in by text found between the two
delimiters, with everything up through the first sequence of
asterisks deleted on every line.

There are two special ‘‘entry types’’:

* The entry_type enclosure and the name entry will be omitted
and the ellipsis will become top-level definitions.

-- The contents of the comment must be a single getdefs option.
The option name must follow the double hyphen and its argument
will be everything following the name. This is intended for use
with the ‘‘subblock’’ and ‘‘listattr’’ options.

please send bug reports to: autogen-bugs@lists.sf.net

Chapter 8: Add-on packages for AutoGen 109

8.5.2 defs-to-get option

This is the “regexp to look for after the "/*="” option. If you want definitions only
from a particular category, or even with names matching particular patterns, then specify
this regular expression for the text that must follow the /*=.

8.5.3 ordering option

This is the “alphabetize or use named file” option.

This option has some usage constraints. It:

• is enabled by default.

By default, ordering is alphabetical by the entry name. Use, no-ordering if order
is unimportant. Use ordering with no argument to order without case sensitivity. Use
ordering=<file-name> if chronological order is important. getdefs will maintain the text
content of file-name. file-name need not exist.

8.5.4 first-index option

This is the “the first index to apply to groups” option. By default, the first occurrance
of a named definition will have an index of zero. Sometimes, that needs to be a reserved
value. Provide this option to specify a different starting point.

8.5.5 input option

This is the “input file to search for defs” option.

This option has some usage constraints. It:

• may appear an unlimited number of times.

All files that are to be searched for definitions must be named on the command line or
read from stdin. If there is only one input option and it is the string, "-", then the input
file list is read from stdin. If a command line argument is not an option name and does
not contain an assignment operator (=), then it defaults to being an input file name. At
least one input file must be specified.

8.5.6 subblock option

This is the “subblock definition names” option.

This option has some usage constraints. It:

• may appear an unlimited number of times.

This option is used to create shorthand entries for nested definitions. For example, with:

using subblock thus
--subblock=arg=argname,type,null

and defining an arg thus
arg: this, char *

Chapter 8: Add-on packages for AutoGen 110

will then expand to:
arg = { argname = this; type = "char *"; };

The "this, char *" string is separated at the commas, with the white space removed.
You may use characters other than commas by starting the value string with a punctuation
character other than a single or double quote character. You may also omit intermediate
values by placing the commas next to each other with no intervening white space. For
example, "+mumble++yes+" will expand to:
arg = { argname = mumble; null = "yes"; };.

8.5.7 listattr option

This is the “attribute with list of values” option.
This option has some usage constraints. It:
• may appear an unlimited number of times.

This option is used to create shorthand entries for definitions that generally appear
several times. That is, they tend to be a list of values. For example, with:
listattr=foo defined, the text:
foo: this, is, a, multi-list will then expand to:
foo = ’this’, ’is’, ’a’, ’multi-list’;
The texts are separated by the commas, with the white space removed. You may use
characters other than commas by starting the value string with a punctuation character
other than a single or double quote character.

8.5.8 filelist option

This is the “insert source file names into defs” option. Inserts the name of each input
file into the output definitions. If no argument is supplied, the format will be:

infile = ’%s’;

If an argument is supplied, that string will be used for the entry name instead of infile.

8.5.9 assign option

This is the “global assignments” option.
This option has some usage constraints. It:
• may appear an unlimited number of times.

The argument to each copy of this option will be inserted into the output definitions,
with only a semicolon attached.

8.5.10 common-assign option

This is the “assignments common to all blocks” option.
This option has some usage constraints. It:
• may appear an unlimited number of times.

The argument to each copy of this option will be inserted into each output definition,
with only a semicolon attached.

Chapter 8: Add-on packages for AutoGen 111

8.5.11 copy option

This is the “file(s) to copy into definitions” option.
This option has some usage constraints. It:
• may appear an unlimited number of times.

The content of each file named by these options will be inserted into the output defini-
tions.

8.5.12 srcfile option

This is the “insert source file name into each def” option. Inserts the name of the input
file where a definition was found into the output definition. If no argument is supplied, the
format will be:

srcfile = ’%s’;

If an argument is supplied, that string will be used for the entry name instead of srcfile.

8.5.13 linenum option

This is the “insert source line number into each def” option. Inserts the line number
in the input file where a definition was found into the output definition. If no argument is
supplied, the format will be:

linenum = ’%s’;

If an argument is supplied, that string will be used for the entry name instead of linenum.

8.5.14 output option

This is the “output file to open” option.
This option has some usage constraints. It:
• is a member of the autogen class of options.

If you are not sending the output to an AutoGen process, you may name an output file
instead.

8.5.15 autogen option

This is the “invoke autogen with defs” option.
This option has some usage constraints. It:
• is enabled by default.
• is a member of the autogen class of options.

This is the default output mode. Specifying no-autogen is equivalent to output=-. If
you supply an argument to this option, that program will be started as if it were AutoGen
and its standard in will be set to the output definitions of this program.

8.5.16 template option

This is the “template name” option. Specifies the template name to be used for gener-
ating the final output.

Chapter 8: Add-on packages for AutoGen 112

8.5.17 agarg option

This is the “autogen argument” option.
This option has some usage constraints. It:
• may appear an unlimited number of times.
• must not appear in combination with any of the following options: output.

This is a pass-through argument. It allows you to specify any arbitrary argument to be
passed to AutoGen.

8.5.18 base-name option

This is the “base name for output file(s)” option.
This option has some usage constraints. It:
• must not appear in combination with any of the following options: output.

When output is going to AutoGen, a base name must either be supplied or derived.
If this option is not supplied, then it is taken from the template option. If that is not
provided either, then it is set to the base name of the current directory.

Chapter 8: Add-on packages for AutoGen 113

8.6 Invoking xml2ag

This program will convert any arbitrary XML file into equivalent AutoGen definitions,
and invoke AutoGen. The template used will be derived from either:
• The –override-tpl command line option
• A top level XML attribute named, "template"

The base-name for the output will similarly be either:
• The –base-name command line option.
• The base name of the ‘.xml’ file.

The definitions derived from XML generally have an extra layer of definition. Specifically,
this XML input:

<mumble attr="foo">
mumble-1
<grumble>
grumble, grumble, grumble.

</grumble>mumble, mumble
</mumble>

Will get converted into this:
mumble = {

grumble = {
text = ’grumble, grumble, grumble’;

};
text = ’mumble-1’;
text = ’mumble, mumble’;

};

Please notice that some information is lost. AutoGen cannot tell that "grumble" used
to lie between the mumble texts. Also please note that you cannot assign:

grumble = ’grumble, grumble, grumble.’;

because if another "grumble" has an attribute or multiple texts, it becomes impossible
to have the definitions be the same type (compound or text values).

This section was generated by AutoGen, the aginfo template and the option descriptions
for the xml2ag program. It documents the xml2ag usage text and option meanings.

This software is released under the GNU General Public License.

8.6.1 xml2ag usage help (-?)

This is the automatically generated usage text for xml2ag:
xml2ag - XML to AutoGen Definiton Converter - Ver. 5.5.5
USAGE: xml2ag [-<flag> [<val>] | --<name>[{=| }<val>]]... [<def-file>]

Flg Arg Option-Name Description
-O Str output Output file in lieu of AutoGen processing
-L Str templ-dirs Template search directory list

- may appear multiple times
-T Str override-tpl Override template file
-l Str lib-template Library template file

Chapter 8: Add-on packages for AutoGen 114

- may appear multiple times
-b Str base-name Base name for output file(s)

Str definitions Definitions input file
-S Str load-scheme Scheme code file to load
-F Str load-functions Load scheme callout library
-s Str skip-suffix Omit the file with this suffix

- may appear multiple times
-o opt select-suffix specify this output suffix

- may appear multiple times
no source-time set mod times to latest source
Str equate characters considered equivalent
no writable Allow output files to be writable

- disabled as --not-writable
Num loop-limit Limit on increment loops

it must lie in one of the ranges:
-1 exactly, or
1 to 16777216

-t Num timeout Time limit for servers
it must lie in the range: 0 to 3600

KWd trace tracing level of detail
Str trace-out tracing output file or filter
no show-defs Show the definition tree
no show-shell Show shell commands

-D Str define name to add to definition list
- may appear multiple times

-U Str undefine definition list removal pattern
- an alternate for define

-v opt version Output version information and exit
-? no help Display usage information and exit
-! no more-help Extended usage information passed thru pager

Options are specified by doubled hyphens and their name
or by a single hyphen and the flag character.

This program will convert any arbitrary XML file into equivalent
AutoGen definitions, and invoke AutoGen.

The valid trace option keywords are:
nothing
templates
block-macros
expressions
everything

The template will be derived from either:
* the ‘‘--override-tpl’’ command line option
* a top level XML attribute named, "template"

The ‘‘base-name’’ for the output will similarly be either:

Chapter 8: Add-on packages for AutoGen 115

* the ‘‘--base-name’’ command line option
* the base name of the .xml file

please send bug reports to: autogen-bugs@lists.sf.net

8.6.2 output option (-O)

This is the “output file in lieu of autogen processing” option. By default, the output
is handed to an AutoGen for processing. However, you may save the definitions to a file
instead.

8.6.3 templ-dirs option (-L)

This is the “template search directory list” option.

This option has some usage constraints. It:

• may appear an unlimited number of times.

Pass-through AutoGen argument

8.6.4 override-tpl option (-T)

This is the “override template file” option. Pass-through AutoGen argument

8.6.5 lib-template option (-l)

This is the “library template file” option.

This option has some usage constraints. It:

• may appear an unlimited number of times.

Pass-through AutoGen argument

8.6.6 base-name option (-b)

This is the “base name for output file(s)” option. Pass-through AutoGen argument

8.6.7 definitions option

This is the “definitions input file” option. Pass-through AutoGen argument

8.6.8 load-scheme option (-S)

This is the “scheme code file to load” option. Pass-through AutoGen argument

8.6.9 load-functions option (-F)

This is the “load scheme callout library” option. Pass-through AutoGen argument

Chapter 8: Add-on packages for AutoGen 116

8.6.10 skip-suffix option (-s)

This is the “omit the file with this suffix” option.

This option has some usage constraints. It:

• may appear an unlimited number of times.

Pass-through AutoGen argument

8.6.11 select-suffix option (-o)

This is the “specify this output suffix” option.

This option has some usage constraints. It:

• may appear an unlimited number of times.

Pass-through AutoGen argument

8.6.12 source-time option

This is the “set mod times to latest source” option. Pass-through AutoGen argument

8.6.13 equate option

This is the “characters considered equivalent” option. Pass-through AutoGen argument

8.6.14 writable option

This is the “allow output files to be writable” option. Pass-through AutoGen argument

8.6.15 loop-limit option

This is the “limit on increment loops” option. Pass-through AutoGen argument

8.6.16 timeout option (-t)

This is the “time limit for servers” option. Pass-through AutoGen argument

8.6.17 trace option

This is the “tracing level of detail” option. Pass-through AutoGen argument

8.6.18 trace-out option

This is the “tracing output file or filter” option. Pass-through AutoGen argument

8.6.19 show-defs option

This is the “show the definition tree” option. Pass-through AutoGen argument

Chapter 8: Add-on packages for AutoGen 117

8.6.20 show-shell option

This is the “show shell commands” option. Pass-through AutoGen argument

8.6.21 define option (-D)

This is the “name to add to definition list” option.
This option has some usage constraints. It:
• may appear an unlimited number of times.
• is a member of the define class of options.

Pass-through AutoGen argument

8.6.22 undefine option (-U)

This is the “definition list removal pattern” option.
This option has some usage constraints. It:
• may appear an unlimited number of times.
• is a member of the define class of options.

Pass-through AutoGen argument

Chapter 8: Add-on packages for AutoGen 118

8.7 Replacement for Stdio Formatting Library

Using the ‘printf’ formatting routines in a portable fashion has always been a pain, and
this package has been way more pain than anyone ever imagined. Hopefully, with this
release of snprintfv, the pain is now over for all time.

The issues with portable usage are these:
1. Argument number specifiers are often either not implemented or are buggy. Even GNU

libc, version 1 got it wrong.
2. ANSI/ISO "forgot" to provide a mechanism for computing argument lists for vararg

procedures.
3. The argument array version of printf (‘printfv()’) is not generally available, does not

work with the native printf, and does not have a working argument number specifier
in the format specification. (Last I knew, anyway.)

4. You cannot fake varargs by calling ‘vprintf()’ with an array of arguments, because
ANSI does not require such an implementation and some vendors play funny tricks
because they are allowed to.

These four issues made it impossible for AutoGen to ship without its own implementation
of the ‘printf’ formatting routines. Since we were forced to do this, we decided to make
the formatting routines both better and more complete :-). We addressed these issues and
added the following features to the common printf API:
5. The formatted output can be written to

• a string allocated by the formatting function (‘asprintf()’).
• a file descriptor instead of a file stream (‘dprintf()’).
• a user specified stream (‘stream printf()’).

6. The formatting functions can be augmented with your own functions. These functions
are allowed to consume more than one character from the format, but must commence
with a unique character. For example,

"%{struct stat}\n"

might be used with ’{’ registered to a procedure that would look up "struct stat" in a
symbol table and do appropriate things, consuming the format string through the ’}’
character.

Gary V. Vaughan was generous enough to supply this implementation. Many thanks!!
For further details, the reader is referred to the snprintfv documentation. These functions

are also available in the template processing as ‘sprintf’ (see Section 3.5.25 [SCM sprintf],
page 38), ‘printf’ (see Section 3.5.20 [SCM printf], page 36), ‘fprintf’ (see Section 3.5.6
[SCM fprintf], page 33), and ‘shellf’ (see Section 3.5.24 [SCM shellf], page 38).

Chapter 9: Some ideas for the future. 119

9 Some ideas for the future.

Here are some things that might happen in the distant future.
• Write code for "AutoGetopts" (GNU getopt), or possibly the new glibc argp parser.
• Fix up current tools that contain miserably complex perl, shell, sed, awk and m4 scripts

to instead use this tool.

Concept Index 120

Concept Index

#
#define . 11
#elif . 11
#else . 11
#endif . 11
#endshell . 11
#error . 11
#if . 11
#ifdef . 11
#ifndef . 11
#include . 11
#line . 12
#option . 12
#shell . 12
#undef . 12

.

.def file . 6

.tpl file . 17

.tpl, file name . 6

A
allow-errors . 71
Alternate Definition . 15
arg-default . 79
arg-optional . 79
arg-range . 79
arg-type . 78
argument . 71
Augmenting AutoGen . 51
AutoEvents . 102
AutoFSM . 102
autogen invocation . 53
autogen usage . 53
autogen-base-name . 56
autogen-define . 59
autogen-definitions . 56
autogen-equate . 57
autogen-lib-template . 55
autogen-load-functions . 56
autogen-load-scheme . 56
autogen-loop-limit . 58
autogen-override-tpl . 55
autogen-select-suffix. 57
autogen-show-defs . 59
autogen-show-shell . 59
autogen-skip-suffix . 57
autogen-source-time . 57
autogen-templ-dirs . 55
autogen-timeout . 58
autogen-trace . 58
autogen-trace-out . 58

autogen-undefine . 60
autogen-writable . 58
AutoInfo . 98
AutoMan pages . 99
automatic options . 81
autoopts . 66
AutoOpts API . 84
AutoXDR . 102

B
before-guile-boot . 72

C
call-proc . 80
columns invocation . 103
columns usage . 103
columns-by-columns . 105
columns-col-width . 104
columns-columns . 104
columns-first-indent . 104
columns-format . 105
columns-indent . 104
columns-input . 105
columns-line-separation . 105
columns-separation . 105
columns-sort . 105
columns-spread . 104
columns-tab-width . 105
columns-width . 104
comments . 13
Common Option Attributes 75
compound definitions . 7
concat-string . 9
conditional emit . 48, 49
config-header . 71
configuring . 61
copyright . 73

D
default . 79
define directive . 11
define macro . 46
Definition Index . 9
definitions . 7
definitions file . 6
descrip . 75
design goals . 1
detail . 74
directives . 10
disable . 75
documentation . 76

Concept Index 121

documentation attributes . 81
Dynamic Definition Text . 10

E
elif directive . 11
else directive . 11
enable . 75
enabled . 75
endif directive . 11
endshell directive . 11
environrc . 71
equivalence . 76
error directive . 11
example, simple . 2
explain . 74
export . 71
expression syntax . 19
extract-code . 80

F
features . 66
finite state machine . 102
flag-code . 80
flag-proc . 80
flags-cant . 78
flags-must . 78
fOptState . 84
for loop . 47
futures . 119

G
generated main . 72
getdefs invocation . 106
getdefs usage . 107
getdefs-agarg . 112
getdefs-assign . 110
getdefs-autogen . 111
getdefs-base-name . 112
getdefs-common-assign . 110
getdefs-copy . 111
getdefs-defs-to-get . 109
getdefs-filelist . 110
getdefs-first-index . 109
getdefs-input . 109
getdefs-linenum . 111
getdefs-listattr . 110
getdefs-ordering . 109
getdefs-output . 111
getdefs-srcfile . 111
getdefs-subblock . 109
getdefs-template . 111
gnu-usage . 74
guile-main . 72

H
here-string . 8

homerc . 72

I
identification . 6

if directive . 11

if test . 48

ifdef directive . 11

ifndef directive . 11

immed disable . 77

immediate . 77

immediate action . 77

include . 72

include directive . 11

information attributes . 73

Installing. 64

Introduction . 1

K
keyword . 78

L
line directive . 12

loading rc files . 67

long-opts . 72

looping, for . 47

M
m4 . 5

macro syntax . 44

macro, pseudo . 17

main-text . 73

man-doc . 81

max . 75

min . 75

must-set . 75

N
name . 75

named option mode . 72

naming values . 18

native macros . 44

no-preset . 76

Concept Index 122

O
optActualIndex . 84
optActualValue . 84
optIndex . 84
Option Argument Handling 79
option argument name . 81
Option Arguments . 78
option attributes . 75
Option Conflict Attributes 77
Option Definitions . 70
option descriptor . 94
option directive . 12
option documentation . 81
Option Processing Data . 84
optionLoadLine . 68
optOccCt . 84
opts-ptr . 74
optValue . 84

P
predefines . 12
prefix . 72
preserve-case . 74
prog-desc . 74
prog-info-descrip . 81
prog-man-descrip . 81
prog-name . 71
prog-title . 71
program attributes . 71
pseudo macro . 17
pzLastArg . 85
pzProgName . 85
pzProgPath . 85

Q
Quick Start . 69

R
rcfile . 72
Redirecting Output . 50
remote procedure call . 102
Required Attributes . 75
RPC . 102
rpcgen . 102

S
saving rc files . 68
sectioned ini file . 67
settable . 76
shell directive . 12
shell options . 96
shell-generated string . 8
Signal Names . 63

simple definitions . 7
simple example . 2
Special Option Handling . 76
stack-arg . 80
standard options . 83
string, double quote . 7
string, shell output . 8
string, single quote . 7

T
template file . 17
template, file name . 6
test-main . 73
tpl, file name . 6

U
undef directive . 12
usage . 74
using AutoOpts. 94

V
value . 75
version . 72

W
while test . 49

X
XDR . 102
xml2ag invocation . 113
xml2ag usage . 113
xml2ag-base-name . 115
xml2ag-define . 117
xml2ag-definitions . 115
xml2ag-equate . 116
xml2ag-lib-template . 115
xml2ag-load-functions . 115
xml2ag-load-scheme . 115
xml2ag-loop-limit . 116
xml2ag-output . 115
xml2ag-override-tpl . 115
xml2ag-select-suffix . 116
xml2ag-show-defs . 116
xml2ag-show-shell . 117
xml2ag-skip-suffix . 116
xml2ag-source-time . 116
xml2ag-templ-dirs . 115
xml2ag-timeout . 116
xml2ag-trace . 116
xml2ag-trace-out . 116
xml2ag-undefine . 117
xml2ag-writable . 116

Function Index 123

Function Index

*
*= . 40
= . 39
*== . 40
== . 39
*~ . 40
~ . 41
*~~ . 40
~~ . 41

=
= . 41
=* . 42
== . 40
==* . 42

~
~ . 40
~* . 41
~~ . 41
~~* . 42

A
ag-function? . 22
autogen-version . 30

B
base-name . 22
bsd . 31

C
c-string . 31
CASE . 45
CLEAR_OPT . 86
COMMENT . 46
count . 22
COUNT_OPT . 86

D
def-file . 22
DEFINE . 46
DESC . 86
DISABLE_OPT_name . 86
dne . 22

E
ELIF . 46
ELSE . 46
ENABLED_OPT . 86
ENDDEF . 47
ENDFOR . 47
ENDIF . 47
ENDWHILE . 47
error . 23
error-source-line . 31
ERRSKIP_OPTERR . 86
ERRSTOP_OPTERR . 86
ESAC . 47
exist? . 23
EXPR . 47
extract . 31

F
find-file . 24
first-for? . 24
FOR . 47
for-by . 24
for-from . 24
for-index . 24
for-sep . 24
for-to . 25
format-arg-count . 32
fprintf . 33

G
get . 25
gperf . 33
gpl . 33

H
HAVE_OPT . 87
header-file . 29
header-guard . 29
hide-email . 34
high-lim . 25
html-escape-encode . 44

I
IF . 48
in? . 34
INCLUDE . 49
INVOKE . 49
ISSEL_OPT . 87
ISUNUSED_OPT . 87

Function Index 124

J
join . 34

K
kr-string . 34

L
last-for? . 25
len . 26
lgpl . 34
license . 35
low-lim . 26

M
make-gperf . 35
make-header-guard . 29
makefile-script . 35
match-value? . 26
max . 36
min . 36

O
OPT_ARG . 87
OPT_VALUE_name . 87
OPTION_CT . 87
optionFree . 91
optionLoadLine . 91
optionProcess . 92
optionRestore . 92
optionSaveFile . 93
optionSaveState . 93
optionVersion . 93
out-delete . 26
out-depth . 26
out-line . 27
out-move . 27
out-name . 27
out-pop . 27
out-push-add . 27
out-push-new . 28
out-resume . 28
out-suspend . 28
out-switch . 28

P
prefix . 36
printf . 36

R
raw-shell-str . 37
RESTART_OPT . 87

S
SELECT . 49
set-option . 28
set-writable . 29
SET_OPT_name . 88
shell . 37
shell-str . 37
shellf . 38
sprintf . 38
stack . 29
STACKCT_OPT . 88
STACKLST_OPT . 88
START_OPT . 89
STATE_OPT . 89
string->c-name! . 42
string-capitalize . 38
string-capitalize! . 39
string-contains-eqv? . 39
string-contains? . 39
string-downcase . 39
string-downcase! . 39
string-end-eqv-match? . 40
string-end-match? . 40
string-ends-eqv? . 40
string-ends-with? . 40
string-equals? . 40
string-eqv-match? . 40
string-eqv? . 41
string-has-eqv-match? . 41
string-has-match? . 41
string-match? . 41
string-start-eqv-match? 41
string-start-match? . 42
string-starts-eqv? . 42
string-starts-with? . 42
string-substitute . 42
string-tr . 43
string-tr! . 43
string-upcase . 43
string-upcase! . 43
sub-shell-str . 43
suffix . 29
sum . 44

T
teOptIndex . 90
tpl-file . 29
tpl-file-line . 29

U
UNKNOWN . 49
USAGE . 89

Function Index 125

V

VALUE_OPT_name . 89

VERSION . 90

W
WHICH_IDX_name . 90

WHICH_OPT_name . 90

WHILE . 49

i

Table of Contents

1 Introduction . 1
1.1 The Purpose of AutoGen . 1
1.2 A Simple Example . 2
1.3 csh/zsh caveat . 4
1.4 A User’s Perspective . 4

2 AutoGen Definitions File 6
2.1 The Identification Definition . 6
2.2 Named Definitions. 7

2.2.1 Definition List . 7
2.2.2 Double Quote String . 7
2.2.3 Single Quote String . 7
2.2.4 Shell Output String . 8
2.2.5 An Unquoted String . 8
2.2.6 Scheme Result String . 8
2.2.7 A Here String . 8
2.2.8 Concatenated Strings . 9

2.3 Assigning an Index to a Definition . 9
2.4 Dynamic Text . 10
2.5 Controlling What Gets Processed . 10
2.6 Pre-defined Names . 12
2.7 Commenting Your Definitions . 13
2.8 What it all looks like.. 13
2.9 YACC Language Grammar . 14
2.10 Alternate Definition Forms . 15

3 AutoGen Template . 17
3.1 Format of the Pseudo Macro . 17
3.2 Naming a value . 18
3.3 Macro Expression Syntax . 19

3.3.1 Apply Code . 19
3.3.2 Basic Expression . 20

3.4 AutoGen Scheme Functions . 22
3.4.1 ‘ag-function?’ - test for function. 22
3.4.2 ‘base-name’ - base output name 22
3.4.3 ‘count’ - definition count . 22
3.4.4 ‘def-file’ - definitions file name 22
3.4.5 ‘dne’ - "Do Not Edit" warning 22
3.4.6 ‘error’ - display message and exit 23
3.4.7 ‘exist?’ - test for value name 23
3.4.8 ‘find-file’ - locate a file in the search path 24
3.4.9 ‘first-for?’ - detect first iteration 24

ii

3.4.10 ‘for-by’ - set iteration step 24
3.4.11 ‘for-from’ - set initial index 24
3.4.12 ‘for-index’ - get current loop index 24
3.4.13 ‘for-sep’ - set loop separation string 24
3.4.14 ‘for-to’ - set ending index . 25
3.4.15 ‘get’ - get named value . 25
3.4.16 ‘high-lim’ - get highest value index 25
3.4.17 ‘last-for?’ - detect last iteration. 25
3.4.18 ‘len’ - get count of values . 26
3.4.19 ‘low-lim’ - get lowest value index 26
3.4.20 ‘match-value?’ - test for matching value 26
3.4.21 ‘out-delete’ - delete current output file 26
3.4.22 ‘out-depth’ - output file stack depth 26
3.4.23 ‘out-line’ - output file line number. 27
3.4.24 ‘out-move’ - change name of output file 27
3.4.25 ‘out-name’ - current output file name 27
3.4.26 ‘out-pop’ - close current output file 27
3.4.27 ‘out-push-add’ - append output to file 27
3.4.28 ‘out-push-new’ - purge and create output file . . . 28
3.4.29 ‘out-resume’ - resume current output file 28
3.4.30 ‘out-suspend’ - suspend current output file 28
3.4.31 ‘out-switch’ - close and create new output 28
3.4.32 ‘set-option’ - Set a command line option 28
3.4.33 ‘set-writable’ - Make the output file be writable

. 29
3.4.34 ‘stack’ - make list of AutoGen values 29
3.4.35 ‘suffix’ - get the current suffix 29
3.4.36 ‘tpl-file’ - get the template file name 29
3.4.37 ‘tpl-file-line’ - get the template file and line

number . 29
3.4.38 ‘make-header-guard’ - make self-inclusion guard

. 29
3.4.39 ‘autogen-version’ - autogen version number . . . 30

3.5 Common Scheme Functions . 31
3.5.1 ‘bsd’ - BSD Public License . 31
3.5.2 ‘c-string’ - emit string for ANSI C. 31
3.5.3 ‘error-source-line’ - display of file & line 31
3.5.4 ‘extract’ - extract text from another file 31
3.5.5 ‘format-arg-count’ - count the args to a format

. 32
3.5.6 ‘fprintf’ - format to a file . 33
3.5.7 ‘gperf’ - perform a perfect hash function 33
3.5.8 ‘gpl’ - GNU General Public License 33
3.5.9 ‘hide-email’ - convert eaddr to javascript 34
3.5.10 ‘in?’ - test for string in list . 34
3.5.11 ‘join’ - join string list with separator 34
3.5.12 ‘kr-string’ - emit string for K&R C 34
3.5.13 ‘lgpl’ - GNU Library General Public License . . . 34

iii

3.5.14 ‘license’ - an arbitrary license 35
3.5.15 ‘make-gperf’ - build a perfect hash function

program. 35
3.5.16 ‘makefile-script’ - create makefile script 35
3.5.17 ‘max’ - maximum value in list 36
3.5.18 ‘min’ - minimum value in list 36
3.5.19 ‘prefix’ - prefix lines with a string 36
3.5.20 ‘printf’ - format to stdout . 36
3.5.21 ‘raw-shell-str’ - single quote shell string 37
3.5.22 ‘shell’ - invoke a shell script 37
3.5.23 ‘shell-str’ - double quote shell string 37
3.5.24 ‘shellf’ - format a string, run shell 38
3.5.25 ‘sprintf’ - format a string . 38
3.5.26 ‘string-capitalize’ - capitalize a new string . . 38
3.5.27 ‘string-capitalize!’ - capitalize a string 39
3.5.28 ‘string-contains-eqv?’ - caseless substring . . . 39
3.5.29 ‘string-contains?’ - substring match 39
3.5.30 ‘string-downcase’ - lower case a new string 39
3.5.31 ‘string-downcase!’ - make a string be lower case

. 39
3.5.32 ‘string-end-eqv-match?’ - caseless regex ending

. 40
3.5.33 ‘string-end-match?’ - regex match end 40
3.5.34 ‘string-ends-eqv?’ - caseless string ending 40
3.5.35 ‘string-ends-with?’ - string ending 40
3.5.36 ‘string-equals?’ - string matching 40
3.5.37 ‘string-eqv-match?’ - caseless regex match 40
3.5.38 ‘string-eqv?’ - caseless string match 41
3.5.39 ‘string-has-eqv-match?’ - caseless regex contains

. 41
3.5.40 ‘string-has-match?’ - contained regex match . . 41
3.5.41 ‘string-match?’ - regex match 41
3.5.42 ‘string-start-eqv-match?’ - caseless regex start

. 41
3.5.43 ‘string-start-match?’ - regex match start 42
3.5.44 ‘string-starts-eqv?’ - caseless string start 42
3.5.45 ‘string-starts-with?’ - string starting 42
3.5.46 ‘string-substitute’ - multiple global

replacements . 42
3.5.47 ‘string->c-name!’ - map non-name chars to

underscore . 42
3.5.48 ‘string-tr’ - convert characters with new result

. 43
3.5.49 ‘string-tr!’ - convert characters 43
3.5.50 ‘string-upcase’ - upper case a new string 43
3.5.51 ‘string-upcase!’ - make a string be upper case

. 43

iv

3.5.52 ‘sub-shell-str’ - back quoted (sub-)shell string
. 43

3.5.53 ‘sum’ - sum of values in list . 44
3.5.54 ‘html-escape-encode’ - escape special chars . . . 44

3.6 AutoGen Native Macros . 44
3.6.1 AutoGen Macro Syntax . 44
3.6.2 CASE - Select one of several template blocks 45
3.6.3 COMMENT - A block of comment to be ignored

. 46
3.6.4 DEFINE - Define a user AutoGen macro 46
3.6.5 ELIF - Alternate Conditional Template Block 46
3.6.6 ELSE - Alternate Template Block 46
3.6.7 ENDDEF - Ends a macro definition. 47
3.6.8 ENDFOR - Terminates the FOR function template

block . 47
3.6.9 ENDIF - Terminate the IF Template Block 47
3.6.10 ENDWHILE - Terminate the WHILE Template Block

. 47
3.6.11 ESAC - Terminate the CASE Template Block 47
3.6.12 EXPR - Evaluate and emit an Expression 47
3.6.13 FOR - Emit a template block multiple times 47
3.6.14 IF - Conditionally Emit a Template Block 48
3.6.15 INCLUDE - Read in and emit a template block

. 49
3.6.16 INVOKE - Invoke a User Defined Macro 49
3.6.17 SELECT - Selection block for CASE function . . . 49
3.6.18 UNKNOWN - Either a user macro or a value name.

. 49
3.6.19 WHILE - Conditionally loop over a Template Block

. 49
3.7 Redirecting Output. 50

4 Augmenting AutoGen Features 51
4.1 Shell Output Commands . 51
4.2 Guile Macros . 51
4.3 Guile Callout Functions. 51
4.4 AutoGen Macros . 52

v

5 Invoking autogen . 53
5.1 autogen usage help (-?) . 53
5.2 templ-dirs option (-L) . 55
5.3 override-tpl option (-T) . 55
5.4 lib-template option (-l) . 55
5.5 base-name option (-b) . 56
5.6 definitions option . 56
5.7 load-scheme option (-S) . 56
5.8 load-functions option (-F) . 56
5.9 skip-suffix option (-s) . 57
5.10 select-suffix option (-o) . 57
5.11 source-time option . 57
5.12 equate option . 57
5.13 writable option . 58
5.14 loop-limit option . 58
5.15 timeout option (-t) . 58
5.16 trace option . 58
5.17 trace-out option . 58
5.18 show-defs option . 59
5.19 show-shell option . 59
5.20 define option (-D) . 59
5.21 undefine option (-U) . 60

6 Configuring and Installing 61
6.1 Configuring AutoGen . 61
6.2 AutoGen as a CGI server . 63
6.3 Signal Names . 63
6.4 Installing AutoGen . 64

7 Automated Option Processing 66
7.1 AutoOpts Features . 66

loading rc files . 67
saving rc files . 68
process a text string for options . 68

7.2 Quick Start . 69
7.3 Option Definitions. 70

7.3.1 Program Description Attributes 71
7.3.2 Generated main Procedures . 72
7.3.3 Program Information Attributes 73
7.3.4 Option Attributes . 75

7.3.4.1 Required Attributes 75
7.3.4.2 Common Option Attributes 75
7.3.4.3 Special Option Handling 76
7.3.4.4 Immediate Action Attributes 77
7.3.4.5 Option Conflict Attributes 77
7.3.4.6 Option Argument Specification 78
7.3.4.7 Option Argument Handling 79

vi

7.3.5 Man and Info doc Attributes 81
7.3.6 Automatically Supported Options 81
7.3.7 Library of Standard Options . 83

7.4 Programmatic Interface . 84
7.4.1 Data for Option Processing . 84
7.4.2 CLEAR OPT(<NAME>) - Clear Option Markings

. 86
7.4.3 COUNT OPT(<NAME>) - Definition Count . . . 86
7.4.4 DESC(<NAME>) - Option Descriptor 86
7.4.5 DISABLE OPT name - Disable an option 86
7.4.6 ENABLED OPT(<NAME>) - Is Option Enabled?

. 86
7.4.7 ERRSKIP OPTERR - Ignore Option Errors 86
7.4.8 ERRSTOP OPTERR - Stop on Errors 86
7.4.9 HAVE OPT(<NAME>) - Have this option?. 87
7.4.10 ISSEL OPT(<NAME>) - Is Option Selected? . . 87
7.4.11 ISUNUSED OPT(<NAME>) - Never Specified?

. 87
7.4.12 OPTION CT - Full Count of Options 87
7.4.13 OPT ARG(<NAME>) - Option Argument String

. 87
7.4.14 OPT VALUE name - Option Argument Value . . 87
7.4.15 RESTART OPT(n) - Resume Option Processing

. 87
7.4.16 SET OPT name - Force an option to be set 88
7.4.17 STACKCT OPT(<NAME>) - Stacked Arg Count

. 88
7.4.18 STACKLST OPT(<NAME>) - Argument Stack

. 88
7.4.19 START OPT - Restart Option Processing 89
7.4.20 STATE OPT(<NAME>) - Option State 89
7.4.21 USAGE(exit-code) - Usage invocation macro . . 89
7.4.22 VALUE OPT name - Option Flag Value 89
7.4.23 VERSION - Version and Full Version 90
7.4.24 WHICH IDX name - Which Equivalenced Index

. 90
7.4.25 WHICH OPT name - Which Equivalenced Option

. 90
7.4.26 teOptIndex - Option Index and Enumeration . . . 90
7.4.27 OPTIONS STRUCT VERSION - active version

. 91
7.4.28 libopts External Procedures 91

7.4.28.1 optionFree . 91
7.4.28.2 optionLoadLine . 91
7.4.28.3 optionProcess . 92
7.4.28.4 optionRestore . 92
7.4.28.5 optionSaveFile . 93
7.4.28.6 optionSaveState . 93

vii

7.4.28.7 optionVersion . 93
7.5 Option Descriptor File . 94
7.6 Using AutoOpts . 94

7.6.1 local-only use . 94
7.6.2 binary distro, AutoOpts not installed. 95
7.6.3 binary distro, AutoOpts pre-installed 95
7.6.4 source distro, AutoOpts pre-installed 95
7.6.5 source distro, AutoOpts not installed 96

7.7 AutoOpts for Shell Scripts . 96
7.8 Automated Info Docs . 98

7.8.1 “invoking” info docs . 98
7.8.2 library info docs . 99

7.9 Automated Man Pages . 99
7.9.1 command line man pages . 99
7.9.2 library man pages . 100

8 Add-on packages for AutoGen 102
8.1 Automated Finite State Machine . 102
8.2 Combined RPC Marshalling . 102
8.3 Automated Event Management . 102
8.4 Invoking columns . 103

8.4.1 columns usage help (-?) . 103
8.4.2 width option (-W) . 104
8.4.3 columns option (-c) . 104
8.4.4 col-width option (-w) . 104
8.4.5 spread option . 104
8.4.6 indent option (-I) . 104
8.4.7 first-indent option . 104
8.4.8 tab-width option . 105
8.4.9 sort option (-s) . 105
8.4.10 format option (-f) . 105
8.4.11 separation option (-S) . 105
8.4.12 line-separation option . 105
8.4.13 by-columns option . 105
8.4.14 input option (-i) . 105

8.5 Invoking getdefs . 106
8.5.1 getdefs usage help . 107
8.5.2 defs-to-get option . 109
8.5.3 ordering option . 109
8.5.4 first-index option . 109
8.5.5 input option . 109
8.5.6 subblock option . 109
8.5.7 listattr option . 110
8.5.8 filelist option . 110
8.5.9 assign option . 110
8.5.10 common-assign option . 110
8.5.11 copy option . 111
8.5.12 srcfile option . 111

viii

8.5.13 linenum option . 111
8.5.14 output option . 111
8.5.15 autogen option . 111
8.5.16 template option . 111
8.5.17 agarg option . 112
8.5.18 base-name option . 112

8.6 Invoking xml2ag . 113
8.6.1 xml2ag usage help (-?) . 113
8.6.2 output option (-O). 115
8.6.3 templ-dirs option (-L) . 115
8.6.4 override-tpl option (-T) . 115
8.6.5 lib-template option (-l) . 115
8.6.6 base-name option (-b) . 115
8.6.7 definitions option . 115
8.6.8 load-scheme option (-S) . 115
8.6.9 load-functions option (-F) . 115
8.6.10 skip-suffix option (-s) . 116
8.6.11 select-suffix option (-o) . 116
8.6.12 source-time option . 116
8.6.13 equate option . 116
8.6.14 writable option . 116
8.6.15 loop-limit option . 116
8.6.16 timeout option (-t) . 116
8.6.17 trace option . 116
8.6.18 trace-out option . 116
8.6.19 show-defs option . 116
8.6.20 show-shell option . 117
8.6.21 define option (-D) . 117
8.6.22 undefine option (-U) . 117

8.7 Replacement for Stdio Formatting Library 118

9 Some ideas for the future. 119

Concept Index . 120

Function Index . 123

	Introduction
	The Purpose of AutoGen
	A Simple Example
	csh/zsh caveat
	A User's Perspective

	AutoGen Definitions File
	The Identification Definition
	Named Definitions
	Definition List
	Double Quote String
	Single Quote String
	Shell Output String
	An Unquoted String
	Scheme Result String
	A Here String
	Concatenated Strings

	Assigning an Index to a Definition
	Dynamic Text
	Controlling What Gets Processed
	Pre-defined Names
	Commenting Your Definitions
	What it all looks like.
	YACC Language Grammar
	Alternate Definition Forms

	AutoGen Template
	Format of the Pseudo Macro
	Naming a value
	Macro Expression Syntax
	Apply Code
	Basic Expression

	AutoGen Scheme Functions
	ag-function? - test for function
	base-name - base output name
	count - definition count
	def-file - definitions file name
	dne - {@char 34}Do Not Edit{@char 34} warning
	error - display message and exit
	exist? - test for value name
	find-file - locate a file in the search path
	first-for? - detect first iteration
	for-by - set iteration step
	for-from - set initial index
	for-index - get current loop index
	for-sep - set loop separation string
	for-to - set ending index
	get - get named value
	high-lim - get highest value index
	last-for? - detect last iteration
	len - get count of values
	low-lim - get lowest value index
	match-value? - test for matching value
	out-delete - delete current output file
	out-depth - output file stack depth
	out-line - output file line number
	out-move - change name of output file
	out-name - current output file name
	out-pop - close current output file
	out-push-add - append output to file
	out-push-new - purge and create output file
	out-resume - resume current output file
	out-suspend - suspend current output file
	out-switch - close and create new output
	set-option - Set a command line option
	set-writable - Make the output file be writable
	stack - make list of AutoGen values
	suffix - get the current suffix
	tpl-file - get the template file name
	tpl-file-line - get the template file and line number
	make-header-guard - make self-inclusion guard
	autogen-version - autogen version number

	Common Scheme Functions
	bsd - BSD Public License
	c-string - emit string for ANSI C
	error-source-line - display of file & line
	extract - extract text from another file
	format-arg-count - count the args to a format
	fprintf - format to a file
	gperf - perform a perfect hash function
	gpl - GNU General Public License
	hide-email - convert eaddr to javascript
	in? - test for string in list
	join - join string list with separator
	kr-string - emit string for K&R C
	lgpl - GNU Library General Public License
	license - an arbitrary license
	make-gperf - build a perfect hash function program
	makefile-script - create makefile script
	max - maximum value in list
	min - minimum value in list
	prefix - prefix lines with a string
	printf - format to stdout
	raw-shell-str - single quote shell string
	shell - invoke a shell script
	shell-str - double quote shell string
	shellf - format a string, run shell
	sprintf - format a string
	string-capitalize - capitalize a new string
	string-capitalize! - capitalize a string
	string-contains-eqv? - caseless substring
	string-contains? - substring match
	string-downcase - lower case a new string
	string-downcase! - make a string be lower case
	string-end-eqv-match? - caseless regex ending
	string-end-match? - regex match end
	string-ends-eqv? - caseless string ending
	string-ends-with? - string ending
	string-equals? - string matching
	string-eqv-match? - caseless regex match
	string-eqv? - caseless string match
	string-has-eqv-match? - caseless regex contains
	string-has-match? - contained regex match
	string-match? - regex match
	string-start-eqv-match? - caseless regex start
	string-start-match? - regex match start
	string-starts-eqv? - caseless string start
	string-starts-with? - string starting
	string-substitute - multiple global replacements
	string-{@gtr }c-name! - map non-name chars to underscore
	string-tr - convert characters with new result
	string-tr! - convert characters
	string-upcase - upper case a new string
	string-upcase! - make a string be upper case
	sub-shell-str - back quoted (sub-)shell string
	sum - sum of values in list
	html-escape-encode - escape special chars

	AutoGen Native Macros
	AutoGen Macro Syntax
	CASE - Select one of several template blocks
	COMMENT - A block of comment to be ignored
	DEFINE - Define a user AutoGen macro
	ELIF - Alternate Conditional Template Block
	ELSE - Alternate Template Block
	ENDDEF - Ends a macro definition.
	ENDFOR - Terminates the FOR function template block
	ENDIF - Terminate the IF Template Block
	ENDWHILE - Terminate the WHILE Template Block
	ESAC - Terminate the CASE Template Block
	EXPR - Evaluate and emit an Expression
	FOR - Emit a template block multiple times
	IF - Conditionally Emit a Template Block
	INCLUDE - Read in and emit a template block
	INVOKE - Invoke a User Defined Macro
	SELECT - Selection block for CASE function
	UNKNOWN - Either a user macro or a value name.
	WHILE - Conditionally loop over a Template Block

	Redirecting Output

	Augmenting AutoGen Features
	Shell Output Commands
	Guile Macros
	Guile Callout Functions
	AutoGen Macros

	Invoking autogen
	autogen usage help (-?)
	templ-dirs option (-L)
	override-tpl option (-T)
	lib-template option (-l)
	base-name option (-b)
	definitions option
	load-scheme option (-S)
	load-functions option (-F)
	skip-suffix option (-s)
	select-suffix option (-o)
	source-time option
	equate option
	writable option
	loop-limit option
	timeout option (-t)
	trace option
	trace-out option
	show-defs option
	show-shell option
	define option (-D)
	undefine option (-U)

	Configuring and Installing
	Configuring AutoGen
	AutoGen as a CGI server
	Signal Names
	Installing AutoGen

	Automated Option Processing
	AutoOpts Features
	loading rc files
	saving rc files
	process a text string for options
	Quick Start
	Option Definitions
	Program Description Attributes
	Generated main Procedures
	Program Information Attributes
	Option Attributes
	Required Attributes
	Common Option Attributes
	Special Option Handling
	Immediate Action Attributes
	Option Conflict Attributes
	Option Argument Specification
	Option Argument Handling

	Man and Info doc Attributes
	Automatically Supported Options
	Library of Standard Options

	Programmatic Interface
	Data for Option Processing
	CLEAR_OPT({@less }NAME{@gtr }) - Clear Option Markings
	COUNT_OPT({@less }NAME{@gtr }) - Definition Count
	DESC({@less }NAME{@gtr }) - Option Descriptor
	DISABLE_OPT_name - Disable an option
	ENABLED_OPT({@less }NAME{@gtr }) - Is Option Enabled?
	ERRSKIP_OPTERR - Ignore Option Errors
	ERRSTOP_OPTERR - Stop on Errors
	HAVE_OPT({@less }NAME{@gtr }) - Have this option?
	ISSEL_OPT({@less }NAME{@gtr }) - Is Option Selected?
	ISUNUSED_OPT({@less }NAME{@gtr }) - Never Specified?
	OPTION_CT - Full Count of Options
	OPT_ARG({@less }NAME{@gtr }) - Option Argument String
	OPT_VALUE_name - Option Argument Value
	RESTART_OPT(n) - Resume Option Processing
	SET_OPT_name - Force an option to be set
	STACKCT_OPT({@less }NAME{@gtr }) - Stacked Arg Count
	STACKLST_OPT({@less }NAME{@gtr }) - Argument Stack
	START_OPT - Restart Option Processing
	STATE_OPT({@less }NAME{@gtr }) - Option State
	USAGE(exit-code) - Usage invocation macro
	VALUE_OPT_name - Option Flag Value
	VERSION - Version and Full Version
	WHICH_IDX_name - Which Equivalenced Index
	WHICH_OPT_name - Which Equivalenced Option
	teOptIndex - Option Index and Enumeration
	OPTIONS_STRUCT_VERSION - active version
	libopts External Procedures
	optionFree
	optionLoadLine
	optionProcess
	optionRestore
	optionSaveFile
	optionSaveState
	optionVersion

	Option Descriptor File
	Using AutoOpts
	local-only use
	binary distro, AutoOpts not installed
	binary distro, AutoOpts pre-installed
	source distro, AutoOpts pre-installed
	source distro, AutoOpts not installed

	AutoOpts for Shell Scripts
	Automated Info Docs
	``invoking'' info docs
	library info docs

	Automated Man Pages
	command line man pages
	library man pages

	Add-on packages for AutoGen
	Automated Finite State Machine
	Combined RPC Marshalling
	Automated Event Management
	Invoking columns
	columns usage help (-?)
	width option (-W)
	columns option (-c)
	col-width option (-w)
	spread option
	indent option (-I)
	first-indent option
	tab-width option
	sort option (-s)
	format option (-f)
	separation option (-S)
	line-separation option
	by-columns option
	input option (-i)

	Invoking getdefs
	getdefs usage help
	defs-to-get option
	ordering option
	first-index option
	input option
	subblock option
	listattr option
	filelist option
	assign option
	common-assign option
	copy option
	srcfile option
	linenum option
	output option
	autogen option
	template option
	agarg option
	base-name option

	Invoking xml2ag
	xml2ag usage help (-?)
	output option (-O)
	templ-dirs option (-L)
	override-tpl option (-T)
	lib-template option (-l)
	base-name option (-b)
	definitions option
	load-scheme option (-S)
	load-functions option (-F)
	skip-suffix option (-s)
	select-suffix option (-o)
	source-time option
	equate option
	writable option
	loop-limit option
	timeout option (-t)
	trace option
	trace-out option
	show-defs option
	show-shell option
	define option (-D)
	undefine option (-U)

	Replacement for Stdio Formatting Library

	Some ideas for the future.
	Concept Index
	Function Index

